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Abstract

Process mining has become very popular in the last years as a way to analyze the behavior of an organization
by o�ering techniques to discover, monitor and enhance real processes. A key point in process mining is to discover
understandable process models. To achieve this goal in complex processes, several simpli�cation techniques have been
proposed, from the structural simpli�cation of the model to the simpli�cation of the log to discover simpler process
models. However, obtaining a comprehensible model explaining the behavior of unstructured large processes �for
instance containing hundreds of activities� is still an open challenge. In this paper, we introduce UBeA, a novel
technique to abstract non-core behavior from a process model. We also present IBeA, a speci�c implementation of this
proposal to simplify process models by abstracting infrequent behavior, using a frequent behavior extraction algorithm
to detect the core behavior. IBeA has been validated with more than 10 complex real processes, most of them from the
Business Process Intelligence Challenge (BPIC), showing that it simpli�es the process obtaining a better process model
than other simpli�cation techniques.
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1. Introduction

During the past years process mining has emerged as a
discipline focusing on techniques to discover, monitor and
enhance real processes [1]. One of the key areas of process
mining is process discovery, whose objective is to generate
a process model describing the behavior of the event log
of a process. Once a model is discovered, the analysis and
enhancement of the process can be performed to detect
possible improvements. However, in unstructured large
processes �composed by many activities and where most
trace variants1 have a low frequency�, this analysis and
enhancement become more di�cult [3].

With the entrance of process mining in the Big Data
era, these unstructured large processes have become more
and more common. In these scenarios, process models use
to have a poor precision in exchange of a high �tness,
presenting a spaghetti-like structure [15, 26]. Many tech-
niques have been developed focusing on subparts of the
process [9, 10, 13, 17, 30], with the aim to extract as many
information as possible. Nevertheless, in order to under-
stand the main behavior in the model, and to be able to
analyze and enhance the real process behind it, it is neces-

∗Corresponding author
Email addresses: david.chapela@usc.es (David

Chapela-Campa), manuel.mucientes@usc.es (Manuel Mucientes),
manuel.lama@usc.es (Manuel Lama)

1The trace variants of a log are the di�erent activity sequences,
being their frequency the number of traces following each variant.

sary to obtain a simpli�ed process model with a trade-o�
between �tness and precision.

Although not focusing on unstructured large processes,
di�erent techniques have been developed to tackle the prob-
lem of simpli�cation in complex processes. Some of these
techniques simplify already discovered process models, ap-
plying transformations that reduce the model while main-
taining the frequent behavior [15, 26]. The problem is
that they usually produce simpler, but unstructured, mod-
els that deteriorate the understandability of the process.
Other approaches opt to �rst simplify the log, and then
obtain a �ner process model using a discovery algorithm.
Some of these techniques search for outliers in the log
traces, removing them with the aim of retaining the fre-
quent behavior of the process [11, 27]. However, the de-
tection of outlier behavior in unstructured large scenarios
is hindered by the high variability in the log. Related to
this, another naive technique is the removal of the less fre-
quent trace variants in the log. Nevertheless, the removal
of full traces leads to a loss of frequent behavior �e.g., fre-
quent subtraces� appearing in part of those traces. There
are also approaches that detect the activities with higher
contribution to the unstructured nature of the process, to
remove them from the log [29]. But, the detection of these
elements in a process where most activities follow a disor-
dered distribution is not feasible.

To obtain an overall view of the process, another op-
tion could be to remove the infrequent behavior that is
hindering the frequent one. But, the deletion of behav-
ior creates inexistent paths in the process �each removal
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Figure 1: Motivational example for the abstraction process presented
in this paper.

creates a path from the previous events to the succeeding
ones. Another alternative, instead of removing behavior,
could be to abstract subprocesses in the log by replacing
the execution of multiple activities with one [21, 23]. The
key point of these techniques is to choose which subpro-
cesses to abstract in order not to lose too much behavior
w.r.t. the original process. In this paper we describe an
approach to abstract the infrequent behavior into arti�cial
activities, to obtain an overall view of the process, while
being aware of the existence and exact location of the in-
frequent behavior.

Figure 1 shows a motivational example of this behav-
ioral abstraction. It depicts a sample of a log concerning 3
activities occurring in many orders in Figure 1a, with its
corresponding model in Figure 1b. In this type of scenar-
ios, where all the activities occur in almost any order, it
is usual to obtain a �ower-like structure such as the one
depicted in Figure 1b. But, in some cases, there is a la-
tent structure hindered by the infrequent behavior. As can
be seen, the common behavior is to �rst assign a doctor,
and then perform a blood test either before or after going
to the consulting room. This behavior cannot be observed
without the abstraction due to the atypical cases hindering

the visualization. Figure 1c shows that the infrequent be-
havior can be encapsulated into the INFREQUENT activity,
obtaining the structure shown in Figure 1d. INFREQUENT

can even store the abstracted subtraces to show, if the user
zooms in, the encapsulated behavior.

This example shows an important feature of the ab-
straction process. The abstraction is performed by replac-
ing the infrequent behavior �not the infrequent activities�
into an arti�cial activity. As shown in Figure 1a, the three
activities appear in both frequent ��rst two traces� and
infrequent �highlighted traces� behavior. While other
techniques would remove either the infrequent traces �
also removing the other behavior present in them�, or the
infrequent activities �removing activities in both frequent
and infrequent contexts�, the behavioral abstraction only
replaces the events of an activity when they appear in in-
frequent behavior.

In this paper, we introduce UBeA, a novel technique to
abstract the non-core behavior of a process into arti�cial
activities using the relations between the activities, hence,
taking into account structures such as parallels, selections
or loops. The main novelty of UBeA is that it generates an
abstracted version of the process describing the core be-
havior while being aware of the existence and exact loca-
tion of the non-core behavior. Furthermore, UBeA allows
the user to specify the behavior to maintain, i.e., the core
behavior, making it very versatile. We also present IBeA, a
speci�c implementation of UBeA to simplify process mod-
els by abstracting infrequent behavior, using WoMine [10]
�an algorithm for extracting frequent subprocesses� to
detect the core behavior �thus, considering the infrequent
behavior as non-core�, allowing to produce a simpler pro-
cess model while maintaining a trade-o� between �tness
and precision. IBeA has been validated with a set of 11
complex and real process logs, 10 of them from the Busi-
ness Process Intelligence Challenge (BPIC), and one from
the health domain. Experiments show that the simpli�ca-
tion of IBeA generates better process models than other
simpli�cation techniques.

The remainder of this paper is structured as follows.
Sec. 2 reviews the state of the art for the simpli�cation
of process models. Sec. 3 introduces some de�nitions and
background knowledge. Sec. 4 presents the detailed struc-
ture of UBeA, followed by the implementation of IBeA
in Sec. 5. Finally, Sec. 6 describes the evaluation of the
approach, and Sec. 7 summarizes the conclusions of the
paper.

2. Related Work

Diverse techniques have been developed to tackle the
simpli�cation of process models. The �rst proposals fo-
cused on a structural simpli�cation using only the infor-
mation of the model itself [25]. But they quickly evolved to
a simpli�cation also using the information from the event
log [15, 26]. In [15] an approach to simplify discovered pro-
cess models while controlling the precision and generaliza-
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(b) A result example of one of the
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Figure 2: Result examples of two model simpli�cation techniques.

tion is presented. The process model, expressed in terms of
a Petri net, is unfolded into a branching process using the
event log, then �ltered retaining the frequent parts, and
�nally folded again into a simpler process model capturing
the desired behavior. Other approaches focusing on �tness
and precision are, for instance, the collection of log-based
techniques presented in [26]. They �rst rank the impor-
tance of the model places and arcs using the log, and then
simplify with di�erent alternatives maintaining the more
important arcs and places.

These simpli�cation techniques are designed to reduce
the structural complexity of unstructured process mod-
els while maintaining the �tness. In unstructured large
scenarios where most of the behavior is infrequent, under-
standing the process without a reduction in the �tness �
derived from the exclusion of this infrequent behavior� is
impossible. Furthermore, a drawback of these techniques
is that they usually produce unstructured models that de-
teriorate the understandability of the process. These tech-
niques are designed to simplify a Petri net by modifying its
structure and producing nets such as the ones depicted in
Figure 2. Although their �tness is good, these Petri nets
can contain multiple source places and complex structures
which simplify the model in terms of elements, but make
more di�cult the comprehension of the behavior occurring
in it. They can also have source transitions �producing
tokens without control�, and sink transitions �draining
tokens from the net.

Other techniques simplify the event log before discover-
ing the process to obtain a simpler process model [27, 29].
This decision allows to use discovery algorithms that ob-
tain sound models. These simpli�cations of the log are
performed in di�erent ways. In [27], authors identify and
remove outlier traces using the probability of occurrence
of each event conditioned by both its k predecessors and

its k successors. This allows to identify those events with
a low probability of occurrence, based on its surrounding
behavior, i.e., how probable is that an activity follows, or
is followed by, a sequence of activities. The main drawback
of this technique is that it removes full traces if an outlier
is detected in them, also removing the frequent behavior
they might contain. Furthermore, its detection relies on
the sequential conditional probability, not being able to
consider parallel relations.

In [29], Tax et al. present a set of techniques that re-
move, instead of full traces, activities from the entire log
depending on their entropy. These techniques assign an
entropy to each activity depending on their distribution of
occurrence in the log, i.e., based on the directly-precedes
and directly-follows relations among the activities, and re-
move the most chaotic activities from the log to simplify
it. The main drawback of these techniques is that the re-
moval of an activity from the entire log can produce a loss
of important information if the activity appears in an un-
expected context in some scenarios, but not in others �as
shown in Figure 1. In addition, the calculation of the en-
tropy of each activity depends on its relations with all the
other activities, making it unscalable when the number of
activities grows.

Another approach that overcomes some of the draw-
backs of previous techniques is the abstraction of sub-
processes of the process. This procedure consists in the
replacement of a subprocess with a new activity, either
in the log or structurally in the model. In [21] authors
propose a supervised method to abstract, in the log, be-
havioral activity patterns that capture domain knowledge.
First, they encode the behavior of the original log in ac-
tivity patterns. Then, these patterns are composed in an
abstraction model and, �nally, they align the behavior of
this abstraction model and the original log, creating an ab-
stracted event log. The main drawback of this technique
is the requirement of expert domain knowledge to de�ne
the patterns to be abstracted.

In [23], an unsupervised version of the method in [21]
is proposed, using local process models [30] as patterns to
abstract. In a �rst step they discover a �xed number of
local process models �a behavioral activity pattern oc-
curring frequently in the log� and rank them in terms of
their diversity. Then, these local process models are used
as activity patterns in the original abstraction method,
and the abstracted log is created. The main drawback
of this technique is that, in unstructured large scenarios
where most of the behavior is infrequent, the abstraction
of frequent subprocesses does not help to simplify the un-
structured characteristic of the model. Furthermore, it
penalizes signi�cantly its quality due to the removal of be-
havior frequently executed in the log �this causes a higher
impact in the �tness than removing infrequently executed
behavior� and the addition of activities not recorded in
the log.

Also in the abstraction research �eld, many techniques
alter the granularity level of the data in order to abstract
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Figure 3: Result of removing the infrequent behavior from the log
example in Figure 1a.

the low-level activities of a log into high-level activities
that are more understandable to the user [5, 6, 16, 20, 22,
31]. These techniques, analyzed in [37], can be used to pro-
duce an abstracted event log, allowing to discover a model
that describes a version of the process at a higher level.
In complex processes with low-level activities, where the
visualization is penalized by the high number and speci-
�city of this type of activities �not by the variability of
their behavior�, this kind of abstraction allows to under-
stand better the process. However, in this paper we focus
on understanding complex unstructured processes, where
the complexity relies on the variability of their behavior,
and where activities are considered as high-level activities.
Our objective is to produce a simpler version of the same
process to observe the frequent behavior, instead of ab-
stracting all the activities to get a higher-level version of
the process.

Following with the motivational example in Figure 1,
an alternative to these related techniques, and to the pro-
posal of this paper, is to detect the infrequent behavior
and, instead of abstracting it, to remove the infrequent
events (as shown in Figure 3). Nevertheless, a drawback
of the removal of events is that it generates inexistent paths
in the process �each removal creates a path from the pre-
vious events to the succeeding ones. For instance, in the
example of Figure 3, the removal produces an arti�cial
path allowing to skip the execution of the depicted activ-
ities. This generates an unreliable model where the user
cannot be sure if a connection between two activities is
real, or if the connection is replacing any removed infre-
quent behavior.

By contrast, the abstraction performed by IBeA allows
to discover the hidden behavior in the process, while pro-
ducing a reliable model. The generated process models
show the existence and exact location of the infrequent
behavior, allowing to observe the encapsulated behavior
by treating the abstracted activities as subprocesses �
allowing to zoom in and to inspect the replaced behavior.

In summary, current structural simpli�cation techniques
are able to reduce the complexity of the process models,
but they make more di�cult the comprehension of the be-

havior occurring in it. Some log simpli�cation techniques
remove infrequent full traces, which can cause a loss of the
frequent behavior they might contain. Other log simpli-
�cation techniques remove activities from the entire log,
reducing the complexity when they appear in infrequent
contexts, but also losing important information in the fre-
quent contexts they might appear. Finally, current ab-
straction approaches focus on altering the granularity level
of the activities, resulting in a higher-level version of the
process. This produces a di�erent process instead of a
simpli�ed version of the same process and, thus, cannot
be used for the same purpose. All these techniques per-
form well in the scenarios they are designed for, but not in
complex unstructured processes as the ones in which our
paper focuses on.

3. Preliminaries

In this paper, we use place/transition Petri nets [12]
(P/T Petri net) to represent process models due to its
higher comprehensibility, and the easiness to explain the
execution behavior. Furthermore, a Petri net can be auto-
matically transformed into other process model notations
such as BPMN, which are commonly used in business en-
vironments, and vice versa.

De�nition 1 (Petri net). Let A be the set of activities
of a process. A Petri net is a tuple M = (P, T, F ), where

� P is a �nite set of places,

� T is a �nite set of transitions,

� P ∩ T = ∅,

� F ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs.

A P/T Petri net (Def. 1) is a directed bipartite graph
composed by two kinds of nodes: places and transitions �
circles and boxes, respectively�, and where arcs connect
two nodes of di�erent type, as can be seen in Figure 4a.
Each transition is identi�ed by a label corresponding to
the activity it represents. We assume that the transition
labels are unique, i.e., there are no repeated activities in
the net. Unlabeled transitions represent silent transitions,
which are only executed for routing purposes and do not
correspond to any activity of the process.

We denote as •t the input places and as t• the out-
put places of t ∈ T (according to F ). In this paper, we
consider only 1-safe Petri nets, de�ning its state with the
marking function m : P 9 P(A)2. m is a partial func-
tion returning, for each place p ∈ P , a set {α | α ∈ A}
of transition labels representing a token, or ⊥ �bottom
element� if there are no tokens in that place. The labels
of a token correspond with the transitions which have pro-
duced it. Therefore, a transition t is said to be enabled if

2P(A) = {A′ | A′ ⊆ A} is the powerset of A.
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∀p ∈ •t, m(p) 6=⊥. The execution of an enabled transition
t consumes a token in each p ∈ •t, and produces one token
with its label in each p ∈ t•. Silent transitions propagate
the labels of the consumed tokens and put them in the
tokens it produces. The di�erence with a usual marking
in P/T Petri nets is that the tokens carry the labels of its
producing transition. This allows to know, when a tran-
sition is executed, which visible transitions have produced
the tokens it consumed. Figure 4b shows an example of
this marking performing the replay of a trace.

De�nition 2 (Event). An event ε corresponds to the
execution of the activity α ∈ A in a particular instant. In
this simple de�nition, an event only speci�es the name of
the activity, but usually, events store more information as
timestamps, resources, etc.

In this paper, events are represented only with the label
of the executed activity to ease the comprehension. Never-
theless, it is important to distinguish between an activity
�an action from a process that can be modeled with a
single transition in the Petri net� and an event �a single
execution of an activity. The replacement of an activity
implies the replacement of all its events and the transi-
tion in the Petri net, but the replacement of an event only
implies the replacement of that single execution.

De�nition 3 (Trace). A trace is a list (sequence) τ =
〈 ε1, ..., εn 〉 of events εi occurring at a time index i relative
to the other events in τ . Each trace corresponds to an
execution of the process, i.e., a process instance.

De�nition 4 (Log). We de�ne an event log L = [τ1, ..., τm]
as a multiset of traces τi.

As an event represents the execution of an activity,
there is an activity sequence 〈 α1, ..., αn 〉 corresponding to
each trace. We use the term trace variant to refer to each
unique activitiy sequence 〈 α1, ..., αn 〉 of a log L, being
the frequency of a trace variant the number of traces in L
with the same activity sequence.

As shown in Figure 4, the replay of a trace in a Petri
net, using the marking previously commented, allows to
extend the information of each event εi by identifying the
activities which have produced the tokens consumed by εi.
We use the term behavioral event (Def. 5) to refer to an
event with this extended information �this information
is similar to the input bindings in [2], but related to a
Petri net. In this way, the replay of each trace of an event
log in the Petri net allows to transform each event into
a behavioral event, obtaining a list of behavioral traces
(Def. 6), i.e., a behavioral event log (Def. 7).

De�nition 5 (Behavioral Event). Let εi be the i-th
event in a trace τ . Its corresponding behavioral event βi
is a tuple (S, α) where:

� α ∈ A is the activity executed in εi;

A
B

C

D
E

F

G
P1

P2

P3

P4

P6

P5

P7

(a) Petri net example.

index
executed

current active marking
behavioral

activity event

m0(P1) = {}

0 A m1(P2) = {A} ({}, A)
m1(P3) = {A}

1 B m2(P3) = {A} ({0}, B)
m2(P4) = {B}

2 C m3(P4) = {B} ({0}, C)
m3(P6) = {C}

3 F m4(P3) = {F} ({2}, F )
m4(P4) = {B}

4 E m5(P3) = {F} ({1}, E)
m5(P5) = {E}

5 C m6(P5) = {E} ({3}, C)
m6(P6) = {C}

6 G m7(P7) = {G} ({4, 5}, G)

(b) Replay of the trace 〈 A,B,C, F,E,C,G 〉.

Figure 4: Example of a Petri net and the replay of a trace performed
to obtain the behavioral events forming the corresponding behavioral
trace.

� S = {s ∈ N | s < i} is the set of indexes corre-
sponding to the executions of each α′ ∈ m(p) for all
p ∈ •α, i.e., the indexes of the events producing the
tokens consumed by the execution of α.

For instance, ({4, 5}, G) in Figure 4b records the exe-
cution of the activity G caused by the behavioral events
at indexes 4 and 5. Similar to an event, a behavioral event
can store more information like timestamps, resources, etc.
In what follows, we will let αβ and Sβ denote, respectively,
the elements α and S of the behavioral event β.

De�nition 6 (Behavioral Trace). Let M be the Petri
net of a process, and τ = 〈 ε1, ..., εn 〉 a trace of the same
process. The corresponding behavioral trace of τ w.r.t. M
is the sequence π = 〈 β1, ..., βn 〉 of behavioral events. π
is the result of a replay of all εi ∈ τ in M , extending each

Behavioral Log

〈 ({}, A), ({0}, B), ({0}, C), ({2}, F ), ({1}, E), ({3}, C), ({4, 5}, G) 〉

〈 ({}, A), ({0}, C), ({0}, B), ({2}, E), ({1}, F ), ({4}, C), ({3, 5}, G) 〉

〈 ({}, A), ({0}, B), ({0}, C), ({1}, D), ({2, 3}, G) 〉

〈 ({}, A), ({0}, C), ({1}, F ), ({2}, C), ({0}, B), ({4}, D), ({3, 5}, G) 〉

Table 1: Example of behavioral log for the model depicted in Fig-
ure 4a.
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εi by adding the indexes of the events corresponding to
the execution of each α′ ∈ mi(p) for all p ∈ •α, being α
the activity executed in εi �i.e., the indexes of the events
producing the tokens consumed by εi.

De�nition 7 (Behavioral Log). We de�ne a behavioral
event log, or behavioral log, as a multiset Π = [π1, ..., πm]
of behavioral traces πi.

Table 1 shows an example of a behavioral log with four
behavioral traces. Each behavioral trace is obtained by re-
playing the original trace in the process model depicted in
Figure 4a, following the procedure explained in Figure 4b.

De�nition 8 (Abstraction). Given a behavioral trace
π, and being Aπ the set of activities executed in π. We
de�ne an abstraction in π as λ = (β,B, AI , AO) where:

� β is a behavioral event representing the execution of
an abstracted activity;

� B is a set of behavioral events from π to be replaced
with β;

� AI ⊂ Aπ is a set of activities of the events causing
the execution of any event in B;

� AO ⊂ Aπ is a set of activities of the events in π
whose execution is caused by events in B,

such that:

� AI = {απ[s] ∈ Aπ | (β ∈ B) ∧ (s ∈ Sβ) ∧ (π[s] 6∈
B)}, for each behavioral event from B, the activities
of those behavioral events corresponding its source
indexes and not contained in B;

� AO = {αβ ∈ Aπ | (β ∈ π) ∧ (β 6∈ B) ∧ (∃s ∈
Sβ)[π[s] ∈ B]}, the behavioral events in π having
as source a behavioral event of B.

For instance, in the example in Figure 4b, (({0}, αabs),
{({0}, B), ({1}, E)}, {A}, {G}) is the abstraction of the
behavioral events ({0}, B) and ({1}, E), with input ac-
tivity A, and output activity G, by the behavioral event
({0}, αabs). In the following, we will let βλ, Bλ, AλI and
AλO denote, respectively, the elements β, B, AI and AO of
the abstraction λ.

Related to Def. 8, we use the term empty abstraction,
represented by γ = (B, AI , AO), to de�ne an abstraction
that has no behavioral event assigned to it yet; and the
term anti-abstraction, represented by B̂, to de�ne a set of
behavioral events that remain in the abstracted log, i.e.,
events not to be abstracted. In the following, we will let
Bγ , AγI and AγO denote, respectively, the elements B, AI
and AO of the empty abstraction γ. We use the symbol

β
B−→ β′ to indicate that β′ is reachable from β through the

behavioral events in B �following the relations present in
the sources of each behavioral event.

4. UBeA Algorithm

In this section, we present UBeA (Alg. 1), an algorithm
to abstract non-core behavior from a process model. Our
proposal takes as input an event log, a Petri net and, for
each trace, the indexes of the events not to be abstracted
�i.e., the core behavior�, and produces as result the ab-
stracted Petri net and the abstracted log, both with the
non-core behavior encapsulated in new activities.

The �rst step of UBeA is to obtain the behavioral log
with the causal relations of each event using the given log
and model (Alg. 1: 2). Later, the algorithm builds the ab-
stractions of the behavior not covered by the given event
indexes (Alg. 1: 3). Then, the log is abstracted in function
abstractLog (Alg. 1: 4) by replacing the behavioral events
de�ned in each abstraction λ with the corresponding βλ �
the behavioral event of the arti�cial activity. Later, using
the causal relations present in the abstracted behavioral
log (c.f. Sec. 4.3), the abstracted Petri net is rediscov-
ered (Alg. 1: 5). Finally, the abstracted behavioral log is
transformed to an event log by keeping only the events
�removing the behavioral information (Alg. 1: 6)�, and
both the abstracted event log and the abstracted Petri net

Algorithm 1: UBeA algorithm.

Input: An event log L = [τ1, ..., τm] of traces, a Petri net
M , and a sequence Υ with the indexes of the
events not to be abstracted, where Υ[i] is the set of
indexes of trace τi.

Output: An abstracted event log L′ = [τ ′1, ..., τ
′
m] and an

abstracted Petri net M ′ with the non-core
behavior abstracted.

1 Algorithm UBeA(L, M, Υ)

2 Π← replay of all τ ∈ L of M
to obtain the behavioral log. // Def. 7

3 Λ← buildAbstractions(Π, Υ)

4 Π′ ← abstractLog(Π, Λ)
5 M ′ ← rediscoverPetriNet(Π′) // Sec. 4.3

6 L′ ← remove sources (S) from all π ∈ Π
7 return (L′,M ′)

8 Function buildAbstractions(Π, Υ)

9 Γ← ∅
10 forall πi ∈ Π do

11 B̂πi ← {β ∈ πi | (∀j ∈ Υ[i])[β 6= πi[j]]}
12 Γπi ← obtainEmptyAbstractions(πi, B̂πi)

// Alg. 2 (Sec. 4.1)

13 Γ← Γ ∪ {Γπi}
14 end

15 Λ←assignAbstractedEvents(Γ) // Alg. 3

(Sec. 4.2)

16 return Λ

17 Function abstractLog(Π, Λ)
18 Π′ ← ∅
19 forall πi ∈ Π do

20 π′i ← πi
21 forall λj ∈ Λ | Bλj ⊆ πi do
22 replace in π′i all β ∈ B

λj with βj
23 update source indexes for all β ∈ π′i
24 end

25 Π′ ← Π′ ∪ {π′i}
26 end

27 return Π′
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are returned.
The technique designed to build abstractions (Alg. 1: 8-

16) is composed by two phases. The �rst one (Alg. 1: 10-
14) is an horizontal analysis, i.e., one trace at a time,
that generates the groups of behavioral events to be ab-
stracted. For each trace, the behavioral events identi�ed
by the given indexes are collected in their anti-abstraction
(Alg. 1: 11). Later, function obtainEmptyAbstractions

(Alg. 1: 12) groups the behavioral events to be abstracted
creating the empty abstractions �abstractions that have
not yet been assigned an abstracted behavioral event�
corresponding to that trace (c.f. Sec. 4.1). In the sec-
ond phase (Alg. 1: 15), a vertical analysis of the log is
performed to create the abstractions by assigning an ab-
stracted event with the same activity to the empty ab-
stractions with identical contextual behavior (c.f. Sec. 4.2)
�i.e., having the same input or output connections. Then,
with the information present in the abstractions, function
abstractLog (Alg. 1: 17-27) abstracts the original behav-
ioral log replacing the behavioral events of each abstraction
with the corresponding abstracted behavioral event.

4.1. Create Abstractions from a Trace

The objective of the �rst phase is to create the empty
abstractions that encapsulate the non-core behavior in each
trace by grouping the corresponding behavioral events.
Alg. 2 describes the abstraction process over a trace. First,
the behavioral events to be abstracted are collected, i.e.,
those not present in the anti-abstraction (Alg. 2: 2). Then,
these behavioral events that are connected between them
are grouped (Alg. 2: 3). Afterward, an empty abstrac-
tion is created for each group (Alg. 2: 5-8), where function
obtainEmptyAbstraction (Alg. 2: 19-23) returns i) B, the
set of behavioral events to be abstracted; ii) AI , the input
activities of this group; and iii) AO, the output activities
of this group.

Figure 5 shows an example where we take as core be-
havior only those events corresponding to behavior present

A

B

C
D

E

L

M
O

F
G

J

H I
K

N

(a) Petri net of a process to abstract.

〈 A,B, F , C, D , G , J ,K, L , O,N 〉
(b) Trace example of the model in Figure 5a.

〈 A,C, E , B, L , O , O , H , O, I ,K,N 〉
(c) Trace example of the model in Figure 5a.

Figure 5: Petri net and two traces to exemplify the abstraction pro-
cess, with the behavior to abstract highlighted in blue.

Algorithm 2: Get empty abstractions of a be-
havioral trace (Alg. 1: 12).

Input: A behavioral trace π and its anti-abstraction B̂π .
Output: A set Γ with the empty abstractions of the

behavioral trace π.
1 Algorithm obtainEmptyAbstractions(π, B̂π)
2 Bncore ← {β ∈ π | β 6∈ B̂π}
3 Bconnected ← groupConnectedEvents(Bncore) // set

of sets of β
4 Γ← ∅
5 forall Bi ∈ Bconnected do
6 γi ← obtainEmptyAbstraction(π, Bi)
7 Γ← Γ ∪ {γi}
8 end

9 return Γ

10 Function groupConnectedEvents(Bncore)
11 Bconnected ← ∅ // set of sets of β
12 forall βi ∈ Bncore do

13 if βi 6∈ ∪Bconnected then
14 B′ ← {βi} ∪

{β′ ∈ Bncore | β′
Bncore−−−−→ βi∨βi

Bncore−−−−→ β′}
15 Bconnected ← Bconnected ∪ {B′}
16 end

17 end

18 return Bconnected
19 Function obtainEmptyAbstraction(π, B)
20 AI ← {απ[s] ∈ Aπ | (β ∈ B) ∧ (s ∈ Sβ) ∧ (π[s] 6∈ B)}
21 AO ← {αβ ∈ Aπ | (β ∈ π) ∧ (β 6∈ B) ∧ (∃s ∈ Sβ)[π[s] ∈

B]}
22 γ ← (B, AI , AO)
23 return γ

in all traces: the initial AND-split (A, B and C) and
the �nal AND-join without the loop (K, O and N). Ta-
ble 2 shows the results of the main steps of the �rst phase
over the two traces of Figure 5. To create the groups
with the connected behavioral events not present in the
anti-abstractions �those without a circum�ex in the trace
description� the algorithm performs a forward iteration,
adding each behavioral event to the same set of its inputs.
Bconnected contains the groups of behavioral events to ab-
stract. Then, an empty abstraction is created for each
group (e.g., γ1) with the behavioral events of the group
(e.g., {({1}, F ), ({1}, G), ({2, 5}, J)}), the input activities
of these behavioral events (e.g., {B}), and the activities of
the behavioral events from π whose inputs belong to the
group (e.g., {K}). For instance, the input activity for γ1 is
only B because it is the behavioral event corresponding to
the source indexes of F and G, and the behavioral events
of the source indexes of J are inside the group. For the
output activities, the algorithm searches for the behavioral
events of π1 for which the source indexes correspond to a
behavioral event in the group (i.e., K).

4.2. Activity Assignment to Each Abstraction

Once each trace has its non-core behavior grouped in
di�erent empty abstractions, the second phase starts (Alg. 3).
In this phase, all the empty abstractions of the log are com-
pared to assign an event with the same activity to those
with identical contextual behavior �coming from the same
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Algorithm 3: Assign an event with an ab-
stracted activity to each empty abstraction
(Alg. 1: 15).

Input: A set Γ of empty abstractions.
Output: The set Λ of abstractions with the events of the

abstracted activities.
1 Algorithm assignAbstractedEvents(Γ)
2 ΓI ← ∅ // set of sets of γ with identical inputs

3 forall γi ∈ Γ do

4 if (γi 6∈ ∪ΓI) then

5 Γ′ ← {γ′ ∈ Γ | Aγ
′

I = A
γi
I }

6 ΓI ← ΓI ∪ {Γ′}
7 end

8 end

9 ΓO ← ∅ // set of those sets in ΓI with

identical outputs

10 forall Γi ∈ ΓI do
11 if (Γi 6⊂ ∪ΓO) then
12 Γ′ ←

sets in ΓI with identical output activities
than Γi

13 ΓO ← ΓO ∪ {Γ′}
14 end

15 end

16 Λ← ∅
17 forall Γi ∈ ΓO do

18 α← create new activity
19 forall γj ∈ Γi do
20 S ← source indexes of all Bγj not pointing to

an event in Bγj
21 β ← (S, α)

22 λ← (β,Bγj , AγjI , A
γj
O )

23 Λ← Λ ∪ {λ}
24 end

25 end

26 return Λ

activities or going to the same activities in the model. For
this, the empty abstractions are �rst grouped by their in-
put activities (Alg. 3: 3-8). Then, the groups that also
have the same output activities are merged (Alg. 3: 10-
15). Finally, an activity is created and assigned to each
group of empty abstractions (Alg. 3: 17-25) �each groups
contains the empty abstractions sharing the input and/or
output activities.

Continuing with the example in Table 2, the second
phase groups all the empty abstractions, �rst by their in-
put activities, obtaining two groups ({λ1, λ4} and {λ2, λ3}),
and, second, by their outputs, not merging any group be-
cause the output activities of the empty abstractions in the
�rst group are {K}, and the output activities of the second
group are {O}. Once the empty abstractions are grouped,
the assignment of arti�cial activities is performed. A be-
havioral event with the activity Abs1, and its correspond-
ing source indexes, is assigned to the empty abstractions γ1

and γ4, and another behavioral event with activity Abs2,
and its corresponding indexes, to γ2 and γ3. Once the sec-
ond phase of the algorithm is �nished, the abstraction pro-
cess in the log is performed by: i) removing the behavioral
events of each abstraction; ii) inserting each abstracted be-
havioral event in the position of the last removed event;

〈 ({}, A), ({0}, B), ({0}, C), ({1}, Abs1) , ({3},K),

({2}, Abs2) , ({5}, O), ({4, 6}, N) 〉
(a) Abstracted behavioral trace of Figure 5b.

〈 ({}, A), ({0}, C), ({0}, B), ({1}, Abs2) , ({3}, O),

({2}, Abs1) , ({5},K), ({4, 6}, N) 〉
(b) Abstracted behavioral trace of Figure 5c.

A
B

C O

K
N

Abs2

Abs1

(c) Abstracted Petri net for the process in Figure 5.

Figure 6: Petri net and two traces to exemplify the abstraction pro-
cess.

and iii) updating the source indexes of the trace that have
changed �if the �rst element of a list is removed, the
indexes of the following elements change. Following this
procedure, the behavioral traces of Figure 6 are obtained.

4.3. Petri net reconstruction

Once the abstraction process is performed, the abstracted
Petri net can be rediscovered from the abstracted behav-
ioral log. Each behavioral trace contains the causal rela-
tions among its activities and, thus, a Causal net (Def. 9)
can be directly extracted from these relations.

De�nition 9 (Causal net [2]). A Causal net (C-net) is
a tuple C = (A, ai, ao, D, I,O) where:

� A is a �nite set of activities;

� ai ∈ A is the start activity;

� ao ∈ A is the end activity;

� D ⊆ A×A is the dependency relation,

� AS = {X ⊆ P(A) | X = {∅} ∨ ∅ 6∈ X};

� I ∈ A → AS de�nes the set of possible input bind-
ings per activity; and

� O ∈ A→ AS de�nes the set of possible output bind-
ings per activity,

such that:

� D = {(a1, a2) ∈ A×A | a1 ∈
⋃
I(a2)};

� D = {(a1, a2) ∈ A×A | a2 ∈
⋃
O(a1)};

� {ai} = {a ∈ A | I(a) = {∅}};

� {ao} = {a ∈ A | O(a) = {∅}};

� all activities in the graph (A,D) are on a path from
ai to ao.
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τ1 = 〈 Â, B̂, F, Ĉ,D,G, J, K̂, L, Ô, N̂ 〉

π1 〈 ({}, A), ({0}, B), ({1}, F ), ({0}, C), ({3}, D), ({1}, G), ({2, 5}, J), ({6}, K), ({4}, L), ({8}, O), ({7, 9}, N) 〉

Bconnected {({1}, F ), ({1}, G), ({2, 5}, J)} and {({3}, D), ({4}, L)}

Γ
γ1 = ({({1}, F ), ({1}, G), ({2, 5}, J)}, {B}, {K})
γ2 = ({({3}, D), ({4}, L)}, {C}, {O})

τ2 = 〈 Â, Ĉ, E, B̂, L,O,O,H, Ô, I, K̂, N̂ 〉

π2 〈 ({}, A), ({0}, C), ({1}, E), ({0}, B), ({2}, L), ({4}, O), ({5}, O), ({3}, H), ({6}, O), ({7}, I), ({9}, K), ({8, 10}, N) 〉

Bconnected {({1}, E), ({2}, L), ({4}, O), ({5}, O)} and {({3}, H), ({7}, I)}

Γ
γ3 = ({({1}, E), ({2}, L), ({4}, O), ({5}, O)}, {C}, {O})
γ4 = ({({3}, H), ({7}, I)}, {B}, {K})

Table 2: Key elements obtained in the �rst phase of the algorithm for the traces in Figure 5 �the circum�ex indicates the events belonging
to the anti-abstractions, π is the corresponding behavioral trace, Bconnected is the set of groups of behavioral events to abstract, and Γ is the
set of empty abstractions created from these groups.

The relations between the activities in a C-net are mod-
eled by their bindings. Each activity has its input and
output bindings �a set of sets of activities�, de�ning a
possible binding with each set of activities. For instance,
an activity D having {{A,B}, {C}} as input bindings es-
tablishes that the input activities in an execution of D
can be A and B, or only C; and an activity D having
{{E}, {F}} as output bindings establishes that an execu-
tion of D can cause the execution of E or the execution of
F . This notion is strictly related to the information con-
tained in the behavioral traces. Each behavioral event β
contains an input binding in its sources (Sβ). Thus, the in-
put bindings of an activity α are the sets composed by the
activities of the behavioral events of Sβ for all β recording
an execution of α. For instance, the input bindings of N
w.r.t. the behavioral traces in Figure 6 are {K,O} and
{O,K}, hence, {{K, O}}.

To obtain the output bindings of each activity, each
set in the output bindings of an activity α is composed
by the activities of all the behavioral events having the
index of the same execution of α in its sources (S). For
instance, the index of the activity A is 0 in both behavioral
traces in Figure 6. The output bindings of A are {B,C}
in Figure 6a and {C,B} in Figure 6b. Thus, the output
bindings of A are {{B,C}}.

With this procedure, the C-net corresponding to the
abstracted process model can be extracted. Then, the
transformation of the C-net to a Petri net can be per-
formed as described in [2]. Finally, this Petri net is reduced
removing unnecessary silent activities, obtaining the ab-
stracted Petri net. Figure 6c shows the abstracted Petri
net obtained by applying this process on the behavioral
traces abstracted in previous subsections.

4.4. UBeA Complexity

The time complexity of UBeA is O(m ·n2), where m is
the number of traces of the log, and n the average number
of events per trace.

5. IBeA: Abstract using WoMine

UBeA is independent of the algorithm that identi�es
the non-core behavior and can be used for many purposes.
For instance, it can abstract subprocesses to observe re-
lations among them; or, given a set of activities, abstract
the remaining behavior to observe the interaction between
these activities. Nevertheless, in this paper we focus in
the abstraction of the infrequent behavior, as this behav-
ior increases the complexity of the process. In this section,
we present IBeA, an algorithm to simplify process models
by abstracting the infrequent behavior. IBeA is based on
UBeA combined with WoMine [10] to detect the frequent
behavior not to be abstracted.

WoMine is an algorithm that extracts, from a process
model, subprocesses which are frequently executed in the
log. The algorithm performs an a priori search starting
with the minimal structures of the process model, and ex-
panding them until they become infrequent. The input
elements of WoMine are an event log, a process model and
a threshold. The result is the set of maximal subprocesses
extracted from the model which are executed in a percent-
age of traces of the log higher than the de�ned threshold.
The events corresponding to the execution of these sub-
processes can be identi�ed, serving as the input of UBeA
as core behavior not to be abstracted.

5.1. IBeA Algorithm

Algorithm 4 shows the main structure of IBeA. The in-
put of IBeA is composed by an event log, a Petri net and
a frequency threshold. The �rst step of the algorithm is to
obtain the frequent subprocesses using WoMine (Alg. 4: 2).
Then, these subprocesses are �ltered retaining only those
with a size higher than one �being the size the number of
arcs of the longest sequence in the subprocess�, or con-
taining the start or end activity �to maintain this prop-
erty in the simpli�ed model (Alg. 4: 3). Later, for each
trace, the event indexes concerning the execution of any
�ltered subprocess are stored as core behavior (Alg. 4: 6).
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Algorithm 4: IBeA algorithm.

Input: An event log L = [τ1, ..., τm] of traces, a Petri net
M , and a threshold t.

Output: A simpli�ed event log L′ = [τ ′1, ..., τ
′
m] and a

simpli�ed Petri net M ′ with the infrequent
behavior abstracted.

1 Algorithm IBeA(L, M, t)
2 P ← WoMine(L, M , t) // using alg. in [10]

3 P ′ ← {p ∈ P | (size(p) ≥ 1)∨
(p contains the initial or end activity)}

4 Υ← () // empty sequence

5 forall τi ∈ L do

6 υi ← {index of β ∈ π |
β ∈ p′.executedEvents[π] ∧ p′ ∈ P ′}

7 Υ← Υ ∪ {υi}
8 end

9 (L′,M ′)← UBeA(L, M, Υ) // Alg. 1

10 return (L′,M ′)

Finally, UBeA is run with the input log, Petri net, and in-
dexes of the core behavior (Alg. 4: 9). The result of IBeA
is composed by both the simpli�ed log and the simpli�ed
Petri net.

An example of this process can be seen in Figure 5
where, assuming a balanced distribution in choices, and a
frequency threshold of 70%, WoMine recovers as frequent
subprocesses the initial AND-split (A, B and C) and the
�nal AND-join without the loop (K, O andN). The events
belonging to the execution of these subprocesses are taken
as core behavior in the example in Sec 4.

In summary, IBeA allows to simplify both the process
model and event log of a process by abstracting infrequent
behavior. This simpli�cation not only makes simpler and
more understandable the process model, but gives the po-
tential to apply techniques from all phases of process min-
ing �discovery, analysis and enhancement� in order to
improve the process.

5.2. IBeA Complexity

The time complexity of IBeA is the combination of
UBeA and WoMine complexities: O(m · n2 + m · n · 2p),
where m is the number of traces in the log, n the average
number of events per trace, and p the number of frequent
activities in the process model.

6. Experimentation

In this section we evaluate the performance of IBeA
with a set of experiments that have been executed in a
computer with an Intel Core i7-2600 and 16GB of RAM3.

6.1. Datasets

For this experimentation, 11 real logs have been used:
one from the health domain �sepsis cases from a hospi-
tal [24]� and 10 from the Business Process Intelligence

3The algorithm, datasets and results can be downloaded from
http://tec.citius.usc.es/processmining/IBeA/

Challenge [28, 32, 33, 34]. To ensure all processes have a
single start and a single end activity, all logs have been pre-
processed by adding one arti�cial event of these activities
at the start and end of each trace, respectively4. Also, all
event names have been combined with their lifecycle in or-
der to discern between di�erent stages of the same activity
(START, COMPLETE, etc.). The characteristics of these
11 logs, after this preprocessing, are shown in Table 3.

The abstraction performed by IBeA is designed to sim-
plify the process model improving its simplicity by estab-
lishing a trade-o� between �tness and precision. Neverthe-
less, this abstraction also penalizes these quality metrics.
The �tness is penalized by the removal of supported behav-
ior, i.e., the infrequent behavior obfuscating the process.
The precision is also penalized by the addition of unsup-
ported behavior, i.e., the abstracted activities. Although
the �tness cannot be increased in any way, the precision
penalization is commonly compensated by the removal of
the infrequent behavior, which obfuscates the process vi-
sualization. However, there are scenarios where the pe-
nalization caused by the abstraction makes impossible to
obtain a better process model in terms of these quality
metrics.

Two log features are the most relevant to describe in
which datasets the abstraction of infrequent behavior might
be disruptive. One of these features is the number of
activities. In processes where the number of activities
is low �e.g., BPIC13clo and BPIC13op�, the penaliza-
tion caused by the inclusion of abstracted activities �not
present in the original log� can be too high to compen-
sate the simpli�cation. The other feature is the percent-
age of the log covered by the most repeated activity se-
quences �the most frequent trace variants. In logs where
few variants cover a high percentage of the log traces �
logs with low trace variability�, the discovery of a model
with those variants may already lead to a simpler process
model di�cult to overcome. Regarding this feature, note
that the three most repeated variants in logs of BPIC12�n,
BPIC13clo and BPIC13op support more than the 40% of
the traces in the log �as can be seen in the last three
columns in Table 3.

6.2. Procedure

We have used the Inductive Miner [18] to discover, for
each dataset, the process model that IBeA takes as input
to perform the simpli�cation. Regarding the con�gura-
tion of IBeA, we have established a maximum size of 3 for
the subprocesses that WoMine searches, retaining only the
maximal subprocesses under this size. This limit allows to
discover frequent subprocesses with up to three sequential
arcs �with no limit for the number of parallel or selection
branches�, and saves execution time.

4The addition of single start and single end activities does not
alter the behavior of the process, and improves the model under-
standability by centralizing the start and end in one point.
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#Traces #Events #Activities
Variants

# % 1st % 2nd % 3rd

BPIC11 1143 152577 626 981 3.59% 1.49% 1.40%

BPIC12�n 13087 288374 38 4366 26.20% 14.30% 2.07%

BPIC13clo 1487 9634 9 327 32.62% 8.68% 7.40%

BPIC13inc 7554 80641 15 2278 23.15% 6.94% 4.66%

BPIC13op 819 3989 7 182 21.49% 15.02% 6.72%

BPIC151 1199 54615 400 1170 0.67% 0.50% 0.33%

BPIC152 832 46018 412 828 0.24% 0.24% 0.24%

BPIC153 1409 62499 385 1349 1.06% 0.85% 0.71%

BPIC154 1053 49399 358 1049 0.28% 0.19% 0.19%

BPIC155 1156 61395 391 1153 0.17% 0.17% 0.17%

Sepsis-cases 1050 17314 18 846 3.33% 2.29% 2.10%

Table 3: Characteristics of the logs used in the experimentation: number of traces (#Traces); number of events (#Events); number of
activities (#Activities); number of variants �traces with the same activity sequence� (Variants), and the percentage of the log covered by
the three variants with more traces.

We have compared our approach with two techniques
from the related work (c.f. Sec. 2): Matrix Filter5 [27],
and Activity Filter6 [29]. We have also considered a naive
simpli�cation technique such as retaining the variants with
higher percentage of coverage �henceforth referred to as
Repetitions. These techniques focus on the simpli�cation
of the event log, but they can be used to obtain a sim-
pli�ed process model if a discovery algorithm is executed
afterwards. With this purpose, we have used the Induc-
tive Miner Infrequent (IMf) [19] with 5 di�erent thresholds
(0%, 10%, 20%, 30% and 40%) 7 �being 0% the equiva-
lent to use the original Inductive Miner. In this way, we
can analyze which technique obtains the best results com-
bined with a discovery algorithm. As IBeA also produces
a simpli�ed event log, we have included it in the set of
techniques to be tested in combination with a discovery
algorithm, naming this combination as IBeA-IMf.

All simpli�cation techniques have been run in each
dataset using 9 thresholds, from 10% to 90% with a step
of 10. In IBeA, Matrix Filter and Repetitions this value
establishes the threshold for the simpli�cation. In Activity
Filter, we have used it to denote the number of activities
to retain. For instance, a threshold of 10% in a log with
50 activities corresponds with the simpli�ed log containing
the 5 less chaotic activities.

For each simpli�ed model we have measured, using the

5Using the plugin Matrix Filter in ProM with Mean as the
Threshold adjusting Method.

6Using the plugin Activity Filter: Indirect Entropy optimized with
Greedy Search in ProM [14].

7We have also used other discovery algorithms such as Heuristics
Miner [35] and ILP [36] among others, but the runtime and memory
needed for the process discovery or to obtain the quality metrics
make unfeasible to use these algorithms.

original log, the �tness �Alignment-based �tness [4]�,
precision �Negative Event Precision [8]� and simplicity
�Weighted P/T average arc degree [7]. The use of the
original log to measure the quality metrics penalizes the
addition of abstracted activities performed by IBeA. Nev-
ertheless, we have used the original log to prove that, even
with this penalization, the abstraction of the infrequent
behavior allows to obtain a better process model. With
this comparison, the experimentation proves which algo-
rithm performs the best simpli�cation, either by producing
the simpli�ed process model or by simplifying the event log
enabling to discover a better process model.

As we look for simple process models with a good trade-
o� between �tness and precision, facilitating the under-
standing of the frequent behavior occurring in the pro-
cess �a model with an extremely low precision allows too
many behavior not recorded in the log, obfuscating the real
behavior�, we have summarized the �tness and precision
in the Fscore metric (Equation 1), penalizing low values in
any of them:

Fscore = 2 · Fitness · Precision
F itness+ Precision

(1)

For some models with hundreds of activities, the cal-
culation of the precision takes a very long time. For this
reason, we have established a lower bound for precision
(0.05). When the precision value reaches this threshold,
we stop the calculation and return a precision of 0.05.

Regarding the simplicity, we have normalized it to be
expressed in values in [0, 1] where, as the Fscore, a greater
value is better. The normalization (Sn) is calculated as
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Figure 7: Sn vs. Fscore of the models simpli�ed by IBeA and the
models discovered with the IMf algorithm using as input the simpli-
�ed logs of the sepsis cases dataset obtained by IBeA, Repetitions
(R), Matrix Filter (MF), and Activity Filter (AF).

shown in Equation 2.

Sn = 1− min(Sraw, Ss)

Sraw
(2)

Where Ss is the simplicity to be normalized �i.e., the
simplicity of the model discovered having as input the sim-
pli�ed log�, and Sraw is the simplicity of the best model
�regarding Fscore and simplicity� obtained with the IMf
using the di�erent thresholds and having as input the origi-
nal log. With this normalization, Sn indicates the percent-
age of simpli�cation of each model w.r.t. the best model
obtained with the original log, taking a value of 0 if the
simpli�ed model is more complex than the original, i.e., if
there is no simpli�cation.

6.3. Results

As commented in Section 6.2, we obtain a set of simpli-
�ed logs for each technique, and 5 simpli�ed process mod-
els for each of these simpli�ed logs. Figure 7 shows, for the
sepsis cases dataset, the Fscore and Sn of each model dis-
covered by all the simpli�cation techniques. For instance,
each green circle denotes the Fscore and Sn of each model
discovered with the IMf using as input each of the logs
simpli�ed by the Activity Filter technique.

This chart depicts the typical results layout for most
of the datasets, where there is no technique overcoming
the others in both dimensions �for instance, the results
of IBeA-IMf outperform the results of AF-IMf in terms
of simplicity, but not in Fscore. For this reason, to make
a fairer analysis among the di�erent techniques, we have
compared the area covered by the dominant points of each
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Figure 8: Example of the area covered by the dominant points in an
arti�cial scenario with two techniques.

technique. The dominant points are those overcoming each
of all the other points in, at least, one dimension. For
instance, a model with an Fscore = 0.4 and an Sn = 0.5 is
dominant if each of the other models has an Fscore < 0.4
and/or an Sn < 0.5. Based on this, for each approach,
the area covered by the dominant points encompasses the
surface of all the models overcome in both dimensions by,
at least, one of the results of the technique.

Figure 8 depicts an example of this area in an arti�-
cial scenario for two techniques. For instance, the dom-
inant points of the blue technique �left� are those in
(X = 0.3, Y = 0.46) and (X = 0.4, Y = 0.24); and the area
covered by these points �i.e., the shadowed area� encom-
passes all the surface having a X ≤ 0.3 and a Y ≤ 0.46,
or a X ≤ 0.4 and a Y ≤ 0.24.

Figure 9 shows, for each dataset, the area covered by
the dominant points of the models obtained with each
technique. BPIC13clo and BPIC13op datasets present a
low trace variability in the log �more than the 40% of
the traces in the log follow only three di�erent activity
sequences� and a low number of activities �less than
10� (c.f. Sec. 6.1). In these datasets, the simpli�ed mod-
els obtained with the most frequent variants are di�cult
to overcome in terms of quality metrics, explaining the
best results of a technique like Repetitions. Furthermore,
due to the low number of activities, the addition of ab-
stracted activities penalizes the quality metrics more than
the simpli�cation it performs. The simplicity of the ab-
stracted models barely improves the simplicity of the orig-
inal model, reducing drastically the area covered by the
dominant points.

BPIC12�n contains more activities, but its trace vari-
ability is also very high �again more than the 40% of
the traces in the log follow only three di�erent activity
sequences. Due to the higher number of activities, the pe-
nalization of adding abstracted activities is compensated
by the simpli�cation performed, and IBeA and IBeA-IMf
overcome MF-IMf and AF-IMf. Nevertheless, the high
variability allows Repetitions to obtain the best results.
BPIC13inc also contains more activities than the other
datasets from BPIC13, but it presents a lower trace vari-
ability �the 30% of the traces in the log follow only three
di�erent activity sequences. The trace variability is still
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Figure 9: Area covered by the dominant points (Sn vs. Fscore) of each simpli�cation technique, for all datasets. The missing columns in
some datasets are either because the simpli�cation technique does not converge in a feasible time for that dataset �AF-IMf in BPIC11 and
BPIC15 datasets� or because the simpli�ed models are more complex than the models discovered with the original log �the other 4 missing
columns.

high, explaining the good performance of Repetitions,
but in this case the simpli�cation of IBeA compensates
its penalization enough to obtain the best results when
combined with IMf.

In the BPIC11 dataset the best results are obtained
by Repetitions despite the fact that the trace variability in
the log is really high. This is a speci�c case where the 10%
of more repeated traces contain enough common behavior
to discover a simple and good process model. In fact, the
other results of Repetitions �all thresholds except 10%�
are worse than the results of all other techniques.

IBeA-IMf overcomes all the other techniques in the
datasets with a high trace variability in the log, where a
naive technique such as Repetitions is not useful �Sepsis-
cases and the 5 logs from BPIC15. Although IBeA outper-
forms the other simpli�cation techniques in most of these
datasets, the best results are obtained by IBeA-IMf. The
reason is that in these datasets the simpli�cation of a com-
plex process discovered with the original log is hampered
by the infrequent behavior present in that log. This situ-
ation does not happen when the discovery algorithm uses
the simpli�ed log, because the relations of the model are
built again.

In summary, the simpli�cation of the log performed
by IBeA combined with the discovery of IMf outperforms
the other simpli�cation techniques in 7 datasets out of 11
�BPIC13inc, Sepsis-cases, BPIC151, BPIC152, BPIC153,
BPIC154 and BPIC155�, obtaining the second best re-
sult in another 2 datasets �BPIC12�n and BPIC11. As
commented in Sec. 6.1, the datasets where IBeA does not
obtain the best results contain a low trace variability in
the log, and a naive technique such as Repetitions is the
best option. Nevertheless, if the variability of the traces

is high, the abstraction of IBeA is the best option for logs
with both high (BPIC15) and low (Sepsis-cases) number
of activities.

6.4. Visual results

To show the potential of our technique, Figure 10 de-
picts, for two datasets, the best model discovered with the
IMf algorithm having as input the original log, and one
process model discovered with IMf having as input the
log simpli�ed by IBeA. Figure 10a depicts the best pro-
cess model discovered using the original log in the sepsis
cases dataset, having a �tness of 0.98 and a precision of
0.17. The model seems to be structured but, if we ana-
lyze the structure in the middle part, almost all activities
are skippable. Furthermore, due to the loop of the silent
activity going backwards, this structure allows to execute
almost any activity, in any order and any number of times
�the same behavior than a �ower-like structure. This
�ower-like structure is necessary to have a �tness close to
1 in processes with high trace variability. On the other
hand, if we previously abstract the infrequent behavior,
decreasing the �tness to 0.75, we can observe the latent
behavior in the process (Figure 10b), with only a couple
of skippable activities and no loops producing �ower-like
structures, doubling the precision. As can be seen, the
simpli�ed model is better �w.r.t. Fscore and simplicity�
even though the quality metrics are being penalized by the
addition of abstracted activities not present in the original
log.

Figure 10c shows a more extreme case, depicting the
spaghetti-like structure of the model obtained by the IMf
algorithm having as input the BPIC153 dataset. To obtain
a �tness close to 1 the model contains hundreds of activ-
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(a) Process model (�tness 0.98, precision 0.17, fscore 0.29) discovered with IMf with a threshold of 10% for the sepsis cases log.

(b) Process model (�tness 0.75, precision 0.32, fscore 0.45) discovered with IMf with a threshold of 40% for the sepsis cases log simpli�ed
with IBeA and a threshold of 40%.

(c) Process model (�tness 0.99, precision <0.05, fscore 0.1) discovered with IMf with a threshold of 40% for the BPIC153 log.

(d) Process model (�tness 0.24, precision 0.54, fscore 0.33) discovered with IMf with a threshold of 40% for the BPIC153 log simpli�ed
with IBeA and a threshold of 60%.

Figure 10: Visual examples of the di�erence in the discovered process models using the raw log or the log simpli�ed with IBeA.

ities and connections among them, making impossible to
understand what is happening in the process. In contrast,
Figure 10d shows the structure of the frequent behavior:
with a previous simpli�cation of the log with IBeA and
a threshold of 60% in the frequent behavior, a small pro-
cess arises among the complex structure, encapsulating all
the infrequent behavior in two abstracted activities (Abs1,
and Abs2). In a process with hundreds of activities and a
high trace variability such as BPIC153, the decrease in the
�tness has to be higher in order to increase the precision
and discover the frequent behavior in the process.

7. Conclusions and Future Work

In this paper, we have introduced the importance of
a behavioral simpli�cation in complex processes in order
to understand what is happening in them. We have pre-
sented UBeA, a novel algorithm which, given an event log,
a process model, and the events considered as core behav-
ior, abstracts the remaining non-core behavior from the
process model. We have also presented IBeA, a speci�c
implementation of this algorithm to simplify process mod-
els by abstracting infrequent behavior, using WoMine [10]
to detect the frequent behavior which is considered as core.

IBeA is able to detect the infrequent behavior which
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obfuscates a process, abstracting it to produce simpler pro-
cess models with a trade-o� between �tness and precision,
allowing to obtain an overall view of the process. The
proposal also simpli�es the event log, allowing to analyze
and enhance the process with other process mining tech-
niques. We have compared IBeA with other simpli�cation
approaches, using 11 logs from real scenarios, showing that
IBeA is able to obtain, or allows to discover, a simpler and
better model in complex processes.

As future work, the information provided by the ab-
stracted activities can be exploited to enhance the process
model. Each abstracted activity encapsulates a set of in-
frequent subtraces and, thus, di�erent analysis might be
applied to extract information from them. Therefore, that
will allow to observe the main behavior of the process and,
also, to better understand the process by inspecting the
di�erent infrequent subprocesses that were obfuscating its
visualization.
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