Pattern-based Simplification of Process Models*

David Chapela-Campa, Manuel Mucientes, and Manuel Lama

Centro Singular de Investigacién en Tecnoloxias Intelixentes (CiTIUS)
Universidade de Santiago de Compostela. Santiago de Compostela, Spain
{david. chapela, manuel.mucientes, manuel. lama}@usc .es

Abstract. Several simplification techniques have been proposed to deal
with the understanding of complex process models, from the structural
simplification of the model to the simplification of the log to discover sim-
pler process models. But obtaining a comprehensible model explaining
the behaviour of unstructured large processes is still an open challenge.
In this paper, we present a novel algorithm to simplify process models
by abstracting the infrequent behaviour in the logs.

Keywords: event abstraction, model simplification, process mining

1 Introduction

Process mining has emerged as a discipline focusing on techniques to discover,
monitor and enhance real processes. One of the key areas of process mining
is the discovery, whose objective is to generate a process model describing the
behaviour of the event log of a process, to later analyze and enhance it. However,
in scenarios where the quality of the discovered process model is too low —e.g.
spaghetti models—, this analysis and enhancement becomes more difficult.

Different techniques have been developed to tackle with this problem: i) the
simplification of the already discovered process models [1]; ) the simplification
of the log, to later discover an understandable process model, either by detecting
outlier traces in the log [2], or by removing from the log the more chaotic activ-
ities [3]; and ) the abstraction of frequent subprocesses in the log by replacing
the execution of multiple activities with one [4].

A motivational example of an ideal abstraction is depicted in Fig. 1, where
a sample of a log is shown in Fig. 1a, with its corresponding model in Fig. 1b.
In this case, the frequent behaviour is related to the paths through DENIED-
CANCELED and through ACCEPTED-SUCCESS. Fig. 1lc and Fig. 1d show an
abstraction where the infrequent behaviour of the paths going through the loop
is encapsulated in one activity, ERROR AND RETRY, leaving the rest untouched.

* This research was funded by the Spanish Ministry of Economy and Competitive-
ness under grant TIN2017-84796-C2-1-R, and the Galician Ministry of Education,
Culture and Universities under grant ED431G/08. These grants are co-funded by
the European Regional Development Fund (ERDF/FEDER program). D. Chapela-
Campa is supported by the Spanish Ministry of Education, under the FPU national
plan (FPU16/04428).



2 D. Chapela-Campa et al.

Trace
.. PAY - DENIED - CANCELED ... (x27)
.. PAY - ACCEPTED - SUCCESS ... (x43)
.. PAY — INTERNAL ERR - RETRY - PAY ... (X6)
.. PAY - WRONG DATA - RETRY - PAY ... (X7)
. PAY - DENIED - RETRY — PAY ... (x8)
(a) Partial event log. (b) Model for log in Fig. 1a.
e
... PAY - DENIED - CANCELED ... (X270 .4 o
... PAY - ACCEPTED - SUCCESS ... (x43) IDENIEDq‘CANCELEDI O -
. PAY - ERROR AND RETRY - PAY ... (x30) O
(c) Abstracted event log. (d) Model for log in Fig. 1c.

Fig. 1. Motivational example for the algorithm presented in this paper.

In this paper, we present an algorithm to simplify process models by ab-
stracting the infrequent behaviour in the log and maintaining the more frequent
one, allowing to discover a simpler process model. The main novelty of our ap-
proach is that it first detects the frequent behaviour of the process —using the
frequent patterns extracted by WoMine [5]— and then abstracts the infrequent
behaviour. The use of WoMine to detect frequent behaviour allows our technique
to retain not only frequent activities, but frequent subprocesses, abstracting the
infrequent behaviour which obfuscates the understanding of the overall process.

2 Abstraction Algorithm

The approach presented in this paper (Alg. 1) takes as input an event log, a
process model and a frequency threshold, and returns the event log with the
abstraction of the infrequent behaviour. The execution of a discovery algorithm
over that abstracted log allows to obtain a more precise and simpler process
model, keeping a good fitness.

The first step of our proposal is to identify the frequent behaviour to be
kept in the log. For this purpose WoMine [5] is used (Alg. 1: 2), extracting
from the process model a set of behavioural patterns executed in a percentage
of the traces of the log frequent w.r.t. the defined threshold. As an example,
the frequent patterns obtained for the log in Fig. la with a threshold of 25%
cover the behaviour going through DENIED - CANCELED, through ACCEPTED
— SUCCESS, and the executions of PAY.

Later, the algorithm builds, for each trace, the abstractions of the events not
covered by the frequent patterns (Alg. 1: 4-7). For this, each trace is analyzed
marking the events which are not executed in any frequent pattern. Then, the
marked events of each trace connected between them in the model are grouped
to be replaced with the same abstracted event. In Fig. 1a, the marked events are
those depicted in red. Then, in each trace a single connected group is formed.

Once the abstracted events of each trace are known, it is neccesary to as-
sign the same activity to the abstracted events modeling the same behaviour



Pattern-based Simplification of Process Models 3

Algorithm 1. Abstraction algorithm.

Input: An event log L = [71, ..., 7], a process model M, and a threshold ¢.
Output: An abstracted event log L' = [11,...,7/.].

A + assignAbstractedEvents (A)
L’ + abstractLog (L, A)
return L’

1 Algorithm AbstractInfrequentBehaviour (L, M, t)

2 P <+ getFrequentPatterns (L, M, t) // using algorithm in [5]
3 A0

4 forall the 7 € L do

5 A, < obtainAbstractions (7, P)

6 A+~ A U A

7 end

8

9

[
=]

(Alg. 1: 8). For this purpose, a new abstracted activity is assigned to the set
of groups with the same input activities in the model, or with the same output
activities. In the example in Fig. 1a, all groups have as input the activity PAY.
Thus, the same activity —ERROR AND RETRY— is assigned to the abstracted
events replacing these groups.

Finally, the log is abstracted with function abstractLog (Alg. 1: 9) by
replacing, in each trace, the event groups formed with the corresponding ab-
stracted events. The result of this process in Fig. 1 is shown in Fig. 1c, allowing
to discover the model depicted in Fig. 1d.

3 Results

The proposed algorithm has been tested against state of the art techniques in 11
logs from Business Process Management Challenges and real processes. Results
show that, in logs where the complexity of the process is high, our technique
allows to obtain better process models —in terms of F-score and simplicity w.r.t.
the original model— than the state of the art techniques.

References

1. de San Pedro, J., Carmona, J., Cortadella, J.: Log-based simplification of pro-
cess models. In Motahari-Nezhad, H.R., Recker, J., Weidlich, M., eds.: BPM 2015.
Volume 9253 of LNCS., Springer (2015) 457-474

2. Conforti, R., Rosa, M.L., ter Hofstede, A.H.M.: Filtering out infrequent behavior
from business process event logs. IEEE Trans. Knowl. Data Eng. 29(2) (2017)
300-314

3. Tax, N., Sidorova, N., van der Aalst, W.M.P.: Discovering more precise process
models from event logs by filtering out chaotic activities. J. Intell. Inf. Syst. 52(1)
(2019) 107-139

4. Mannhardt, F., Tax, N.: Unsupervised event abstraction using pattern abstraction
and local process models. In Gulden, J., Nurcan, S., et al., eds.. BPMDS 2017.
Volume 1859 of CEUR Workshop Proceedings., CEUR-WS.org (2017) 55-63

5. Chapela-Campa, D., Mucientes, M., Lama, M.: Mining frequent patterns in process
models. Inf. Sci. 472 (2019) 235-257



	Pattern-based Simplification of Process Models 

