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Abstract. Several simplification techniques have been proposed in pro-
cess mining to improve the interpretability of complex processes, such as
the structural simplification of the model or the simplification of the log.
However, obtaining a comprehensible model explaining the behaviour of
unstructured large processes is still an open challenge. In this paper, we
present WoSimp, a novel algorithm to simplify processes by abstracting
the infrequent behaviour from the logs, allowing to discover a simpler
process model. This algorithm has been validated with more than 10
complex real processes, most of them from Business Process Manage-
ment Challenges. Experiments show that WoSimp simplifies the process
log and allows to discover a better process model than the state of the
art techniques.

Keywords: event abstraction, model simplification, log simplification,
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1 Introduction

During the past years process mining has emerged as a discipline focusing on
techniques to discover, monitor and enhance real processes [1]. One of the key
areas of process mining is process discovery, whose objective is to generate a pro-
cess model describing the behaviour of the event log of a process. Once a model
is discovered, the analysis and enhancement of the process can be performed
to detect possible improvements. However, in scenarios where the quality of the
discovered process model is far too low —e.g. spaghetti models—, this analysis
and enhancement become more difficult.

With the entrance of process mining in the Big Data era, these complex
and incomprehensible processes have become more and more common. Different
simplification techniques have been developed with the objective of obtaining an
understandable process model, in order to be able to analyze and enhance the
real process behind it. The first proposals focused on a structural simplification
of the process model using only the information of the model itself [2]. But they
quickly evolved to simplify the process model using also the information from
the event log [3, 4]. The drawback of these structural simplification techniques
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is that, to maintain the fitness, they may produce unstructured models that
deteriorate the understandability of the process.

Other approaches first simplify the log, and then discover an understandable
process model. Some of these techniques search for outliers in the log traces,
removing them with the aim of retaining the frequent behaviour of the process.
In [5] this outlier identification is performed by using the probability of occur-
rence of each event conditioned by both its k predecessors and its k successors
—e.g. how probable is that a follows, or is followed by, the sequence 〈b, c〉. One
drawback of this technique is that, due to the use of sequential conditional prob-
ability, parallel relations are not considered. There are also approaches, like [6],
that entirely remove activites from the log based on their contribution to the
chaotic structure of the process. One drawback of this technique is that the deci-
sion of removing an activity depends on its relations with all the other activities,
making the approach unscalable when the number of activities grows. Further-
more, the removal of activities from the log can produce the loss of important
information if the activity is chaotic in some scenarios, but not in others.

An approach overcoming some of the previous drawbacks is the abstraction
of subparts —subprocesses— of the process. This procedure replaces subpro-
cesses with new activities, either in the log or structurally in the model. In [7]
the authors propose a supervised method to abstract in the log behavioural ac-
tivity patterns that capture domain knowledge. Given a set of activity patterns,
they compose an abstraction model and align the behaviour of this abstraction
model with the original log, creating an abstracted event log. The need of ex-
pert domain knowledge is solved in [8], where an unsupervised version of this
method is proposed. This technique uses frequent local process models [9] as
the activity patterns to abstract. The drawback of this technique is the signifi-
cant penalization in its quality due to the abstraction of frequent subprocesses
—the removal of frequently executed behaviour penalizes the fitness, and the
addition of activities not recorded in the log the precision. This abstraction does
not help to discover a significantly better process model in terms of F-score, not
even undoing the parts of the abstraction after the discovery, as shown in their
experimentation.

Fig. 1 shows a motivational example, where an ideal abstraction of the infre-
quent behaviour is performed allowing to focus in the frequent one. In this case,
the frequent behaviour is related to the paths through DENIED-CANCELED and
through ACCEPTED-SUCCESS. The removal of the other —infrequent— traces
would cause a lost of all the behaviour in each trace, not only in the infrequent
one. For instance, the behaviour previous to PAY in these infrequent traces might
be important in an analysis phase. Table 1c and Fig. 1d show an abstraction
where the infrequent behaviour of the paths going through the loop is encapsu-
lated in one activity, ERROR AND RETRY, letting the rest untouched.

In this paper, we present WoSimp, a novel algorithm to simplify processes
by abstracting the infrequent behaviour from the log and maintaining the more
frequent one, allowing to discover a simpler process model. The main novelty of
our approach is that it detects the frequent behaviour of the process in a first
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Trace
... PAY - DENIED - CANCELED ... (×27)
... PAY - ACCEPTED - SUCCESS ... (×43)
... PAY - INTERNAL ERR - RETRY - PAY ... (×6)
... PAY - WRONG DATA - RETRY - PAY ... (×7)
... PAY - CONN ERR - RETRY - PAY ... (×9)
... PAY - DENIED - RETRY - PAY ... (×8)

(a) Partial event log.

PAY CONN ERR 

WRONG DATA 
INTERNAL ERR 

DENIED 
ACCEPTED 

CANCELED 
SUCCESS 

...

...

RETRY 

(b) Model for log in Table 1a.

Trace
... PAY - DENIED - CANCELED ... (×27)
... PAY - ACCEPTED - SUCCESS ... (×43)
... PAY - ERROR AND RETRY - PAY ... (×30)

(c) Abstracted event log.

PAY DENIED 
ACCEPTED 

CANCELED 
SUCCESS 

...
...

ERROR AND RETRY 

(d) Model for log in Table 1c.

Fig. 1. Motivational example for the algorithm presented in this paper.

phase —using the frequent patterns extracted by WoMine [10]— and abstracts
the infrequent behaviour in a second phase. The use of WoMine to detect fre-
quent behaviour allows our technique to retain not only frequent activities, but
frequent subprocesses, abstracting the infrequent behaviour which obfuscates the
understanding of the overall process. The algorithm has been validated with a set
of 11 complex real process logs, 10 of them from Business Process Management
Challenges, and one from the health domain. Experiments show that WoSimp
simplifies the process log allowing to discover better process models than the
state of the art techniques.

2 Preliminaries

In this paper, we represent process models with place/transition Petri nets [11]
(P/T Petri net) due to its higher comprehensibility, and the easiness to explain
the executed behaviour. A P/T Petri net (Definition 1) is a directed bipartite
graph composed by two kinds of nodes: places and transitions —circles and
boxes, respectively—, and where arcs connect two nodes of different type, as can
be seen in Fig. 2a. Being A the set of activities of a process, each transition in
a Petri net modeling its behaviour is identified by a label corresponding to the
activity it represents. We assume that the transition labels are unique, i.e. there
are no repeated activities in the net. An exception is made for silent transitions,
which are unlabeled. Silent transitions are only executed for routing purposes
and do not correspond to any activity of the process.

Definition 1 (Petri net). A Petri net is a tuple M = (P, T, F ), where

– P is a finite set of places;

– T is a finite set of transitions;

– P ∩ T = ∅; and

– F ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs.
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We denote as •t and t• the input and output places of t ∈ T (according to
F ). The state of a Petri net is defined by the marking function m : P 9 A. m
is a partial function returning, for each place p ∈ P , the label of a transition
—representing a token— or ∅ if there are no tokens in that place. The label
of a token corresponds with the transition which has produced it. Therefore,
a transition t is said to be enabled if ∀p ∈ •t, m(p) 6= ∅. The execution of an
enabled transition t consumes a token in each p ∈ •t, and produces another
token with its label in each p ∈ t•. Silent transitions maintain the label of the
consumed tokens in those it produces. The difference with a usual marking is
that the tokens carry the label of their producing transition. This allows to know,
when a transition is executed, which visible transitions have produced the tokens
it consumed.

Definition 2 (Event, Trace and Event Log). An event ε corresponds to
the execution of the activity α ∈ A in a particular instant. A trace is a list
(sequence) τ = 〈ε1, ..., εn〉 of events εi occurring at a time index i relative to the
other events in τ . Each trace corresponds to an execution of the process, i.e., a
process instance. An event log L = [τ1, ..., τm] is a multiset of traces τi.

In this paper, to ease the comprehension, an event is represented only with
the label of the executed activity, but usually events store more information
as timestamps, resources, etc. Nevertheless, it is important to distinguish be-
tween an activity —an action from a process that can be modeled with a single
transition in the Petri net— and an event —a single execution of an activity.
The replacement of an activity implies the replacement of all its events and the
transition in the Petri net, but the replacement of an event only implies the
replacement of that single execution.

Definition 3 (Behavioural Event). A behavioural event is a tuple β =
(Bβ , α) where:

– α ∈ A is the activity which execution is recorded in the behavioural event;
and

– Bβ is the set of behavioural events which have produced the tokens consumed
by the execution of α.

A

B

C
D

E

F

G
H

I

J

(a) Petri net example.

〈A,C,B, I, C, F,H,E, J〉
(b) Trace example.

〈(∅, A), ({A}, C), ({A}, B),
({C}, I), ({I}, C), ({B}, F ),
({F}, H), ({C}, E), ({H,E}, J)〉
(c) Behavioural trace example.

Fig. 2. Example of a Petri net, a trace, and the corresponding behavioural trace ob-
tained by replaying the trace in the Petri net. For the sake of simplicity, in each
behavioural event, Bβ is represented as a set of activities instead of behavioural events.
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Similar to an event, a behavioural event can store more information like
timestamps, resources, etc. Moreover, a behavioural event also stores its causal
inputs, i.e., the previous behavioural events which produced the tokens it con-
sumed. An example can be seen in Fig. 2c, where 9 behavioural events are shown.
For instance, the last behavioural event, ({H,E}, J), records the execution of J ,
consuming the tokens generated by the executions of H and E.

Definition 4 (Behavioural Trace). Let M be the Petri net of a process, and
τ = 〈ε1, ..., εn〉 a trace of the same process. The corresponding behavioural trace
of τ w.r.t. M is the sequence π = 〈β1, ..., βn〉 of behavioural events. π is the
result of a replay of all εi ∈ τ in M , extending each εi by adding the behavioural
events corresponding to the execution of each α′ ∈ mi(p) for all p ∈ •α, being
α the activity executed in εi —i.e., the behavioural events producing the tokens
consumed by εi.

Fig. 2c shows the behavioural trace obtained by replaying the trace in Fig. 2b
in the Petri net of Fig. 2a.

Definition 5 (Behavioural Log). We define a behavioural event log, or be-
havioural log, as a multiset Lπ = [π1, ..., πm] of behavioural traces πi.

Definition 6 (Abstraction). Given a behavioural trace π, and beingAπ the set
of activities executed in π. We define an abstraction in π as λ = (εabs,B, AI , AO)
where:

– εabs is an event representing the execution of an abstracted activity;

– B is a set of behavioural events from π to be replaced with εabs;

– AI ⊂ Aπ is a set of activities of the events causing the execution of any event
in B; and

– AO ⊂ Aπ is a set of activities of the events in π whose execution is caused
by events in B,

such that:

– BI = {β′ | β′ ∈ Bβ ∧ β ∈ B};
– AI = {β.activity | β ∈ BI \ B};
– BO = {β′ | β′ ∈ π ∧ β ∈ Bβ′ ∧ β ∈ B}; and

– AO = {β.activity | β ∈ BO \ B}.

For instance, being π the trace depicted in Fig. 2c, an abstraction could
be formed by a new activity Abs as εabs; ({A}, B), ({B}, F ) and ({F}, H) as
B; being A the only activity in AO; and J the only activity in AI . After the
abstraction process, εabs would replace the behavioural events of B. Related to
Definition 6, we use the term empty abstraction, represented by λ∅ = (B, AI , AO),
to define an abstraction without assigned event, and the term anti-abstraction,
represented by λ̄, to define the set of behavioural events of a behavioural trace
to keep in the abstracted log, i.e., those events not to be abstracted.
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3 WoSimp Algorithm

In this section we present WoSimp (Alg. 1), an algorithm to abstract the in-
frequent behaviour of a log. The execution of a discovery algorithm over that
abstracted log allows to obtain a more precise and simpler process model, keep-
ing a good fitness. Our proposal takes as input an event log, a process model
and a frequency threshold, and returns the event log with the abstraction of
the infrequent behaviour. The first step of WoSimp is to identify the frequent
behaviour to be kept in the log. For this purpose WoMine [10] is used (Alg. 1: 2),
extracting from the process model a set of behavioural patterns executed in a
percentage of the traces of the log frequent w.r.t. the defined threshold. Later,
the behavioural log with the causal relations of each event is obtained using the
given log and the model (Alg. 1: 3). Then, the algorithm builds the abstractions
of the behaviour not covered by the frequent patterns (Alg. 1: 4). Finally, the log
is abstracted with function abstractLog (Alg. 1: 5): each behavioural trace
is converted to a trace —removing the behavioural information—, abstracting
those behavioural events defined in the abstractions.

Algorithm 1. WoSimp algorithm.

Input: An event log L = [τ1, ..., τm] of traces, a process model M , and a
threshold t.

Output: An event log L′ = [τ ′1, ..., τ
′
m] with the infrequent behaviour of L

abstracted into new activities.
1 Algorithm WoSimp(L, M, t)
2 P ← getFrequentPatterns(L, M , t) // using algorithm

in [10]
3 Lπ ← obtain the behavioural log of L and M // Definition 5
4 Λ← buildAbstractions(Lπ, P)
5 L′ ← abstractLog(Lπ, Λ)
6 return L′

7 Function buildAbstractions(Lπ, P)
8 Λ∅ ← ∅
9 forall π ∈ Lπ do

10 λ̄← {β | β ∈ π ∧ β ∈ p.executedEvents[π] ∧ p ∈ P}
11 Λ∅

π ← obtainEmptyAbstractions(π, λ̄) // Alg. 2

12 Λ∅ ← Λ∅ ∪ Λ∅
π

13 end

14 Λ←assignAbstractedEvents(Λ∅) // Alg. 3
15 return Λ

16 Function abstractLog(Lπ, Λ)
17 L′ ← Lπ

18 forall λ ∈ Λ do

19 replace λ.B with λ.εabs and insert it in L′

20 end
21 return L′
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A naive example can be seen in Fig. 1 where, with a threshold of 25%, the fre-
quent patterns obtained by WoMine cover the behaviour going through DENIED
- CANCELED and through ACCEPTED - SUCCESS. These patterns allow to ab-
stract the sequences starting in INTERNAL ERR, WRONG DATA, CONN ERR and
DENIED, and going through RETRY. The abstraction technique encapsulates all
these behaviour in one abstraction —named ERROR AND RETRY in Table 1c—,
allowing to discover the process as shown in Fig. 1d.

The technique designed to build the abstractions is composed by two phases.
The first phase (Alg. 1: 9-13) is an horizontal analysis, i.e. one trace at a time,
creating the groups of behavioural events to abstract. For each trace, the be-
havioural events belonging to an execution of a frequent pattern are collected in
their anti-abstraction (Alg. 1: 10). Then, function obtainEmptyAbstractions
groups the behavioural events to be abstracted creating the empty abstractions
—abstractions without an abstracted event assigned— corresponding to that
trace (c.f. Sec. 3.1). In the second phase (Alg. 1: 14), a vertical analysis going
over the log is performed to create the abstractions by assigning an abstracted
event with the same activity to the empty abstractions with identical contextual

Algorithm 2. Get empty abstractions of a behavioural trace (Alg. 1: 11).

Input: A behavioural trace π and its anti-abstraction λ̄.
Output: A set Λ∅ with the empty abstractions of the behavioural trace π.

1 Algorithm obtainEmptyAbstractions(π, λ̄)
2 Binfreq ← {β | β ∈ π ∧ β 6∈ λ̄}
3 Bconnected ← groupConnectedEvents(Binfreq) // set of sets of β

4 Λ∅ ← ∅
5 forall B ∈ Bconnected do

6 λ∅ ← obtainEmptyAbstraction(π, B)
7 Λ∅ ← Λ∅ ∪ {λ∅}
8 end

9 return Λ∅

10 Function groupConnectedEvents(Binfreq)
11 Bconnected ← ∅ // set of sets of β
12 forall β ∈ Binfreq do
13 if β 6∈ ∪Bconnected then
14 B′ ← {β} ∪ {β′ | β′ ∈ Binfreq ∧ (β′ → β ∨ β → β′)}
15 Bconnected ← Bconnected ∪ {B′}
16 end

17 end
18 return Bconnected
19 Function obtainEmptyAbstraction(π, B)
20 AI ← {β′.activity | β′ ∈ (Bβ \ B) ∧ β ∈ B}
21 AO ← {β′.activity | β′ ∈ (π \ B) ∧ β ∈ Bβ

′
∧ β ∈ B}

22 λ∅ ← (B, AI , AO)

23 return λ∅
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behaviour (c.f. Sec. 3.2). Finally, with all the information of the abstractions,
function abstractLog abstracts the original behavioural log replacing the be-
havioural events of each abstraction with the corresponding abstracted event
(Alg. 1: 16).

3.1 Create Abstractions of Infrequent Behaviour from a Trace

The objective of the first phase is to create the empty abstractions with the infre-
quent behaviour in each trace by grouping the corresponding behavioural events.
Alg. 2 shows this abstraction process over a trace. First, the behavioural events
to abstract are collected, i.e., those not present in the anti-abstraction (Alg. 2: 2).
Then, these behavioural events are grouped, where each group contains those
connected between them (Alg. 2: 3). Afterwards, an empty abstraction is created
for each group (Alg. 2: 5-8). Function obtainEmptyAbstraction creates this
empty abstraction with i) the set of behavioural events to abstract; ii) the inputs
of this group, i.e., for each behavioural event from the group, the activities of its
input behavioural events not contained in the abstraction group (Alg. 2: 20); and
iii) the outputs of this group, i.e., the activities of the behavioural events of the
trace having as inputs any of the behavioural events in the group (Alg. 2: 21).

As an example, the process model and the two traces from Fig. 3 are going to
be used. Assuming a balanced distribution in the selections, and a threshold for
the patterns of 70%, WoMine recovers as frequent patterns the initial AND-split
(A, B and C) and the final AND-join without the loop (K, O and N). Table 1
shows the results of the main steps of the first phase over the two traces of Fig. 3.
To create the groups with the connected behavioural events not present in the
anti-abstractions —those unmarked in the trace description— the algorithm
performs a forward iteration over them adding each behavioural event to the set
where its inputs are. The results can be seen in the Bconnected elements. Then, an
empty abstraction is created for each group (e.g. λ∅1) with the behavioural events
of the group (e.g. {F,G, J}), the input activities of these behavioural events (e.g.
{B}), and the activities of the behavioural events from π whose inputs are in
the group (e.g. {K}). For instance, the input activity for λ∅1 is only B because is

A

B

C
D

E

L

M
O

F
G

J

H I
K

N

(a) Petri net of a process to abstract.

〈A,B, F,C,D,G,L, J,O,K,N〉
(b) Trace example.

〈A,C,E,B,H,L, I,O,O,K,O,N〉
(c) Trace example.

Fig. 3. Petri net and two traces to exemplify the abstraction process.
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Table 1. Key elements obtained in the first phase of the algorithm for the traces in
Fig. 3 —events with a hat in each trace are those belonging to the anti-abstraction.
π: the corresponding behavioural trace. Bconnected: the groups of behavioural events
to abstract —to ease the visualization the behavioural events from each Bconnected are
shown as simple events. Λ∅: the empty abstractions created from these groups.

τ1 = 〈Â, B̂, F, Ĉ,D,G,L, J, Ô, K̂, N̂〉

π1
〈(∅, A), ({A}, B), ({B}, F ), ({A}, C), ({C}, D), ({B}, G), ({D}, L), ({F,G}, J),
({L}, O), ({J}, K), ({O,K}, N)〉

Bconnected {F,G, J} and {D,L}

Λ∅ λ∅
1 = ({F,G, J}, {B}, {K})
λ∅
2 = ({D,L}, {C}, {O})

τ2 = 〈Â, Ĉ, E, B̂,H, L, I, O,O, K̂, Ô, N̂〉

π2
〈(∅, A), ({A}, C), ({C}, E), ({A}, B), ({B}, H), ({E}, L), ({H}, I), ({L}, O), ({O}, O),

({I}, K), ({O}, O), ({K,O}, N)〉
Bconnected {E,L,O,O} and {H, I}

Λ∅ λ∅
3 = ({E,L,O,O}, {C}, {O})
λ∅
4 = ({H, I}, {B}, {K})

the firing behavioural event of F and G, and the firing behavioural events of J
are inside the group. For the output activities, the behavioural events of π1 are
inspected, searching for those whose firing behavioural events are in the group,
i.e., K.

3.2 Activity Assignment to Each Abstraction

Once each trace has its infrequent behaviour grouped in the different empty
abstractions, the second phase starts (Alg. 3). In this phase, all the empty ab-
stractions of the log are compared to assign an event with the same activity
to those with identical contextual behaviour —coming from the same activities
or going to the same activities in the model. For this, the empty abstractions
are first grouped by their input activities (Alg. 3: 3-8). Then, these groups are
merged by their output activities, i.e., the groups sharing the output activities
of all their empty abstractions are merged (Alg. 3: 10-15). Finally, an activity
is created for each group of empty abstractions and assigned to each of them
(Alg. 3: 17-23).

Continuing with the example in Table 1, the second phase groups all the
empty abstractions first by their input activities obtaining two groups: {λ1, λ4}
and {λ2, λ3}. The grouping by their outputs does not merge any group because
the output activities of the empty abstractions in the first group are {K}, and
the output activites of the second group are {O}. Once the empty abstractions
are grouped, the assignation of artificial activities is performed. An event with
the activity Abs1 is assigned to the empty abstractions λ∅1 and λ∅4, and other
event with activity Abs2 to λ∅2 and λ∅3, obtaining the corresponding abstractions.
With the second phase finished the abstraction process in the log is performed,
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Algorithm 3. Assign an event with an abstracted activity to each empty
abstraction (Alg. 1: 14).

Input: A set Λ∅ of empty abstractions.
Output: The set Λ of abstractions with the events of the abstracted activities.

1 Algorithm assignAbstractedEvents(Λ∅)
2 Λ∅

I ← ∅ // set of sets of λ∅ with identical inputs

3 forall λ∅ ∈ Λ∅ do

4 if (λ∅ 6∈ ∪Λ∅
I) then

5 Λ̃∅ ← {λ̃∅ | λ̃∅ ∈ Λ∅ ∧ λ̃∅.AI = λ∅.AI}
6 Λ∅

I ← Λ∅
I ∪ {Λ̃∅}

7 end

8 end

9 Λ∅
O ← ∅ // set of those sets in Λ∅

I with identical outputs

10 forall Λ∅
i ∈ Λ∅

I do

11 if (Λ∅
i 6⊂ ∪Λ∅

O) then

12 Λ̃∅ ← sets in Λ∅
I with identical output activities than Λ∅

i

13 Λ∅
O ← Λ∅

O ∪ {Λ̃∅}
14 end

15 end
16 Λ← ∅ // set with the abstractions with events assigned

17 forall Λ∅
o ∈ Λ∅

O do
18 α← create new activity

19 forall λ∅ ∈ Λ∅
o do

20 λ← λ∅ with α as activity of λ.εabs

21 Λ← Λ ∪ {λ}
22 end

23 end
24 return Λ

producing the traces of Fig. 4. With this abstracted log, it is possible to mine
the model shown in Fig. 4c.

4 Experimentation

In this section we evaluate the performance of WoSimp. These experiments have
been executed in a computer with an Intel Core i7-2600 and 16GB of RAM1.

4.1 Datasets

For the experimentation a real log from the health domain —sepsis cases from a
hospital [12]— and multiple Business Process Challenge logs [13–16] have been
used. The characteristics of these logs are presented in Table 2.

1 The algorithm, datasets and results can be downloaded from http://tec.
citius.usc.es/processmining/WoSimp/

http://tec.citius.usc.es/processmining/WoSimp/
http://tec.citius.usc.es/processmining/WoSimp/
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〈A,B,Abs1, C,Abs2, O,K,N〉
(a) Abstracted trace of Fig. 3b.

〈A,C,Abs2, B,Abs1,K,O,N〉
(b) Abstracted trace of Fig. 3c.

A
B

C O

K
N

Abs2

Abs1

(c) Abstracted Petri net for the process in Fig. 3.

Fig. 4. Petri net and two traces to exemplify the abstraction process.

Although the abstraction of infrequent behaviour is usually useful to visualize
what is happening in the process, there are some scenarios where the penalization
it causes in terms of quality metrics makes it worse than other simplification
techniques. Two log features are the most relevant to describe in which scenarios
the abstraction of infrequent behaviour might produce a better process model.
One of these features is the number of activities. The penalization due to the
inclusion of abstracted activities —not present in the log— is too high when the
number of activities is low —e.g. BPIC13-clo and BPIC13-op. The other feature
is the percentage of the log covered by the most frequent activity sequences —
variants. In logs where few variants cover a high percentage of the log traces,
the discovery of a model with those variants may already lead to a better and

Table 2. Characteristics of the logs used in the experimentation: number of traces
(#Traces); number of events (#Events); number of activities (#Activities); number of
variants —traces with the same activity sequence— (Variants), and the percentage of
the log covered by the three variants with more traces. All the logs have been modified
by adding both single start and end activities to each trace. All event names have been
combined with its lifecycle to discern between different phases of the same activity
(START, COMPLETE, etc.).

#Traces #Events #Activities
Variants

# % 1st % 2nd % 3rd

BPIC11 1143 152577 626 981 3.59% 1.49% 1.40%

BPIC12-financial 13087 288374 38 4366 26.20% 14.30% 2.07%

BPIC13-clo 1487 9634 9 327 32.62% 8.68% 7.40%

BPIC13-inc 7554 80641 15 2278 23.15% 6.94% 4.66%

BPIC13-op 819 3989 7 182 21.49% 15.02% 6.72%

BPIC15 1 1199 54615 400 1170 0.67% 0.50% 0.33%

BPIC15 2 832 46018 412 828 0.24% 0.24% 0.24%

BPIC15 3 1409 62499 385 1349 1.06% 0.85% 0.71%

BPIC15 4 1053 49399 358 1049 0.28% 0.19% 0.19%

BPIC15 5 1156 61395 391 1153 0.17% 0.17% 0.17%

sepsis-cases 1050 17314 18 846 3.33% 2.29% 2.10%
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simpler process model. Regarding this feature, note that logs from BPIC12 and
BPIC13 contain more than a third of the traces in three variants.

4.2 Results

We have compared our approach with two state of the art techniques: Matrix
Filter2 [5], and Activity Filter3 [6]. We have also considered a naive simplification
technique such as the removal of the variants with lower percentage of coverage
—henceforth referred to as Repetitions.

We have run these techniques in each log with 9 simplification thresholds,
from 10% to 90% with a step of 10. In Repetitions this threshold means the
minimum percentage of traces covered with the most frequent variants to be
maintained, in Activity Filter it refers to the percentage of activities of the log
to be maintained4, and in Matrix Filter it means the threshold to consider an
event as outlier. For each simplified log, 5 process models have been discovered:
one with the Inductive Miner [18], and 4 with the Inductive Miner Infrequent [19]
(thresholds 10%, 20%, 30% and 40%). Finally, to check the simplification level of
these techniques and how good are the process models they obtain, we have mea-
sured the fitness —Alignment-based fitness [20]—, precision —Negative Event
Precision [21]— and simplicity —Weighted P/T average arc degree [22]— of each
simplified model.

We aim to obtain a simple process model allowing to understand the fre-
quent behaviour happening in the process while both fitness and precision are
maintained at desirable levels —a model with an extremely low precision allows
too many behaviour not recorded in the log, obfuscating the real behaviour. For
this reason, both metrics have been summarized in the F-score, penalizing low
values in any of them. Regarding simplicity, we have transformed it into a metric
with values in [0, 1], where a greater value is better —as the F-score. We use the
percentage of simplification w.r.t. the simplicity of the discovered model with the

original log (Sp = 1 − min(Sraw,Ss)
Sraw

). Being Sp the percentage of simplification,
Sraw and Ss the simplicity of the models mined with the original log, and with
the simplified log, respectively.

Fig. 5 shows the F-score and Sp of the models discovered with two simplified
logs as inputs. Fig. 5a shows a clear overcoming of WoSimp over the other
techniques: for high values of Sp, it obtains models with higher values of F-
score. However, there are cases, such as the ones depicted in Fig. 5b, where not
all the models from other techniques are overcome by a model obtained with
WoSimp. For this reason, to make a fairer comparison between the different
techniques, we have used the area covered by the dominant points.

2 Using plugin Matrix Filter in ProM with Mean as the Threshold adjusting
Method.

3 Using the plugin Activity Filter: Indirect Entropy optimized with Greedy Search in
ProM [17].

4 Activity Filter takes more than 24h to converge in datasets with more than 300
activities, thus, no results of this technique are shown in those datasets.
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Fig. 5. Scatter plots of Sp against F-score for the models mined with the simplified
logs for each technique (R stands for Repetitions, MF for Matrix Filter and AF for
Activity Filter).

Fig. 6 shows for each dataset the area covered by the dominant points of
the models obtained with both the Inductive Miner (top) and Inductive Miner
Infrequent (bottom), having the logs simplified with each technique as inputs. As
it was commented in Sec. 4.1, for datasets with few activities (BPIC13-op and
BPIC13-clo), the addition of abstracted unmapped activities is not worth due to
its penalization. Furthermore, due to the high quantity of behaviour covered by
the more frequent variants, the results of WoSimp in these datasets are overcome
by all the approaches, being Repetitions the best option. In other datasets where
the number of activities is higher, but the more frequent variants still cover
more than a third of the log traces (BIC13-inc and BPIC12-fin), WoSimp is only
overcome by Repetitions. The result in BPIC11 is a particular case. Here, the 10%
of more repeated traces contain enough common behaviour to compensate the
penalization that WoSimp receives for adding abstracted unmapped activities.
Nevertheless, this only happens using the IM, and WoSimp allows IMf to discover
better process models than all other techniques.

As commented in Sec. 4.1, in datasets where the trace variability is high
(BPIC15 1, BPIC15 2, BPIC15 3, BPIC15 4, BPIC15 5 and sepsis cases) and a
naive technique as Repetitions is not useful, and WoSimp outperforms the state
of the art techniques as Fig. 6 shows. Note that, if the variability in traces is high,
the abstraction of WoSimp is the best option for logs with both high (BPIC15)
and low (sepsis-cases) number of activities.

5 Conclusions

We have presented WoSimp, a novel algorithm to simplify process logs abstract-
ing the infrequent behaviour, allowing to discover a simpler process model. The
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Fig. 6. Area covered by the dominant points (Sp vs. F-score) for the models discovered
—IM (top), IMf (bottom)— with the simplified logs of each technique, for each dataset.

proposal is able to detect, using WoMine, the infrequent behaviour which obfus-
cates a process and abstract it allowing to discover a simpler and comprehensible
process model. We have compared WoSimp with the state of the art approaches
showing that WoSimp outperforms the state of the art in complex processes.
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