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Abstract

Object detection accuracy on small objects, i.e., objects under 32×32 pixels,

lags behind that of large ones. To address this issue, innovative architectures

have been designed and new datasets have been released. Still, the number

of small objects in many datasets does not suffice for training. The advent of

the generative adversarial networks (GANs) opens up a new data augmentation

possibility for training architectures without the costly task of annotating huge

datasets for small objects. In this paper, we propose a full pipeline for data

augmentation for small object detection which combines a GAN-based object

generator with techniques of object segmentation, image inpainting, and image

blending to achieve high-quality synthetic data. The main component of our

pipeline is DS-GAN, a novel GAN-based architecture that generates realistic

small objects from larger ones. Experimental results show that our overall data

augmentation method improves the performance of state-of-the-art models up

to 11.9% AP@.5
𝑠 on UAVDT and by 4.7% AP@.5

𝑠 on iSAID, both for the small

objects subset and for a scenario where the number of training instances is

limited.
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Figure 1: We describe a pipeline for small object data augmentation able to populate an
original frame (left) with new generated small objects (right), highlighted in red.

network

1. Introduction1

The accuracy of object detectors has experienced a lot of progress year on

year with the release of large training datasets and the continuous improve-

ment of CNNs architectures [1, 2], which goes along with the ever increasing

computing power of GPUs.

In this line, small object detection stands out as a field of its own with

increasing interest [3, 4, 5]. This is mainly because many downstream tasks de-

mand early detections of objects to act quickly: self-driving cars or applications

like sense and avoid on UAVs need to detect as far an object as possible, or

satellite image analysis, where almost all objects are just a few pixels in size.

That is, all the previous applications require objects to be identified as soon

as possible, i.e, when they are barely visible in the images. Recent CNN-based

object detectors, like the work in [3], provide high accuracy over a wide range

of scales, from less than 32 × 32 pixels up to the image size. Despite these

improvements, existing solutions often underperform with small objects [6].

The problems of detecting such small objects are twofold: (i) in deep CNNs

architectures commonly the deeper the feature map, the lower the resolution,

1Abbreviations list: unmanned aerial vehicle (UAV); convolutional neural network (CNN);
generative adversarial network (GAN); downsampling GAN (DS-GAN); feature pyramid net-
work (FPN); high resolution (HR); low-resolution (LR); synthetic low resolution (SLR); in-
tersection over union (IoU); Frechet inception distance (FID).
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which is counterproductive when the object is so small that it may be lost along

the way, and (ii) the most popular datasets such as MS COCO [7] or ImageNet

[8] focus their attention on larger objects. While to deal with the first problem

new solutions are being proposed year by year [4, 3, 9, 10], the second is being

tackled mostly with the tedious task of generating new datasets [4, 11, 12, 13].

We have noticed some reasons that call for a superior number of small objects

in public datasets to train a small object detector. First, the relatively fewer

images that contain small objects will potentially bias any detection model to

focus more on medium and large objects. In addition, the scarce features in

small objects hinder the model generalization, lacking a great deal of variability.

Finally, the smaller the object the more places it can appear, increasing the

object background diversity, demanding more context variability at training.

Moreover, pieces of evidence [14] have shown that good data augmentation

can boost deep models to achieve state-of-the-art performance without chang-

ing the network architecture. Although data augmentation has shown to sig-

nificantly improve image classification, its potential has not been thoroughly

investigated for object detection. So, given the additional cost for annotating

images for object detection, data augmentation may play an essential role in

boosting performance of generic object detection.

The advent of the GANs [15] has led to a new approach in the field of data

augmentation. This kind of models are trained in an adversarial manner, where

one network (the generator) tries to cheat another network (the discriminator)

by generating new images. The generator attempts to provide examples that

are increasingly similar to those in the real world.

Data augmentation for object detection presents two major challenges: (i)

the generation of new objects and (ii) the integration of those objects to adapt

them to the new scenarios. The former is mostly tackled by reusing already

existing objects in different positions [5] or by adjusting their scale by re-scaling

functions [16]. However, it has been proven that common re-scaling functions

cause artefacts that significantly distort the re-scaled object if compared to real-

world objects [17, 18]. The latter could be approached by object segmentation
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methods [2] to clear the original background and then insert the objects into

plausible positions while tuning for color consistencies. In the case of small ob-

jects, there is the added issue that the performance of the segmentation methods

decreases dramatically. In addition, many popular datasets [4, 11, 12] do not

contain segmentation ground truth to train the segmentation models properly.

For all these reasons, in this paper we propose a full pipeline for small object

data augmentation. Our pipeline takes a video dataset as input2 and returns

the same dataset but with new synthetic small objects (Fig. 1). The hypothesis

is that, starting from the visual features of larger objects—which can be found

in many datasets in a large number—high quality synthetic small objects can

be generated and placed into an existing image. To do so, the pipeline has

the following stages: (i) to generate small objects from large ones through a

GAN; (ii) to seek a logical position within the image through optical flow; (iii)

to integrate small object via inpainting and blending techniques. The main

contributions described in this paper are:

• A full pipeline for small object data augmentation which is able to auto-

matically generate small objects using larger ones and place them into an

existing background in a congruent fashion.

• Downsampling GAN (DS-GAN), a generative adversarial network archi-

tecture that converts large size objects into high quality small objects.

• An extensive experimentation on the video dataset UAVDT [11] and the

image dataset iSAID [19], where the base results of state-of-the-art ap-

proaches are improved.

2. Related Work

The small object data augmentation approach we present in this paper is

based on several computer vision tasks. The execution flow starts with a GAN

2The input to the pipeline can also be an image dataset. That only requires minor modi-
fications to the pipeline, as explained in Sec. 3.2.1.
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that generates synthetic small objects from larger ones. This process can be

seen as solving the opposite of image super-resolution. Then, a segmentation

network obtains the pixels of the input object and this mask is adapted to

the new generated small object. In parallel, the new position in the image is

obtained exploiting optical flow. The synthetic object may or may not replace

an existing small object in the image. If so, the real one is removed from the

scenario via inpainting. Finally, the object is placed into the selected position

and tuned by image blending to fit the new background.

Small object detection. Small object detection refers to improving the

detection of those objects with small size and poor visual features, typically

defined as the detection of objects with a size below 32 × 32 pixels [7]. The

actual trend for common object detection is to go deeper to recognise more

complex semantics [1], but small objects, that do not contain detailed visual

features, may be lost in the deep network. More sophisticated architectures,

such as the FPN [3] or the Region Context Network [4, 20], partially alleviate

this problem.

Furthermore, another restriction is the fact that popular datasets have fo-

cused on larger objects, with small objects underrepresented [7, 8]. To some

extent, this restriction has been reduced by the advent of video datasets like

UAVDT [11], VisDrone2019-VID [12] and, especially, USC-GRAD-STDdb [4],

which are video datasets with a large percentage of small objects.

Adversarial learning attempts to fool models through malicious input or

adversarial attacking through two —or more— networks with contrasting ob-

jectives. So that, these samples could be added to the training set to improve

weak spots in the learned decision boundary. The principles of adversarial train-

ing have led to the popular GANs. The model consists of two networks that are

trained in an adversarial process where, iteratively, one network (the generator)

generates fake images and the other network (the discriminator) discriminates

between real and fake images. So that the adversarial loss forces the generated

images to be, in principle, indistinguishable from real ones.

A way to increase small object detection accuracy is to improve object res-
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olution, for example with a Perceptual GAN [21] or an SOD-MTGAN [22]. A

similar technique based on GANs has been proposed to improve the detection

of tiny faces [23] or small-scale pedestrians [24]. Our approach is different as

it downsamples objects for data augmentation in the training set, and it has

the advantage that the GAN only has to be executed during the training pro-

cess. The previous proposals require the execution of the GAN generator also

during the inference —detection of the small objects—, as their detector needs

super-resolved images.

Data augmentation. Data augmentation strategies are widely used for

training vision models to minimize the bias between the training and the test-

ing subsets, i.e., leading to more generalized models. There are two main types

of data augmentation: basic image manipulations and generative synthetic ap-

proaches. Basic manipulations are simple operations, so deep learning designs

usually combine many of them. For object detection, image mirroring and

object-centric cropping are the most widely used [25].

One straightforward solution to generate synthetic objects is to augment

the number of small object instances by randomly copy-pasting them [5, 26].

The problem of this approach is twofold: (i) the features of the object remain

the same, and (ii) the position and scale of the object may not fit the context

—e.g., a car in the sky. The second issue is addressed in [16] by an adaptive

augmentation strategy called AdaResampling that logically augments the in-

stances. AdaResampling generates a prior context map using a segmentation

CNN and then places the objects in accordance with the scale and position.

Yet, [17, 18] show that the object features produced by conventional resizing

functions are far from real-world object features.

In [27] they increase the number of person instances in a given dataset

through two modules: shape-guided deformation and the environment adap-

tation. The former one produces data augmentation by changing the shape of

a given entry person. The latter adapts the person to the background through

blending. However, they keep the resolution of the objects, thus not addressing

the resolution mismatch problem.
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Another solution is to learn the space of possible augmentations with adver-

sarial training. In [28], authors introduce PTGAN to transfer persons between

datasets to tackle the classical domain gap issue. However, sizes of objects in

the pair of datasets match, so that solutions like CycleGAN [29] with additional

constraints can be used without downsampling. Moreover, in their setting, peo-

ple are large enough objects to be segmented accurately, making it possible to

feed PTGAN with such segmentations. Also, PTGAN does not deal with the

object positioning, i.e, where to include the new person in the image of the

dataset where the transfer is made.

DetectorGAN [30] is based on CycleGAN, which performs image-to-image

translation, transforming object free images to images with objects and vicev-

ersa. Nevertheless, DetectorGAN does not place objects in a coherent location

in the image, and it has not been tested with small objects.

Image super-resolution. Image super-resolution comprises the task of

estimating an HR image from its LR counterpart. The techniques to achieve

the final image can use a series of consecutive frames of a video or a single

image. Multiple image-based (or classical) solutions are mostly reconstruction-

based algorithms that try to address aliasing artefacts by simulating the image

formation model. These models are highly dependent on the motion estimation

between the LR images, so they are more unstable in real-world applications

[31]. Henceforth, we will describe only single image super-resolution approaches.

Before the emergence of convolutional neural networks, single image super-

resolution techniques ranged from simple prediction-based methods, which yield

solutions with overly smooth textures, going through methods that attempt to

address these shortcomings by exploiting different priors. With the remark-

able CNN success, all efforts were turned in this direction. Within this scope,

Dong et al. [32] used bicubic interpolation to upscale an input image and feed

a three layer deep fully convolutional network to achieve state-of-the-art SR

performance. The definition of a perceptual loss [33], instead of low-level pixel-

wise error measures, represented a significant improvement. The perceptual

loss function applies an 𝐿2 loss over calculated feature maps using another pre-
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trained CNN —such as VGG— to increase the perceptual similarity, which leads

to recover visually more convincing HR images. More recently, GANs boosted

even more the image super-resolution results. In [34], authors introduce a GAN

trained with the perceptual loss in cooperation with the adversarial loss to infer

photo-realistic natural images for 4× upscaling factors.

In spite of the progress obtained with GANs, to train these networks it is

necessary to have pairs of LR and HR images. Most of the approaches use bilin-

ear interpolation to obtain the LR images, which is shown in [17, 18], but they

cannot produce good results for real-world low-resolution images. To address

this, Bulat et al. [17] defined two consecutive GANs, where the first GAN learns

how to degrade HR images to LR images, and the second GAN uses these LR

images to learn the standard image super-resolution.

Image Inpainting. Image inpainting is a conservation process where dam-

aged, deteriorated, or missing parts are filled in to present a complete image.

In the same way as in image super-resolution, the establishment of the GANs

has lead to better inpainting results, as the discriminator forces the generator

to fill with coherent data within the dataset. Specifically, Pathak et al. [35]

introduced a Context Encoder trained with both L2 pixel-wise reconstruction

loss and generative adversarial loss as the objective function to complete large

center regions of fixed size. More recently, Yu et al. [36] propose a novel con-

textual attention layer to borrow features from distant spatial locations during

training to improve the final performance.

Image blending. The goal of image blending is to create a composite

image from the superposition —partial or full— of one or more source images,

optimizing the spatial and color consistencies in order to make the composite

image look as natural as possible. A specific instance of image blending is when

a foreground region from a source image is pasted into the target background

at a specified location. The default way is to copy pixels from the source image

and paste them onto the target image, but this would generate obvious artefacts

because of the abrupt intensity change in the compositing boundaries.

Burt and Adelson [37] introduced Laplacian pyramid, a multiresolution rep-
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(DS-GAN) Copy-paste

Small object generation

[Inpainting]

Blending

Small object integration

. . . . .
Real Dataset

Select HR object . . . . .

Synthetic Dataset

Figure 2: The proposed pipeline for data augmentation for small object detection. It takes a
video dataset and produces the same frames but populated with synthetic small objects. The
system comprises two main steps: small object generation and integration. This is repeated
for each position/HR object pair.

resentation of the images of interest. The source images are decomposed into a

set of band-pass filtered component images, then joined within each resolution

band independently and, finally, adding up the different levels. So that, when

coarse features occur near borders, these are blended gradually over a relatively

large distance without blurring or otherwise degrading finer image details in the

neighborhood of the border.

3. Small object data augmentation

Fig. 2 shows the architecture of the pipeline for data augmentation for small

object detection. The purpose of this architecture is to increase the number

of small objects in a video dataset. Our system consists of two procedures:

the small object generation, which involves object downsampling and object

segmentation, and the small object integration into the image, which involves

position selection, object inpainting and object blending.

Through these components the system is able to generate SLR objects from

real HR objects; these SLR objects will have similar features to real LR objects.

Then, they are inserted in plausible positions within the image without enforcing

any temporal consistency between frames. The following are the steps performed

by the pipeline applied to an input video dataset (Fig. 2):

• The small object generation procedure produces SLR objects and their

corresponding masks from HR objects.
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1. The object downsampling generates an SLR object from an HR

object with its context.

2. The object segmentation calculates the input HR object segmen-

tation mask and transforms it to fit the SLR object.

• The small object integration procedure selects the optimal positions for

the SLR object and inserts it into the image.

1. The position selector selects the possible positions where some real

LR objects exist —or existed in previous or successive frames— and

optimizes the position and SLR object matching by comparing the

direction and shape of both LR and HR objects through optical flow

and overlap.

2. The object inpainting deletes the objects that will be replaced.

3. The object blending makes a copy-paste of each SLR object in the

matched position and performs a blending operation to alleviate the

abrupt boundary change and color intensity on the scene.

The final result provided by our system is a new dataset created with the

same video images but populated with an increased number of SLR objects that

replace the fixed number of LR objects.

3.1. Small object generation

3.1.1. Downsampling GAN (DS-GAN)

We have designed a Downsampling GAN (DS-GAN) to overcome the poor

performance from well-known methods like bilinear interpolation or nearest

neighbor to obtain SLR objects. DS-GAN is a generative adversarial network

that learns to correctly degrade HR objects into SLR objects to increase the

training set for object detection.

In this downsampling problem the aim is to estimate an SLR object from

an input HR object with a downsampling factor 𝑟. The problem to solve is an

unpaired problem where HR objects do not have a corresponding LR pair, but
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Figure 3: Downsampling Generative Adversarial Network (DS-GAN) architecture. The gen-
erator is trained with HR objects to synthesize small objects. A discriminator between real
and fake small objects forces the generator to produce synthetic objects that are increasingly
similar to real-world small objects.

the network would have to learn the distribution of the features of the whole LR

subset while keeping similar visual appearance of the original HR object. For

an image with 𝐶 color channels, HR has size 𝑊 ×𝐻 ×𝐶 while both LR and SLR

are described by 𝑊
𝑟
× 𝐻

𝑟
× 𝐶. So, for training the proposed GAN, two different

image sets are required: (i) the HR subset composed of real large objects (HR

objects) and (ii) the LR subset composed of real small objects (LR objects).

Both the LR and HR subsets can be taken from the same dataset or from any

additional one if more samples are needed.

Our DS-GAN architecture is shown in Fig. 3. The generator network (𝐺)

takes as input an HR image concatenated with a noise vector (𝑧) and produces

an SLR image 4× smaller than the input (𝑟 = 4). For example, a 128 × 128

object will lead to a 32× 32 object. The noise vector is randomly sampled from

a normal distribution and it is attached to the input image. This allows to

produce numerous SLR objects from a single HR object, thus modeling the fact

that the HR image will be affected by multiple types of LR noise. Following

the methodology of [15] we further define a discriminator network (𝐷) which we

optimize in an alternating manner along with the generator (𝐺).

The generator is an encoder-decoder network —see Fig. 3— composed of

six groups of residual blocks [1]. Each group has two same-dimension residual

blocks with pre-activation and batch normalization as defined in [38]. To achieve
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a 4× downscaling, four 2× down-sample steps performed by pooling layers are

placed at the end of each of the first four groups and two 2× up-sample steps

performed by deconvolution layers at the end of each of the last two groups.

The discriminator —see Fig. 3— follows the same residual block structure

(without batch normalization) followed by a fully connected layer and a sigmoid

function. The discriminator comprises six residual blocks with two 2× down-

sample steps. The details of the composition of both architectures are better

shown in Fig. 3.

With this architecture, our goal is to train 𝐺 to generate an SLR sample

conditioned on an HR sample. To achieve this, the objective function chosen

for the adversarial loss is the hinge loss [39]:

𝑙𝐷𝑎𝑑𝑣 = E
𝑠∼P𝐿𝑅

[min(0, 1 − 𝐷 (𝑠))] + E
𝑠∼P𝐺
[min(0, 1 + 𝐷 ( �̂�))] (1)

where P𝐿𝑅 is the LR subset distribution and P𝐺 is the generator distribu-

tion to be learned through the alternative optimization. P𝐺 is defined by

�̂� = 𝐺 (𝑏, 𝑧) | 𝑏 ∈ P𝐻𝑅, where P𝐻𝑅 is the HR subset. The general idea be-

hind this formulation is that it allows to train 𝐺 with the goal of fooling 𝐷,

that is trained to distinguish SLR from LR images. With this approach our

generator can learn to create SLR samples that are highly similar to real LR

images, and thus difficult to classify by 𝐷.

Correspondingly, we train 𝐺 by optimizing a loss function L, defined as:

L = 𝑙𝑝𝑖𝑥𝑒𝑙 + 𝜆𝑙𝐺𝑎𝑑𝑣 , (2)

where 𝑙𝐺
𝑎𝑑𝑣

is the adversarial loss, 𝑙𝑝𝑖𝑥𝑒𝑙 is the 𝐿2 pixel loss, and 𝜆 is a parameter

that balances the weight of both components.

The adversarial loss 𝑙𝐺
𝑎𝑑𝑣

is defined based on the probabilities of the discrim-

inator as:

𝑙𝐺𝑎𝑑𝑣 = − E
𝑏∼P𝐻𝑅

[𝐷 (𝐺 (𝑏, 𝑧))], (3)

where P𝐻𝑅 is the HR subset and 𝑧 is the noise vector. The adversarial loss is

computed in an unpaired way, using the LR subset to make the SLR objects to

12



be contaminated with real-world artefacts.

The 𝑙𝑝𝑖𝑥𝑒𝑙 minimizes the 𝐿2 distance between the input HR and the output

SLR:

𝑙𝑝𝑖𝑥𝑒𝑙 =
𝑟2

𝑊𝐻

𝑊
𝑟∑︁

𝑖=1

𝐻
𝑟∑︁
𝑗=1

(𝐴𝑣𝑔𝑃(𝑏)𝑖, 𝑗 − 𝐺 (𝑏, 𝑧)𝑖, 𝑗 ) | 𝑏 ∈ P𝐻𝑅, (4)

where 𝑊 and 𝐻 denote the input HR size, 𝑟 is the downsampling factor and

𝐴𝑣𝑔𝑃 is an average pooling function that maps the HR input to the output

𝐺 (𝑏, 𝑧) resolution. The 𝑙𝑝𝑖𝑥𝑒𝑙 is computed in a paired way between the SLR

object and the HR object downsampled to the output SLR resolution using

an average pooling layer. This component aims to keep the appearance of the

synthetic objects similar to the original HR objects.

In addition, to solve the stabilization of the discriminator training we nor-

malize its weights by the spectral normalization technique [39].

3.1.2. Object Segmentation

To integrate the SLR object in a new scenario, it is mandatory to extract

the foreground object from its background. The approach chosen for object

segmentation is to adapt the Mask R-CNN framework3 [2] trained on the public

dataset MS COCO to obtain the mask from HR objects (Fig. 4). As the

segmentation results for small objects have a poor performance, we propose to

get the mask from the large objects and fit it to the small objects. This is done

just by resizing by factor 𝑟. This is possible because the pixel loss (Equation 4)

forces the generator to keep the visual object appearance, i.e., pose, orientation,

size, etc. Fig. 4 shows the masks adaptability from HR to SLR objects.

Adding this process solves three issues: (i) the pipeline does not limit its

performance to the existence of objects with a mask ground truth, which is

missing in many popular datasets [4, 11, 12] as the annotation is very costly; (ii)

the small object segmentation is optimized, as the performance of segmentation

3Mask R-CNN extends Faster R-CNN by adding a branch for predicting an object mask
in parallel with the existing branches of classification and bounding box regression.
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Figure 4: HR object segmentation using the Mask R-CNN framework [2] (right), and DS-GAN
outputs for different noise vectors (𝑧𝑖) with the masks fitted to the SLR objects (left).

methods declines dramatically for small objects; and (iii) there is no need to

use the SLR objects to generate the segmentation mask —SLR objects do not

contain enough context to get a proper mask (Fig. 4).

3.2. Small object integration

3.2.1. Position selector

The selection of a position within the image is a key issue when performing

data augmentation for object detection. If this position is randomly selected,

the new context surrounding the objects could be counterproductive, i.e., back-

ground mismatch may lead to more false positives. The reason is that the

detector learns on not only the object features but also the context features,

using the background prior knowledge to assist itself [16].

In order to sample a suitable position according to the image background,

three premises must be fulfilled: (i) to have a plausible background —e.g., a

car must be placed into the road—; (ii) the orientation has to fit the scene

—e.g., a car’s orientation has to match the direction of the road—; and (iii)

the scale has to be according to the vanishing point of the frame —p.e. small

objects cannot be placed in the foreground. As pointed out above, no temporal

consistency for objects between frames is demanded; we only require objects to

have a sensible spatial location within the frame. Using temporal consistency
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Figure 5: Angle of motion direction using optical flow for two frames 𝑓𝑡 (right) and 𝑓𝑡+1 (left).
First, the feature points are computed using FAST (red dots). Second, 𝑓𝑡+1 is stabilized
with 𝑓𝑡 by perspective transformation to remove camera motion. Then, the feature points
are matched between frames (colored lines). Finally, the motion lines are summarized into a
motion vector for each object (colored arrows).

would limit the number of object-background pairs, resulting in a less effective

data augmentation system.

Therefore, to cover these requirements, our proposed position procedure is

also based on three techniques: spatial memory of the objects to obtain a plausi-

ble background, optical flow to match orientations, and overlap to match scales.

The spatial memory of the objects aims to collect plausible positions where to

place an SLR object in the current frame. All locations of LR objects in the

current frame are valid candidate positions. Also, LR object positions in previ-

ous and subsequent frames are candidates to place SLR objects as long as there

is no overlap with objects in the current frame —this does not apply to image

datasets. Optical flow and overlap aim to pair each candidate position with

the SLR object that most closely resembles the orientation and size —for image

datasets only overlap is taken into account. We exploit optical flow to compute

the apparent motion of objects within two frames (Fig. 5): (i) we detect FAST

keypoints [40]; (ii) stabilize camera motion by perspective transformation; (iii)

link feature points between 𝑓𝑡−1 and 𝑓𝑡 within each bounding box by optical

flow; (iv) compute the motion angle for each object in 𝑓𝑡 by averaging all its

points into a motion vector. The overlap between two objects is computed via

IoU.

Given the angle of motion direction and the sizes associated to the HR and

LR objects, each possible position gets this information from the LR object
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Algorithm 1: Position selector
Input : 𝐺𝑇 = {𝐺𝑇 𝑡 = {𝑔𝑡1, . . . , 𝑔𝑡𝑛𝑡 } ∀ 𝑡 = 1, . . . , 𝑇}
Input : 𝐿𝑅 = {𝐿𝑅𝑡 = {𝑠𝑡1, . . . , 𝑠𝑡𝑚𝑡

} ∀ 𝑡 = 1, . . . , 𝑇} | 𝐿𝑅 ⊂ 𝐺𝑇

Input : 𝐻𝑅 = {𝑏1, . . . , 𝑏𝑙} | 𝐻𝑅 ⊂ 𝐺𝑇

Input : 𝑆𝐿𝑅 = {�̂�1, . . . , �̂�𝑙} | �̂�𝑖 = 𝐺 (𝑏𝑖 , 𝑧) ∀ 𝑖 = 1, . . . , 𝑙
Input : Search range 𝜏

Output: A = {A𝑡 = {(𝑒𝑡
𝑖
, �̂�𝑘 (𝑖) ) . . . (𝑒𝑡𝑛, �̂�𝑘 (𝑛) )} ∀ 𝑡 = 1, . . . , 𝑇, 𝑒𝑡

𝑖
∈ 𝐸𝑡 }

1 A← ∅
2 for 𝑡 = 1, . . . , 𝑇 do
3 𝐸𝑡 ← ∅
4 for 𝑡 ′ = max(0, 𝑡 − 𝜏), . . . , min(𝑇, 𝑡 + 𝜏) do
5 if 𝑡 = 𝑡 ′ then
6 𝐸𝑡 ← 𝐸𝑡 ∪ 𝑠𝑡

𝑖

7 else
8 for 𝑖 = 1, . . . , 𝑚𝑡′ do
9 𝑣𝑎𝑙𝑖𝑑_𝑠𝑝𝑜𝑡 = 1

10 for 𝑗 = 1, . . . , 𝑛𝑡 do
11 if IoU(𝑠𝑡′

𝑖
, 𝑔𝑡

𝑗
) > 0 then

12 𝑣𝑎𝑙𝑖𝑑_𝑠𝑝𝑜𝑡 = 0

13 for 𝑗 = 1, . . . , size(𝐸𝑡 ) do
14 if IoU(𝑠𝑡′

𝑖
, 𝑒𝑡

𝑗
) > 0 then

15 𝑣𝑎𝑙𝑖𝑑_𝑠𝑝𝑜𝑡 = 0

16 if 𝑣𝑎𝑙𝑖𝑑_𝑠𝑝𝑜𝑡 = 1 then
17 𝐸𝑡 ← 𝐸𝑡 ∪ 𝑠𝑡

′
𝑖

18 for 𝑖 = 1, . . . , size(𝐸𝑡 ) do
19 𝑚𝑎𝑥𝑣 = 𝑚𝑎𝑥 𝑗 = 0
20 𝛼𝑡

𝑖
= OpticalFlow(𝑒𝑡

𝑖
)

21 for 𝑗 = 1, . . . , 𝑙 do
22 𝛼 𝑗 = OpticalFlow(𝑏 𝑗 )
23 Δ𝑖, 𝑗 = 1 − normalize( |𝛼𝑡

𝑖
− 𝛼 𝑗 |)

24 𝑖𝑜𝑢𝑖, 𝑗 = IoU(𝑒𝑡
𝑖
, �̂� 𝑗 )

25 if Δ𝑖, 𝑗 + 𝑖𝑜𝑢𝑖, 𝑗 > 𝑚𝑎𝑥𝑣 then
26 𝑚𝑎𝑥𝑣 = Δ𝑖, 𝑗 + 𝑖𝑜𝑢𝑖, 𝑗
27 𝑚𝑎𝑥 𝑗 = 𝑗

28 A𝑡 ← A𝑡 ∪ (𝑒𝑡
𝑖
, �̂�𝑚𝑎𝑥 𝑗

)
29 A← A ∪ A𝑡

from which it has given rise and each SLR object from its original HR object.

Then, each position and SLR object pairing will be given by maximizing the

overlap and angle of motion direction similarity between them. Alg. 1 shows

the position selector method for each video:
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• Input: The algorithm takes as input the total set of objects in the dataset

(GT) within each frame 𝑓 at time 𝑡 ( 𝑓𝑡) —which includes the LR and HR

subsets—, the total set of SLR objects obtained by the DS-GAN generator

𝐺 from HR objects and the search range 𝜏.

• Ouput: The algorithm returns the association (A) of an SLR object (�̂�𝑖)

for each empty space (𝑒 𝑗) —�̂�𝑖 can be linked to more than one 𝑒 𝑗 .

• Spatial memory (lines 4-17): Given frame 𝑓 at time 𝑡, the possible empty

spots (𝐸𝑡) to place an SLR object (�̂�𝑖) will be those where an LR object

(𝑠 𝑗) existed in the frames from 𝑓𝑡−𝜏 to 𝑓𝑡+𝜏 (line 4) —𝑠𝑡
𝑖

is always valid

(line 6). For each frame 𝑓𝑡′ of the interval ( 𝑓𝑡−𝜏 , 𝑓𝑡+𝜏) the algorithm checks

if the 𝐿𝑅𝑡′ objects overlap with any of the objects of the current frame

(𝐺𝑇 𝑡) or with any space already selected (𝐸 𝑡) (lines 9-15). Otherwise, 𝑠𝑡
′
𝑖

is added as new empty spot to 𝐸 𝑡 (line 17). Thus, each possible empty

spot 𝑒𝑡
𝑗
corresponds to a position of an LR object (𝑠𝑡

′
𝑖
).

The value of 𝜏 will be influenced by the video dataset and, more specif-

ically, by the camera motion. The more the camera moves, the less the

value of 𝜏 will be to avoid background mismatch. If the camera motion

is too quick, the positions of the objects in previous or subsequent frames

may correspond to an erroneous position in the image –e.g., a car on a

sidewalk.

• Object association (lines 18-28): The best �̂�𝑖 is calculated for each of

the empty spots 𝑒𝑡
𝑗
by maximizing the motion direction and overlap.

– Optical flow: For each ground truth LR and HR objects in the

video dataset, an angle (𝛼) associated with its motion vector is pre-

calculated through optical flow (Fig. 5) —lines (20 and 22). As in

the segmentation step, the �̂�𝑖 motion vector can be derived from its

original HR object 𝑏𝑖 (OpticalFlow( �̂�𝑖) = OpticalFlow(𝑏𝑖)). Consid-

ering the SLR and the LR subsets, motion similarity (Δ) associated

with each pair �̂�𝑖, 𝑠 𝑗 is given by:
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Δ𝑖, 𝑗 = 1 − norm( |OpticalFlow(𝑏𝑖) −OpticalFlow(𝑠 𝑗 ) |) (5)

– Overlap: Likewise, the �̂�𝑖 size can be derived from its original HR

object 𝑏𝑖 (𝑤( �̂�𝑖) = 𝑤 (𝑏𝑖)
𝑟

; ℎ( �̂�𝑖) = ℎ (𝑏𝑖)
𝑟

). Then, the overlap between �̂�𝑖

and 𝑠 𝑗 is computed using IoU.

Finally, the 𝑖-th SLR object selected to fill the position 𝑒𝑡
𝑗

will be given

by:
𝑖 = max(Δ𝑖, 𝑗 + IoU( �̂�𝑘 ( 𝑗) , 𝑒𝑡𝑗 )) ∀ 𝑡 = 1, . . . , 𝑇, 𝑒𝑡𝑗 ∈ 𝐸𝑡 , (6)

3.2.2. Inpainting

The position selector procedure considers each 𝑠𝑡
𝑗
in 𝑓𝑡 as an empty spot 𝑒𝑡

𝑗

for filling with �̂�𝑖. In these situations, it is mandatory to remove 𝑠𝑡
𝑗

associated

to 𝑒𝑡
𝑗

via inpainting before inserting its pair. This ensures that the newly gen-

erated object is then blended with a uniform background which is the result of

the inpainting. To this end we perform image inpainting using DeepFill [36].

DeepFill is a generative model-based approach which can synthesize novel image

structures using surrounding image features.

Deepfill takes as input the frame 𝑓𝑡 and a mask 𝑚𝑡 and returns the same im-

age 𝑓 ′𝑡 but with the empty regions filled. For generating the mask 𝑚𝑡 associated

with the frame 𝑓𝑡 , the bounding boxes of the selected LR objects 𝑠𝑡
𝑖
∈ 𝐸 𝑡 will

be considered, so that those pixels contained in them will be flagged (𝑚𝑡 = 1).

The generator comprises two encoder-decoder networks for two different pur-

poses. The first one —coarse network— aims to make an initial coarse prediction

and, the second network —refinement network— takes the coarse prediction as

inputs and predicts the final result 𝑓 ′𝑡 . The reason for these two networks is

intuitive: the refinement network sees a more complete scene than the original

image with missing regions, so its encoder can better learn feature representation

than the coarse network.

As 𝐿𝑅𝑡 may be surrounded by other objects, it is interesting to borrow
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distant image features within the image without objects. This is addressed by

DeepFill with two parallel refinement network encoders concatenated at the end

into a single decoder. The standard encoder specifically focuses on refining local

contents with layer-by-layer (dilated) convolution, while the attention encoder

tries to capture background interest features.

3.2.3. Insertion and Blending

As a final stage, the pipeline blends the corresponding SLR object �̂�𝑖 obtained

by Equation 6 over an 𝑓 ′𝑡 inpainted image obtained in the previous step in each

of the spots 𝑒𝑡
𝑗

to generate 𝑓 ∗𝑡 . First, the segmented object �̂�𝑖 is placed in

the selected position 𝑒𝑡
𝑗
. Then, the blending step is required to improve color

consistencies and to soft the object edges in order to make the composite image

look as natural as possible. We have adopted the Laplacian pyramid introduced

by Burt and Adelson [37] to blend the SLR objects into the video frames.

This blending method takes as input an inpainted video frame 𝑓 ′𝑡 , the copy-

pasted image 𝑓 ′′𝑡 and the mask image 𝑚′𝑡 that points out where to blend. In

the inpainting stage, the flagged pixels in 𝑚𝑡 are those inside the bounding box

ground truth, but in 𝑚′𝑡 the flagged pixels are those from the SLR segmented

pixels. Alg. 2 details the procedure to obtain the final synthetic video frame:

1. Create the temporal image 𝑓 ′′𝑡 by copy-pasting each �̂�𝑡
𝑘 (𝑖) object in 𝑒𝑡

𝑖
on

𝑓 ′𝑡 (line 3). Generate the mask 𝑚′𝑡 by flagging those pixels that belong to

�̂�𝑡
𝑘 (𝑖) (line 4).

2. Compute 𝑝 levels of Gaussian pyramids for 𝑓 ′𝑡 , 𝑓 ′′𝑡 and 𝑚′𝑡 (lines 5-9).

Each Gaussian pyramid level is the result of blurring and downsampling

the previous one.

3. From the Gaussian pyramids, calculate the Laplacian pyramid for 𝑓 ′𝑡 and

𝑓 ′′𝑡 (lines 10-13). Each Laplacian pyramid level is the result of subtracting

each Gaussian pyramid level with the up-sampled and blurred previous

one. The smaller level in the Laplacian pyramid is the same as the smaller

in Gaussian pyramid.
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Algorithm 2: Insertion and blending algorithm
Input : A𝑡 = {(𝑒𝑡

𝑖
, �̂�𝑘 (𝑖) ) . . . (𝑒𝑡𝑛, �̂�𝑘 (𝑛) )} ∀ 𝑡 = 1, . . . , 𝑇, 𝑒𝑡

𝑖
∈ 𝐸𝑡

Input : Inpainted image: 𝑓 ′𝑡
Input : Pyramid levels: 𝑝

Output: Final synthetic image: 𝑓 ∗𝑡
1 𝑓 ′′𝑡 ← 𝑓 ′𝑡 ; 𝑚′𝑡 ← ∅
2 for 𝑖 = 1, . . . , 𝑛 do
3 𝑓 ′′𝑡 [𝑒𝑡𝑖 ] = �̂�𝑡

𝑘 (𝑖)
4 𝑚′𝑡 [�̂�𝑘 (𝑖) ] = 1

5 𝐹 ′𝑡 ← { 𝑓 ′𝑡 }; 𝐹 ′′𝑡 ← { 𝑓 ′′𝑡 }; 𝑀 ′′𝑡 ← {𝑚′𝑡 }
6 for 𝑖 = 1, . . . , 𝑝 do
7 𝐹 ′𝑡 ← 𝐹 ′𝑡 ∪ PyramidDown(𝐹 ′𝑡 [𝑖])
8 𝐹 ′′𝑡 ← 𝐹 ′′𝑡 ∪ PyramidDown(𝐹 ′𝑡 [𝑖])
9 𝑀 ′𝑡 ← 𝑀 ′𝑡 ∪ PyramidDown(𝐹 ′𝑡 [𝑖])

10 𝐿 ′𝑡 ← {𝐹 ′𝑡 [𝑝]}; 𝐿 ′′𝑡 ← {𝐹 ′′𝑡 [𝑝]}
11 for 𝑖 = 𝑝, . . . , 2 do
12 𝐿 ′𝑡 ← 𝐿 ′𝑡 ∪ (𝐹 ′𝑡 [𝑖 − 1] − PyramidUp(𝐹 ′𝑡 [𝑖]))
13 𝐿 ′′𝑡 ← 𝐿 ′′𝑡 ∪ (𝐹 ′′𝑡 [𝑖 − 1] − PyramidUp(𝐹 ′′𝑡 [𝑖]))
14 𝐵𝑡 ← ∅; 𝑀 ′′𝑡 ← Reverse(𝑀 ′′𝑡 )
15 for 𝑖 = 1, . . . , 𝑝 do
16 𝑏 = 𝐿 ′𝑡 [𝑖] × 𝑀 ′𝑡 [𝑖] + 𝐿 ′′𝑡 × (1 − 𝑀 ′𝑡 [𝑖])
17 𝐵𝑡 ← 𝐵𝑡 ∪ 𝑏

18 𝑏 ← 𝐵𝑡 [1]
19 for 𝑖 = 2, . . . , 𝑝 do
20 𝑏 = PyramidUp(𝑏) + 𝐵𝑡 [𝑖]
21 𝑓 ∗𝑡 ← 𝑏

4. Next, each level of the Laplacian pyramid is blended according to 𝑚′𝑡 of the

corresponding Gaussian level (line 16). The set of masks (𝑀 ′𝑡 ) is previously

reversed to match the dimensions (line 14).

5. Finally, from this blended pyramid, the output image ( 𝑓 ∗𝑡 ) is reconstructed

by up-sampling and blurring each level and adding it to the next one (line

18-21).

4. Experiments

In this section we address the datasets, evaluation metrics and implementa-

tion details to validate our approach.
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4.1. DS-GAN

For this experimentation, the SLR objects generated by the DS-GAN are

compared with the LR objects —aiming for the greatest similarity— as well as

with the resizing functions: linear interpolation, bicubic interpolation, nearest

neighbours and Lanczos [41]. For this purpose, two metrics will be used to

validate the quality of the synthetic objects generated by DS-GAN: the Frechet

Inception Distance (FID) [42] and object classification.

FID is a popular metric for comparing the feature vectors calculated for real

and generated images. The FID score summarizes how similar the two groups

are in terms of statistics on computer vision features of the raw images calculated

using a pre-trained image classification model. The lower the scores the greater

the similarity of the two groups, meaning that they have more similar statistics,

which is the purpose of our DS-GAN.

To support the above metrics, we also train an LR object classifier which

differentiates between background (negative) and LR object (positive). We

resort to this metric since it is closer to the objective of the full pipeline, i.e.,

the improvement of small object detection. On the one hand, the classifier is

trained with the LR training set as positive examples and a background set as

negative examples. On the other hand, the SLR set is used for positive examples

and keeping the same backgrounds as negative examples. We have generated

different SLR sets, one for each of the resizing functions, and another one for

the DS-GAN. All the learned models are evaluated with the LR testing subset

and different backgrounds. The higher the accuracy, the better the quality of

the objects synthetically generated.

The DS-GAN generator architecture has a final stride 4× smaller than the

fixed size input image (𝑟 = 4). Most of the popular datasets —MS COCO

[7], UAVDT [11], VisDrone [12]— consider as small objects those smaller than

32× 32 pixels. Therefore, we will train the DS-GAN to learn how to reduce HR

objects to that range.

We validate our data augmentation for small object detection approach with

the car category on the UAVDT dataset [11]. This dataset was selected because
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Figure 6: Real HR samples (left), and real LR samples (right).

the whole set of objects are vehicles, which allows us to isolate the results for

a specific category, and also provides a large number of small instances in the

testing set. Quantitatively, UAVDT comprises 23,829 frames of training data

and 16,580 frames of test data, belonging to 30 and 20 videos of ≈ 1,024 ×

540 resolution, respectively. The videos are recorded with an UAV platform

over different urban areas. UAVDT includes a total of 394,633 car instances for

training, where 107,091 are considered within the small subset (52.38%), and a

total of 361,055 car instances for testing, where 274,438 are considered within

the small subset (76.01%).

Considering that the camera motion in UAVDT slightly modifies the ap-

pearance of consecutive frames, in this section, only 10% of the video frames

are selected for training to avoid overfitting. The details on the datasets for

evaluating DS-GAN are given below:

• Real HR subset: To obtain the HR objects we select those objects

from 48 × 48 to 128 × 128 pixels, and we add context to have an area of

128 × 128 pixels in objects with a smaller area. These conditions result

in a total number of 517 HR objects in the UAVDT dataset. To have a

larger number, we also select the cars in the VisDrone dataset with the

same restrictions. VisDrone is a dataset with a very similar nature to

that of UAVDT, i.e., high-resolution videos recorded with UAVs. The

total number of HR objects is 5,731 after joining both datasets. Some HR

examples are shown in Fig. 6(left).
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• Real LR training subset: To obtain the LR objects we select those ob-

jects under 32×32 with sufficient context to cover an area of 32×32 pixels.

This results in a total of 18,901 objects coming from the UAVDT training

set —these objects are a part of the UAVDT small subset, where redun-

dant instances have been discarded. However, in order to simulate a small

object scarcity scenario, the LR subset will only consist of approximately

25% of the videos of the UAVDT dataset. The selected videos include a

total of 5,226 LR objects. Some LR examples are shown in Fig. 6(right).

• Real LR testing subset: To evaluate the performance DS-GAN and

the pipeline we use the 274,438 small objects coming from the UAVDT

testing set with sufficient context to cover an area of 32 × 32 pixels.

For training the DS-GAN, we augment the training data by applying random

image flipping to increase diversity. We provide a different noise vector (𝑧)

sampled from a normal distribution to each HR object in order to simulate

a large variety of image degradation types. DS-GAN is trained during 1,000

epochs with an update ratio 1:1 between the discriminator and the generator,

and it is optimized with Adam [43] with parameters 𝛽1 = 0 and 𝛽2 = 0.9. We

set the base learning rate to 1e-4, decreasing it twice during the training phase

by a factor of 10. We use 𝜆 = 0.01 in Eq. 2 to balance the relevance of the two

components in the image generation process —𝑙𝐺
𝑎𝑑𝑣

is two orders of magnitude

higher than 𝑙𝑝𝑖𝑥𝑒𝑙. Thus, the adversarial loss helps to learn to contaminate the

HR input with noise and artefacts coming from the LR subset, and the pixel

loss helps to preserve the visual features from the original input.

Fig. 7a and Fig. 7b show the experimental results to evaluate the quality

of the synthetic objects generated by DS-GAN over the LR testing subset of

UAVDT. Our approach is compared to the main re-scaling functions: linear and

bicubic interpolation, nearest neighbors and Lanczos [41]. The reference values

are obtained by the models trained on the LR training subset (blue bars).

The FID value in Fig. 7a is measured using the final average pooling features

in Inception-v3 [44]. The reference value of the LR training objects compared
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Figure 7: FID (a) and classification accuracy (b) for different subsampling methods on the
LR testing subset of UAVDT.

with the LR testing subset is 27.62. The graph of Fig. 7a shows how the small

objects obtained by any re-scaling function lead to values above 100, which is

a poor performance relative to the reference value. The FID value of the SLR

objects generated by DS-GAN for the LR test objects is 45.15. This FID value

shows how the objects generated by the DS-GAN have better quality than those

obtained by a simple re-scaling function, i.e., are more similar to the real ones.

To complement the FID distance, we have trained a classification network

(ResNet-50 pre-trained on ImageNet [8]) with each of the defined subsets and

tested them with the LR testing subset. Fig. 7b shows, again, how the SLR

object generated by DS-GAN provides a considerably higher accuracy (83.06%)

than the re-scaling functions (≈74%), and are very close to the reference accu-

racy obtained by the LR training subset (85.16%).

These results validate the conclusions reached in [17, 18], since re-scaling

functions introduce artefacts that make the output object differ considerably

from real-world objects. Even though these differences are not visually appre-

ciable —as we will see in Fig. 9 (left) below—, they are identified by the layers

within the CNNs (Inception-v3 and ResNet-50). DS-GAN significantly improves

this issue by learning the different artefacts found in real-world objects.

4.2. Data augmentation pipeline

In order to evaluate our pipeline for data augmentation for small object

detection, shown in Fig. 2, we use the UAVDT detection metrics that were
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Figure 8: AP@[.5,.95]
𝑠 for small object detection in UAVDT for different percentage of training

videos with the FPN and STDnet architectures.

originally defined by the MS COCO dataset, i.e., AP@.5 and AP@[.5,.95] . STDnet

[4], FPN [3] and CenterNet [45] are adopted as the baseline detection networks.

The implementation details for DS-GAN are those defined in the previous

section. The other component that requires training is DeepFill for image in-

painting. In this case, the default parameters [36] are used to train the model

on the UAVDT dataset. We have set 𝜏 = 40 as the frame search range for the

position selector. The rest of the components of the pipeline shown in Fig. 2

are also configured with their default values.

We detail the results obtained by STDnet [4], FPN [3] and CenterNet [45] on

the UAVDT testing set for small objects. The training phase for all the models

was conducted from the same 25% of the videos as in the DS-GAN training, in

order to simulate a scenario with a low number of LR objects, up to the whole

UAVDT training set. Here, the LR label means that no data augmentation

has been applied for training, so the images come directly from the standard

UAVDT training set. The LR + Interp. and LR + SLR labels mean the same

images with real objects as in LR, and also duplicating those images replacing

the real LR objects with synthetic objects ones generated with the pipeline using

bilinear interpolation and DS-GAN, respectively. So that, in LR + Interp. and

LR + SLR, the number of synthetic objects is equal to the number of LR objects.

Notice that LR + Interp. is a more elaborated solution than [5], as it is the

proposed pipeline, but replacing DS-GAN by bilinear interpolation. Finally,

the LR + SLR×𝑛 labels mean that the number of SLR objects is 𝑛 times higher
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Data
augmentation

FPN STDnet CenterNet
AP@.5

𝑠 AP@[.5,.95]
𝑠 AP@.5

𝑠 AP@[.5,.95]
𝑠 AP@.5

𝑠 AP@[.5,.95]
𝑠

LR 39.0 17.6 41.2 19.0 51.9 22.6
LR + Interp. 38.1 16.5 38.8 16.9 46.9 18.4
LR + SLR 46.3 20.1 48.1 20.6 60.6 26.1
LR + SLR×6 50.9 22.5 51.5 23.4 63.5 26.8

Table 1: Comparison of several data augmentation approaches for small object detection
with FPN, STDnet and CenterNet networks on the small object testing subset of UAVDT.
The training phase was conducted by simulating a low instance small object scenario —25%
of the UAVDT training videos.

than the number of LR objects.

We do not provide an ablation study on the influence of the different com-

ponents of the pipeline but DS-GAN, as the process would be incomplete —

without segmentation—, it would create incoherent scenes —without position

selecting—, or the generated synthetic small objects would have artifacts in the

background surroundings —without inpainting or blending.

Table 1 studies the influence of different data augmentation methods for a

scenario where the number of small objects for the training phase is reduced. So

that, the first row refers only to the use of real objects contained in the 25% of the

videos. The use of data augmentation with DS-GAN improves the performance

of FPN by 4.9% AP@[.5,.95]
𝑠 and 11.9% AP@.5

𝑠 , STDnet by 4.4% AP@[.5,.95]
𝑠 and

10.3% AP@.5
𝑠 , and CenterNet by 4.2% AP@[.5,.95]

𝑠 and 11.6% AP@.5
𝑠 —Table 1,

rows 1 and 4. It should be noted that the greatest influence is given by the nature

of synthetic objects. If they did not contain useful information for learning

the model, they would not improve the performance, or even worsen it, as

seen with the bilinear interpolation method in Table 1. The improvement from

data augmentation with objects re-scaled by bilinear interpolation to synthetic

objects generated by DS-GAN is of 3.6% AP@[.5,.95]
𝑠 and 8.2% AP@.5

𝑠 in FPN,

3.7% AP@[.5,.95]
𝑠 and 9.3% AP@.5

𝑠 in STDnet, and 7,7% AP@[.5,.95]
𝑠 and 13.7%

AP@.5
𝑠 in CenterNet —Table 1, rows 2 and 3.

Fig. 8 details the extended results for FPN and STDnet for the use of a

different percentage of videos in the training phase and, also, shows how AP

changes by increasing the number of SLR objects ×𝑛 in the training phase.
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These graphs are designed to show the improvement due to data augmenta-

tion for different percentages of training videos —with real LR objects. It is

possible to appreciate a great improvement in AP for those solutions based on

our data augmentation approach —the greater the number of SLR, the greater

the improvement— especially when the percentage of training videos is low.

As the percentage of training videos increases, the improvement is reduced, as

there are more real objects in the training set. From the use of 50% of the

videos onwards the AP shows a smaller improvement rate, so does the gain

by adding SLR objects. That is, when adding more training images with real

objects performance does not improve, and thus it is useless to try to use data

augmentation techniques.

As expected, as training examples increase, so does AP. However, as men-

tioned above, the improvement from 50% of videos is considerably lower, moving

from 25.9% AP@[.5,.95]
𝑠 for 50% of the videos to 26.8% AP@[.5,.95]

𝑠 for FPN and

the whole UAVDT training set (blue line, left). Similarly, the performance of

the trained model with data augmentation increases as objects are added, but

the gain over the baseline is lower above 50% of training videos. The same

conclusions can be drawn in the case of STDnet (blue line, right).

Moreover, the models are able to take advantage of the increasing number

of SLR objects until reaching a point where the progression stops —9× with

respect to LR objects. To synthesize new objects above SLR×3 requires to

triplicate the images and exchange the synthetic objects, because there are not

enough empty spots available where to insert SLR objects. This decreases the

context variability, and thus the performance improvement.

Finally, we want to highlight how the generated synthetic objects constantly

improve the performance even for the complete training set (100%), where they

improve AP@[.5,.95]
𝑠 . In contrast, the objects generated by bilinear interpolation

do not provide information, and even they harm the learning of the models

(green lines). This confirms the high quality of the synthetic dataset produced

by our pipeline for data augmentation for small object detection.

As qualitative results, Fig. 9 compares the synthetic objects coming from

27



Figure 9: Synthetic objects obtained by bilinear interpolation (left); synthetic objects gener-
ated by the DS-GAN (middle); and real LR objects (right).

Figure 10: Data augmentation for small objects examples from UAVDT training set provided
by our pipeline. From left to right and from top to bottom: standard real frame with LR
objects; LR objects replaced by SLR objects; SLR×2 objects; and SLR×3 objects.

a simple re-scaling function with those generated by the DS-GAN and with

the real LR objects. Objects obtained by simple re-scaling seem artificially

defined with blurry artefacts. Objects from DS-GAN look more closely to real

LR objects as they contain artefacts and are contaminated by low-resolution

small objects features. Fig. 10 displays the outcome of the complete pipeline

for different UAVDT scenarios.

AP@[.5,.95]
𝑠 AP@[.5,.95]

𝑚 AP@[.5,.95]
𝑙

AP@.5
𝑠 ST LV P S SP

LR 24.8 45.0 31.3 43.2 38.2 14.6 62.3 50.0 50.7
LR + SLR 27.4 47.1 31.1 47.9 41.8 16.6 70.4 51.5 58.9

Table 2: Results of FPN on iSAID. The training phase was conducted by simulating a
low instance small object scenario —real LR training subset. The results for the different
categories —storage tank (ST), large vehicle (LV), plane (P), ship (S), and swimming pool
(SP)— are for AP@.5

𝑠 .
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We have also tested the data augmentation pipeline on the iSAID dataset[19].

iSAID has 1,869 high-resolution aerial images with objects from 15 categories,

1,411 for training and 458 for testing. As the pipeline requires for training and

testing several subsets —a real HR subset, and a real LR training and testing

subsets—, we selected the categories with a sufficient number of objects in each

subset. The number of objects selected for training is about 15% of the total

number of annotated objects —6,628 objects for the LR subset and 1,405 for

the HR subset.

Table 2 shows the results for the FPN detector for our augmentation method

compared with the baseline on iSAID. The use of data augmentation with DS-

GAN improves the performance of FPN by 2.6% AP@[.5,.95]
𝑠 and 4.7% AP@.5

𝑠 .

Depending on the category, the AP@.5
𝑠 increases between 1.5 (ship) to 8.2 (swim-

ming pool). Moreover, DS-GAN does not harm the performance of large ob-

jects detection (AP@[.5,.95]
𝑙

), and even it improves the medium objects detection

(AP@[.5,.95]
𝑚 ) —as the larger small objects are close in size to the smaller medium

objects.

Even though the performance of DS-GAN is good on iSAID, it is not as

impressive as on UAVDT. We argue that there are two reasons for that. First,

iSAID is an image dataset, so the position selector of DS-GAN has less places

to insert synthetic objects in comparison with a video dataset like UAVDT.

The second reason is that iSAID contains aerial images that are taken much

further away and for objects much larger —the objects undergo a higher scale

change— than those of the videos of UAVDT, so the texture of the small objects

of UAVDT is much better than that of iSAID.

The runtimes for the generation of a dataset with synthetic objects ready to

be used for training an object detector are quite fast. The small object gener-

ation, which includes the execution of the GAN and the object segmentation,

creates 12.6 objects per second. The small object integration into the image,

which involves position selection, object inpainting and object blending, inserts

10.1 objects per second.
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5. Conclusions

We have designed a novel a pipeline for data augmentation for small object

detection. The pipeline takes a dataset as input and returns the same dataset

with the images populated with annotated small synthetic objects. The pro-

posed pipeline requires both HR and LR objects to train the DS-GAN and, also,

a trained object segmentation system for HR objects. The approaches based on

super-resolution through GANs also need both HR and LR objects for training

[21, 22, 23, 24]. However, our proposal has an advantage over super-resolution-

based approaches, as the GAN only has to be executed during the training stage

in order to generate the synthetic LR objects, so at inference time —small ob-

ject detection— only the object detector has to be run. On the other hand,

super-resolution-based pipelines require both the execution of the generator of

the GAN and the object detector at the inference stage.

The quality of small objects generated by DS-GAN has been validated in an

isolated way. Experiments show that the FID value for the SLR objects is very

close to the FID value for real LR objects, as opposed to the simple downsampled

objects, which have a very distant FID value. In addition, we reached the same

conclusion by training a standard CNN classifier. So that, we confirm that small

objects generated by DS-GAN boost small object classification. On the contrary,

the small objects generated by direct large objects re-scaling are useless for data

augmentation to recognise small objects, as the artefacts introduced by these

functions differ greatly from real-world small objects.

The proposed pipeline for data augmentation method improves the perfor-

mance of state-of-the-art models in the detection of small objects on both the

UAVDT and iSAID datasets. The results on the UAVDT test set show an im-

provement of 10.3-11.9 AP@.5
𝑠 , depending on the detector, in a scenario where

the number of training small objects is limited –only 25% of the videos are con-

sidered. For iSAID, the improvement is of 4.7 AP@.5
𝑠 for a scenario in which only

the 15% of objects were included in the LR subset. These results validate the

initial hypothesis that, when a dataset contains few small objects, the proposed
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data augmentation technique boosts the performance of the detector.
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