
Towards the Extraction of Frequent Patterns in
Complex Process Models

David Chapela-Campa, Manuel Mucientes, and Manuel Lama

Centro Singular de Investigación en Tecnolox́ıas da Información (CiTIUS)
Universidade de Santiago de Compostela. Santiago de Compostela, Spain
{david.chapela, manuel.mucientes, manuel.lama}@usc.es

Abstract. In this paper, we present WoMine, an algorithm to retrieve
frequent behavioural patterns from the model. Our approach searches in
process models extracting structures with sequences, selections, parallels
and loops, which are frequently executed in the logs. This proposal has
been validated with a set of process models, and compared with the state
of the art techniques. Experiments have validated that WoMine can find
all types of patterns, extracting information that cannot be mined with
the state of the art techniques.

Keywords: frequent pattern mining, process mining, process discovery

1 Introduction

Process mining offers techniques to discover, monitor and enhance real processes
by extracting knowledge from event logs, allowing to understand what is really
happening in a business process, and not what we think is going on [1]. Nev-
ertheless, there are scenarios —highly complex process models— where process
discovery techniques are not able to provide enough intelligible information to
make the process model understandable to users.

To discover a complex process model, i.e., a hardly readable process model,
can totally hinder its quality [2] making difficult the retrieval of behavioural in-
formation. Different techniques have been proposed to tackle this problem: the
simplification of already mined models [2,3], the search of simpler structures in
the logs [4,5,6], or the clusterization of the log into smaller and more homoge-
neous subsets of traces to discover different models within the same process [7,8].
Although these techniques improve the understandability of the process models,
for real processes the model structure remains complex, being difficult to un-
derstand by users. As an alternative to these techniques, in this paper, we will
focus in the search of frequent behavioural patterns based on the repetition of
this patterns in the traces of the log. The extraction of these frequent structures
is useful in highly complex models —it allows to abstract from all the behaviour
and focus on relevant structures— and well-structured models —it retrieves fre-
quent subprocesses which can be, for instance, the objective of optimizations.

A simple and popular technique to detect frequent structures in a process
model is the use of heat maps, which can be found in applications like DISCO [9].

2 D. Chapela et al.

It provides a simple technique to retrieve the frequent structures of a process
model considering the individual frequency of each arc. Other techniques check
the frequency of each pattern taking into account all the structure, and not the
individual frequency. These approaches, under the frequent pattern mining field,
can build frequent patterns based just on the logs, searching in them for frequent
sequences of tasks [10,11]. Improving this search, episode mining techniques focus
their search in frequent, and more complex structures such as parallels [4,5]. With
a different approach, the w-find algorithm [12] uses the process model to build the
patterns, checking their frequency in the logs. Finally, extending these mining
techniques, the local process mining approach of Niek Tax et al. [6] discovers
frequent patterns from the logs providing support to loops. Nevertheless, all
these techniques fail to measure the frequency of a pattern in some cases, and
specially when the model presents loops or optional tasks1.

In this paper we present WoMine, an algorithm to mine frequent patterns
from a process model, measuring their frequency in the instances of the log.
The main novelty of WoMine, which is based on the w-find algorithm [12],
is that it can detect frequent patterns with all type of structures —even n-
length cycles, very common structures in real processes. It can also ensure which
traces are compliant with the frequent pattern in a percentage over a threshold.
Furthermore, WoMine is robust w.r.t. the quality of the mined models with which
it works, i.e., its results do not depend highly on the fitness replay and precision of
the mined models. The algorithm has been tested with several synthetic process
models —containing loops, parallelisms, selections and sequences—, and with 12
real complex logs of the Business Process Intelligence Challenges.

2 Preliminaries

Definition 1 (Causal matrix). A Causal matrix is formed by the set of tasks
T of the model it represents. And two sets for each of the tasks with the inputs
and outputs of it. For a task or activity α ∈ T , I(α) denotes a set of sets of tasks
representing the inputs of α. Each set Φ ∈ I(α) corresponds to a choice in the
inputs of α —|I(α)| > 1 represents a selection, and |Φ| > 1 denotes a parallel
input path. O(α) contains the same information for the outputs.

Definition 2 (Pattern). A pattern is a subgraph of the process model that
represents the behaviour of a part of the process. For each task α in the pattern,
its inputs, I ′(α), must be a subset of I(α) in the model it belongs to; and the
outputs, O′(α), must be also a subset of O(α) in the model. This ensures that a
pattern has not an incomplete parallel connection.

Definition 3 (Simple Pattern). A simple pattern is a pattern whose be-
haviour can be executed, entirely, in one instance. If a task has a selection, it
must be able to execute each path in the same instance. For this, the inputs of

1 In this paper we will refer as optional tasks to the tasks of a selection (choice) where
one of the branches has no tasks, leaving the other as optional.

Towards the Extraction of Frequent Patterns in Complex Process Models 3

each task α must have all tasks reachable from α except, at most, the tasks of
one path. The outputs present the same constraint, but in this case they must
reach α, not be reachable by α.

Definition 4 (Minimal Pattern, M -pattern). Each task of the process
model belongs to, at least, one Minimal Pattern. The M -pattern of a task α
corresponds to its closure, i.e., the structure that is going to be executed when
α is executed. An exception is made with parallel structures: if α has a parallel
in the inputs or outputs, there must be an M -pattern with each parallel path.

Definition 5 (Candidate Arcs). The set of candidate arcs, or A<, is a subset
of the arcs in the model which are not part of an AND structure.

Definition 6 (Compliance). Given a trace τ ∈ L and a simple pattern SP
belonging to the process model, the trace is compliant with SP , denoted as
SP ` τ , when the execution of the trace in the process model contains the
execution of the pattern, i.e., all arcs and tasks of SP are executed in a correct
order, and each task fires the execution of its outputs in the pattern.

Definition 7 (Frequecy of a Pattern). The frequency of a simple pattern
SP is the number of traces of the log compliant with SP , divided by the size of
the log.

And, the frequency of a pattern P is the minimum frequency of the simple
patterns it contains.

Definition 8 (Frequent Pattern). Given a frequency threshold σ ∈ R : 0 <
σ ≤ 1, a pattern P is a frequent pattern if and only if freq(P) ≥ σ.

3 WoMine

Given a process model and a set of instances, i.e., executions of the process, the
objective is to extract the subgraphs of the process model that are executed in
a percentage of the traces over a threshold. Instead of a brute-force technique,
WoMine performs an a priori search [12] starting with the frequent minimal
patterns (Def. 4) of the model. This search includes an expansion stage done in
two ways: i) adding frequent M -patterns not contained in the current pattern,
and ii) adding frequent arcs of the A< set (Def. 5). This expansion is followed by
a pruning strategy that verifies the downward-closure property of support [13] —
also known as anti-monotonicity. This property ensures that if a pattern appears
in a given number of traces, all patterns containing it will appear, at most, in the
same number of traces. Therefore, a pattern is removed of the expansion stage
when it becomes infrequent, because it will never be part of a frequent pattern.

The pseudocode in Alg. 1 shows the main structure of WoMine. First, the
frequent arcs of A< and the frequent M -patterns are initialized, using Alg. 2
to measure the frequency. These M -patterns will be used to start the iterative
stage, and to expand other patterns with them. Also, the final set is initialized
with them because they are valid frequent patterns (Alg. 1:2-7).

4 D. Chapela et al.

Algorithm 1. Main structure of WoMine.
Input: A process model W , a set T = {T1, T2, . . . , Tn} of traces of W , and a threshold thr.
Output: A set of maximum frequent patterns of W w.r.t. T .

1 Algorithm WoMine(W, T, thr)
2 M ← {m | m ∈ W,m is an M -pattern } // Def. 4

3 A< ← {a | a ∈ W,a is a Candidate Arc } // Def. 5

4 frequentArcs ← {a | a ∈ A<, a is frequent w.r.t. T}
5 frequentM ← {m | m ∈M , isFrequentPattern(m, T , thr) } // using Alg. 2
6 frequentPatterns ← frequentM
7 currentPatterns← frequentM
8 while currentPatterns 6= ∅ do
9 candPatterns← ∅

10 forall the p ∈ currentPatterns do
11 candPatterns← candPatterns ∪ addFrequentArcs(p)
12 complementaryM ← {m | m ∈M , m 6∈ p}
13 forall the m ∈ complementaryM do
14 candPatterns← candPatterns ∪ addFrequentMPattern(p, m)
15 end

16 end
17 currentPatterns← {p | p ∈ candPatterns, isFrequentPattern(p, T , thr)}

// using Alg. 2
18 frequentPatterns ← frequentPatterns ∪ currentPatterns

19 end
20 Delete the redundant patterns of frequentPatterns
21 return frequentPatterns

Afterwards, the iterative part starts (Alg. 1:8). In this stage, an expansion
of each of the current patterns is done, followed by a filtering of the frequent
patterns. The expansion by adding frequent arcs of the A< set (Alg. 1:11) is
done with the function addFrequentArcs. The other expansion, the addition
of M -patterns that are not in the current pattern (Alg. 1:12-15), is done with
the function addFrequentMPattern. Once the expansion is completed, the
obtained patterns are filtered to delete the infrequent ones (Alg. 1:17). Finally,
once the iterative stage finishes, a simplification is made to delete the patterns
which provide redundant information (Alg. 1:20). This simplification stage con-
sists in the deletion of the patterns whose behaviour is contained inside others.

WoMine is a robust algorithm, even for process models with low fitness, pre-
cision or generalization, as it extracts the patterns from the model, but measures
the frequency with the log. If a structure is supported by the log, but it does not
appear in the model (low fitness), it will not be considered as a frequent pat-
tern. Anyway, this situation is irrelevant because, unless the model has a very
low fitness, the unsupported structures will have low frequency. Moreover, the
patterns detected by WoMine are not affected by models with high generaliza-
tion —models that allow behaviour not recorded in the log—: the non-existent
structures in the log have a frequency of 0 and, thus, will never be detected by
WoMine.

4 Measuring the Frequency of a Pattern

In each step of the iterative stage, WoMine reduces the search space by pruning
the infrequent patterns (Alg. 1:17). For this, an algorithm to check the frequency

Towards the Extraction of Frequent Patterns in Complex Process Models 5

of a pattern is needed (Alg. 2). Following Defs. 7 and 8, the algorithm generates
the simple patterns of a pattern and checks the frequency of each one (Alg. 2:2-
6). After calculating the frequency of the simple patterns, the function checks
if this is considered frequent w.r.t. the threshold and returns the corresponding
value (Alg. 2:12). The frequency of a simple pattern is measured in the function
getPatternFrequency by parsing all the traces and checking how many of
them are compliant with it (Alg. 2:15-19). Finally, to check if a trace is compliant
with a simple pattern, the function isTraceCompliant is executed: it goes
over the tasks in the trace (Alg. 2:22), simulating its execution in the model, and
retrieving the tasks that have fired the current one (Alg. 2:24-25). The simulation

Algorithm 2. Check if a pattern is frequent.

Input: A set T = T1, ..., TN of traces, a pattern pattern to measure its
frequency w.r.t. T and a threshold to establish the bound of frequency.

Output: A Boolean value indicating if the pattern is frequent or not.
1 Algorithm isFrequentPattern(pattern, T, threshold)
2 simplePatterns← generate the simple patterns of pattern
3 frequencies ← ∅
4 forall the simplePattern ∈ simplePatterns do
5 frequencies ← frequencies ∪ getPatternFrequency(simplePattern,

T)

6 end
7 minFreq ← 0
8 if frequencies.length > 0 then
9 minFreq ← minimum of frequencies

10 end
11 realFreq ← minFreq/T.length
12 return realFreq ≥ threshold

13 Function getPatternFrequency(pattern, T)
14 executed← 0
15 forall the trace ∈ T do
16 if isTraceCompliant(pattern, trace) then
17 executed← executed + 1
18 end

19 end
20 return executed

21 Function isTraceCompliant(pattern, trace)
22 forall the task ∈ trace do
23 Execute task in the process model
24 sources← get the tasks that fired the execution of task
25 simulateExecutionInPattern(sources, task, pattern)
26 if pattern has been successfully executed then
27 return true

28 end

29 end
30 return false

6 D. Chapela et al.

(simulateExecutionInPattern) consists in a replay of the trace, checking
if the pattern is executed correctly.

With the current task —the fired one— and the tasks that have fired it
—the firing tasks, retrieved by the simulation—, the executed tasks and arcs
are saved, in order to analyse and to detect if the execution of the pattern is
being disrupted before it is completed (Alg. 2:25). Fig. 1 shows an example of
this stage. The algorithm starts (#0) with the sets of the executed arcs and last
executed tasks empty. The first step (#1) executes A. There are no firing tasks
because A is the initial task of the process model. As A is also one of the initial
tasks of the pattern, it is saved correctly in the last executed tasks set.

The following task (#2) in the trace is B. As there is only one firing task (A),
a single arc is executed (〈A → B〉). The arc is added to the executed arcs set,
and the task B to the last executed tasks set. The A task is not deleted because
the set of outputs is formed by {B, C}, and C is still pending.

The next step, task E (#3), has the same behaviour. The executed arc is
in the pattern and its source task is in the last executed tasks set. Hence, the
executed arcs set is updated and B replaced by E in the last executed tasks
set. After this stage, the following task is C (#4). Its execution has the same
behaviour as the execution of B, but with the deletion of A from the last executed
tasks, because the set of outputs {B, C} has been fired.

Finally (#5), F has two firing tasks and, thus, two arcs are executed. In both
cases, the source task of the arcs —C and E— is in the last executed tasks set,
and the arc is in the pattern. Thus, a simple addition of F to the last executed
tasks set is done when the last of its branches is executed.

D

A

B

C

F

E

(a) Petri net of a
process model with a
pattern highlighted
in black (the un-
named task is an in-
visible task).

Trace: A B E C F
Initial tasks: {A}
End tasks: {F}

executed task executed arcs
last

executed
tasks

0 - ∅ ∅
1 A ∅ A
2 B 〈A→ B〉 A, B
3 E 〈A→ B〉, 〈B → E〉 A, E
4 C 〈A→ B〉, 〈B → E〉, 〈A→ C〉 E, C

5 F
〈A→ B〉, 〈B → E〉, 〈A→ C〉, 〈C → F 〉,
〈E → F 〉 F

(b) Check of the execution of a trace for the pattern highlighted
in Fig. 1a: ’#’ is the step of the algorithm; ’executed task’ is the
task currently executed; ’executed arcs’ is the set with the arcs
belonging to the pattern whose execution was correctly saved;
’Last executed tasks’ is the set of tasks which have not fired an
entire set of their outputs.

Fig. 1: An example that shows how the algorithm checks if a trace is compliant
with a pattern of the process model.

Towards the Extraction of Frequent Patterns in Complex Process Models 7

At the end of each step, the algorithm checks if the pattern has been correctly
executed (Alg. 2:26), i.e., all its arcs have been correctly executed and the last
executed tasks set corresponds with the end tasks of the pattern. Unlike the other
steps, this testing has a positive result when F is executed. Thus, the trace is
compliant with the pattern.

The stage of saving the executed arcs and tasks has to be restarted when the
executed arc is disrupting the execution of the pattern. For instance, in step #5,
if the arc 〈C → D〉 was executed, this would cause this saving stage to go back
by removing the arcs and tasks of the failed path, and to continue with the trace
in order to check if the execution of the pattern is resumed later. This analysis
is able to recognize the correct execution of a pattern in 1-safe Petri nets2.

5 Experimentation

The validation of the presented approach has been done with different types of
event logs. A comparison between WoMine and the state of the art techniques has
been done, using 5 process models with the most common control structures3.
The results of these techniques over the models are presented in Table 1. As can
be seen, WoMine is able to retrieve frequent patterns while the other techniques
fail to do so in some cases. In Subsection 5.1, we prove the performance of
WoMine over complex real logs and compare the impact of the model quality in
the extraction of patterns using several Business Process Intelligence Challenge’s
logs.

These experiments have been executed in a laptop (Lenovo G500) with an
Intel i7-3612QM (2.1 GHz) processor and 8GB of RAM (1600 MHz)4.

2 A Petri net is 1-safe when the value of the places can be binary, i.e., there can be
only one mark in a place at the same time.

3 Models available in http://tec.citius.usc.es/processmining/womine/
4 The algorithm can be tested and downloaded from http://tec.citius.usc.es/
processmining/womine/

Examples
Ex. #1 Ex. #2 Ex. #3 Ex. #4 Ex. #5

WoMine + + + + +

Heat Maps [9] ± - - + -

w-find [12] + ± - - -

Local Process Mining [6] + ± ± - ±
Episode Mining [4] + ± - - -

SPM (PrefixSpan) [11] + - ± - -

Table 1: Comparison between WoMine and other state of the art techniques for
5 process models: ’+’ stands for a correct frequent pattern extraction; ’-’ stands
for a non extraction of the frequent pattern, and ’±’ stands for an incorrect
extraction of the frequent pattern (wrong frequency or wrong structure).

http://tec.citius.usc.es/processmining/womine/
http://tec.citius.usc.es/processmining/womine/
http://tec.citius.usc.es/processmining/womine/

8 D. Chapela et al.

5.1 Frequent patterns for the BPI Challenges

The objective of this subsection is twofold: on the one hand, to test WoMine on
complex real logs from the Business Process Intelligence Challence (BPIC) [14]
and, on the other hand, to analyze the influence of the model in the retrieved
patterns. Some BPIC logs [15,16,17,14,18,19] have been used for this purpose.
These logs have been mined with two of the most popular discovery algorithms,
the Heuristics Miner (HM) [20] and the Inductive Miner (IM) [21].

Table 2 shows the results of WoMine over these models for a threshold of
20%. The results demonstrate the ability of WoMine to extract patterns with
loops, choices, parallels and sequences. Regarding the runtime, we can observe
that most of the values are close to 5 seconds, with the exception of the more
complex models (2011, 2012-fin, 2013-inc, IM of all 2015) ranging from 2 to 7
minutes. Most of this time is spent on the preprocessing, which can be shared
between executions with different thresholds, reducing the total runtime in real

Threshold : 20%
Heuristics Miner

runtime (secs)
#patt frequency #tasks #sequences #choices #parallels #loops

pre alg

2011 5.847 289.127 20 0.25±0.08 5.65±4.30 0.70±0.66 0.80±1.15 0.25±0.44 0.40±0.50

2
0
1
2 fin 214.118 6.748 7 0.29±0.05 3.14±2.91 0.29±0.49 0.14±0.38 0±0 0.29±0.49

a 0.014 0.029 1 0.84±0.00 5.00±0.00 1.00±0.00 0±0 0±0 0±0
o 0.068 0.171 2 0.24±0.01 5.50±0.71 0±0 1.00±1.41 1.50±0.71 1.00±1.41

2
0
1
3 inc 26.141 44.621 6 0.25±0.06 5.33±2.25 0±0 1.17±0.98 0±0 0.67±0.82

clo 0.071 1.295 4 0.24±0.01 4.50±1.29 0±0 0.75±0.50 0±0 0.25±0.50
op 0.021 0.077 2 0.21±0.00 4.00±0.00 0.50±0.71 1.00±1.41 0±0 0±0

2
0
1
5

1 2.200 0.928 14 0.32±0.11 2.57±0.76 0.21±0.43 0±0 0.21±0.43 0±0
2 0.961 1.298 15 0.28±0.14 3.27±1.58 0.27±0.46 0.07±0.26 0.47±0.64 0±0
3 3.133 1.640 14 0.31±0.11 2.50±0.94 0.07±0.27 0.07±0.27 0.14±0.36 0±0
4 1.532 1.976 12 0.35±0.20 4.00±2.37 0.17±0.39 0.08±0.29 0.50±0.67 0±0
5 2.008 2.583 9 0.27±0.07 4.56±1.81 0.44±0.53 0.22±0.44 0.56±0.53 0±0

Inductive Miner

2011 - - - - - - - - -

2
0
1
2 fin 216.847 52.493 6 0.25±0.07 6.50±4.46 0.33±0.52 0.83±1.17 0.83±2.04 0.67±0.52

a 0.014 0.011 1 0.84±0.00 5.00±0.00 1.00±0.00 0±0 0±0 0±0
o 0.077 0.008 2 0.75±0.35 2.00±0.00 0±0 0±0 0±0 0±0

2
0
1
3 inc 24.650 44.393 6 0.25±0.06 5.33±2.25 0±0 1.17±0.98 0±0 0.67±0.82

clo 0.082 0.017 2 0.76±0.34 1.50±0.71 0±0 0±0 0±0 0.50±0.71
op 0.023 0.017 1 0.30±0.00 1.00±0.00 0±0 0±0 0±0 1.00±0.00

2
0
1
5

1 108.069 145.077 19 0.24±0.05 4.79±2.74 0.32±0.48 1.05±1.18 0.11±0.32 0±0
2 90.468 80.182 26 0.24±0.04 3.27±2.07 0.31±0.47 0.42±0.76 0±0 0±0
3 105.733 345.460 30 0.23±0.04 4.87±2.47 0.37±0.49 1.30±1.29 0.10±0.40 0±0
4 77.010 9.934 20 0.24±0.03 4.15±2.91 0.55±0.60 0.45±0.83 0±0 0±0
5 131.711 11.093 21 0.24±0.03 3.86±2.39 0.43±0.51 0.48±0.75 0±0 0±0

Table 2: Behavioral structure of the frequent patterns extracted for a thresh-
old of 20% from the process models of the BPICs. It shows the information
for the results with two process models of each log (Heuristics and Inductive).
The information contains the runtime, the number of patterns and the distri-
bution (average and standard deviation) of the frequency, the number of tasks,
sequences, choices, parallels and loops of each pattern. The missing results in
the 2011 log with the IM’s model are due to a non convergence of the algorithm.

Towards the Extraction of Frequent Patterns in Complex Process Models 9

1 2 3 4 5 6

7

8 9

Fig. 2: Frequent pattern (20.20%) extracted from the 2011 log with the Heuristics
model. The pattern is formed by two sequences joined by a choice (XOR-join).

applications. Also, there is a significant difference in the algorithm runtime be-
tween models. These differences are due to the very different grades of complexity
of the mined models —IM models present far more relations than HM models.

Besides, we have compared the number of patterns discovered for the same
threshold for the HM and the IM models. With logs where the difference between
the mined models is higher —2011 and 2015—, the number of retrieved patterns
with more complex models (IM) is significantly higher. The algorithm builds
more structures with these models and, consequently, extracts more patterns —
this implies, as seen before, a higher runtime. On the other hand, with simpler
models —2012 and 2013—, the differences are less notable and the number of
patterns extracted are almost the same.

Fig. 2 shows a example of a pattern extracted by WoMine from the HM
model of the BPIC 2011 log, which corresponds to a Dutch Academic Hospital.
This model contains more than 623 tasks and almost 1,500 arcs. The pattern,
detected by WoMine in the 20% of the traces, is formed by two sequences, joined
by a choice. With this information, the process manager may try to optimize the
subprocess, or schedule the resources to improve the execution of the process.

6 Conclusion and Future Work

We have presented WoMine, an algorithm designed to search frequent patterns
in an already discovered process model. The proposal, based on a novel a priori
algorithm, is able to find patterns with the most common control structures,
including loops. We have compared WoMine with the state of the art approaches,
showing that, although the other proposals fail for some of the models, WoMine
always retrieves the correct frequent patterns. Moreover, we have also tested
WoMine with complex real logs from the BPICs. Results show the importance
of the frequent patterns to analyze and optimize the process model.

Acknowledgments.

This work was supported by the Spanish Ministry of Economy and Competitive-
ness (grant TIN2014-56633-C3-1-R co-funded by the European Regional Devel-
opment Fund - FEDER program); the Galician Ministry of Education (projects
EM2014/012, CN2012/151 and GRC2014/030); the Conselleŕıa de Cultura, Ed-
ucación e Ordenación Universitaria (accreditation 2016-2019, ED431G/08); and
the European Regional Development Fund (ERDF).

10 D. Chapela et al.

References

1. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of
Business Processes. 1st edn. Springer (2011)

2. De San Pedro, J., Carmona, J., Cortadella, J.: Log-based simplification of process
models. In: International Conference on Business Process Management, Springer
(2015) 457–474

3. Fahland, D., Van Der Aalst, W.M.: Simplifying mined process models: An ap-
proach based on unfoldings. In: International Conference on Business Process
Management, Springer (2011) 362–378

4. Leemans, M., van der Aalst, W.M.: Discovery of frequent episodes in event logs.
In: International Symposium on Data-Driven Process Discovery and Analysis,
Springer (2014) 1–31

5. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event
sequences. Data mining and knowledge discovery 1(3) (1997) 259–289

6. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.: Mining local process
models. Journal of Innovation in Digital Ecosystems (2016)

7. Greco, G., Guzzo, A., Pontieri, L., Sacca, D.: Discovering expressive process models
by clustering log traces. IEEE Transactions on Knowledge and Data Engineering
18(8) (2006) 1010–1027

8. Song, M., Günther, C.W., Van der Aalst, W.M.: Trace clustering in process mining.
In: International Conference on Business Process Management, Springer (2008)
109–120

9. Günther, C.W., Rozinat, A.: Disco: Discover your processes. BPM (Demos) 940
(2012) 40–44

10. Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M.C.: Freespan:
frequent pattern-projected sequential pattern mining. In: Proceedings of the sixth
ACM SIGKDD international conference on Knowledge discovery and data mining,
ACM (2000) 355–359

11. Han, J., Pei, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Pre-
fixspan: Mining sequential patterns efficiently by prefix-projected pattern growth.
In: proceedings of the 17th international conference on data engineering. (2001)
215–224

12. Greco, G., Guzzo, A., Manco, G., Pontieri, L., Saccà, D.: Mining constrained
graphs: The case of workflow systems. In: Constraint-Based Mining and Inductive
Databases. Springer (2006) 155–171

13. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Acm sigmod record. Volume 22., ACM (1993) 207–216

14. van Dongen, B.: Real-life event logs - hospital log (2011)
15. Steeman, W.: Bpi challenge 2013, closed problems (2013)
16. Steeman, W.: Bpi challenge 2013, incidents (2013)
17. Steeman, W.: Bpi challenge 2013, open problems (2013)
18. van Dongen, B.: Bpi challenge 2012 (2012)
19. van Dongen, B.: Bpi challenge 2015 (2015)
20. Weijters, A., van Der Aalst, W.M., De Medeiros, A.A.: Process mining with the

heuristics miner-algorithm. Technische Universiteit Eindhoven, Tech. Rep. WP
166 (2006) 1–34

21. Leemans, S.J., Fahland, D., van der Aalst, W.M.: Discovering block-structured
process models from event logs-a constructive approach. In: International Confer-
ence on Applications and Theory of Petri Nets and Concurrency, Springer (2013)
311–329

	Towards the Extraction of Frequent Patterns in Complex Process Models
	Introduction
	Preliminaries
	WoMine
	Measuring the Frequency of a Pattern
	Experimentation
	Frequent patterns for the BPI Challenges

	Conclusion and Future Work

