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Abstract—Python exhibits inferior performance relative to
traditional high performance computing (HPC) languages such
as C, C++, and Fortran. This performance gap is largely due
to Python’s interpreted nature and the Global Interpreter Lock
(GIL), which restricts multithreading efficiency. However, the
introduction of a GIL-free variant in the Python interpreter
opens the door to more effective exploitation of multithreading
parallelism in Python. Based on this important new feature,
we introduce OMP4Py with the aim of bringing OpenMP’s
familiar directive-based parallelization paradigm to Python. Its
dual-runtime architecture design combines the benefits of a
pure Python implementation with the performance and low-level
capabilities required to maximize efficiency in compute-intensive
tasks. In this way, OMP4Py offers both full Python support and
the high performance required by HPC workloads.

Index Terms—OpenMP, Python, Multithreading, Performance,
Scalability

I. INTRODUCTION

Python has become a leading programming language in
recent years [1]], valued for its ease of use, efficiency, and
clear syntax. However, Python still lags behind low-level
HPC (High Performance Computing) languages like C and
Fortran when it comes to achieving high performance, mainly
due to two key factors. First, since Python is an interpreted
language, it incurs substantial overhead from translating source
code into machine code at runtime. This drawback can be
partially addressed with Just-In-Time (JIT) compilers such as
Numba [2f], which convert Python functions into optimized
machine code on the fly using the LLVM compiler. This
method seeks to deliver performance close to that of C or
Fortran. However, Numba is particularly suited for numerical
tasks, so programs that involve heavy string processing, com-
plex data types, or significant input/output operations often do
not benefit much. The second issue is related to how Python
handles multithreading due to the existence of the Global
Interpreter Lock (GIL). The GIL is a locking mechanism
that restricts multiple threads from executing Python code
at the same time, as it controls access to Python objects. It
was initially introduced to simplify thread management and
to prevent race conditions and memory corruption, thereby
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making concurrent programming safer and more manageable
for developers. However, because only one thread can run
Python code at any given moment, multithreading is ineffective
for CPU-bound tasks, where performance benefits from true
parallelism are expected. In this sense, the GIL stands as the
primary barrier to efficiently using multi-core processors for
parallel execution in Python.

Various efforts have been made to improve multithreading
support in Python to mitigate the GIL issue, but key limitations
remain [3]. However, a more definitive solution has been
expected since the release of Python 3.13 in October 2024,
which introduced thread-safety and allowed Python code to run
without the GIL. In any case, this important feature does not
close the significant performance gap between an interpreted
language like Python and standard HPC compiled languages.
Other approaches to exploit multithreading in Python are based
on Numba, aiming to bypass the GIL while notably improving
Python code performance [4]], [S]. This comes at the expense
of important restrictions on the use of many libraries, as well
as certain Python objects and data structures.

To overcome these issues, we introduce OMP4Pyﬂ an
implementation of OpenMP [6] for Python. OpenMP is a
directive-based programming model widely recognized as the
standard for exploiting multithreading parallelism in HPC.
OMP4Py features a dual-runtime architecture, consisting of a
pure Python runtime and a native C-based runtime generated
using Cython [7]. This design combines the flexibility and
ease of use of Python with the performance benefits of native
execution, allowing OMP4Py to offer both full Python support
and high computational efficiency. Experimental results indi-
cate that OMP4Py performs well and scales effectively for
both numerical and non-numerical tasks. Moreover, it shows
promising potential for hybrid applications with mpidpy [8],
addressing both intra- and inter-node parallelism.

II. BACKGROUND & RELATED WORK
A. OpenMP

Originally created for shared-memory computer systems,
OpenMP [6] is a parallel programming model that aims to
simplify the use of inherent concurrency in many algorithms.

U1t is publicly available at https://github.com/citiususc/omp4py
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OpenMP primarily follows the fork-join model of parallel ex-
ecution. The program begins with a single initial thread in this
model. At parallel regions, the initial thread creates multiple
parallel threads that concurrently execute the assigned tasks.
The threads rejoin the original thread to continue running
the program sequentially after the parallel tasks are finished.
Programmers can avoid the manual handling of thread creation
and task assignment necessary by low-level approaches such
as pthreads in the POSIX library by using directives to instruct
the compiler to generate multithreaded code at a higher level
of abstraction. The OpenMP API is compatible with C/C++
and Fortran. Although initially designed for shared-memory
architectures, OpenMP has expanded its capabilities to support
heterogeneous computing as well. Since the introduction of
the target directive family, OpenMP has enabled offloading
computations to accelerators, such as GPUs, which often
employ distributed-memory models internally. This extension
allows OpenMP to be used in hybrid computing environments
where both shared- and distributed-memory paradigms coexist.
For this reason, OpenMP remains the standard for exploiting
multithreading capabilities of modern multi-core CPUs while
also enabling high-performance execution on heterogeneous
architectures.

The OpenMP API standard speciﬁcatiorE] started in 1997
(version 1.0), and it continues to evolve, with new constructs
and features being added over time. The latest release, version
6.0, was recently published in November 2024. However,
most OpenMP programmers typically use only a subset of
the OpenMP 3.0 specification released in 2008. This subset,
referred to as the OpenMP Common Core [9|, comprises the
21 most commonly utilized elements of OpenMP.

B. Advances in Python Multithreading

Python offers several parallelism approaches, each with no-
table limitations [3]]. A common one is the multiprocessing
library, which enables parallel execution by spawning subpro-
cesses, each with its own Python interpreter and GIL. Frame-
works like PyTorch [10], TensorFlow [[11]], and IgnisHPC [[12]]
use this model to parallelize tasks. However, inter-process
communication requires object serialization or shared memory,
adding overhead and complicating API design. Subprocesses
are also more resource-intensive to launch than threads, and
many C/C++ libraries support multithreading but not multi-
processing.

Another way to leverage parallelism in Python is through
multithreading in C extensions, where functions implemented
in C can internally use multiple threads. For instance, Intel’s
NumPy distribution parallelizes operations this way. This
method is effective for large computations but less so for many
small ones or operations involving Python code. Since calling
Python from C requires acquiring the GIL, even minimal
Python involvement can limit scalability.

In any case, as previously discussed, the primary limitation
to achieving true concurrency in multithreaded Python code is

Zhttps://www.openmp.org/specifications| [online, accessed Nov 3, 2025]

the GIL. Although there have been various attempts over the
years to remove it [[13[], [[14]], none of them were seriously con-
sidered for integration into the official Python interpreter until
recently [3]]. With the release of Python 3.13 in October 2024,
it is now possible to disable the GIL using the --disable-gil
build configuration flag. This option introduces the required
modifications to ensure that the interpreter is thread-safe. It
marks the beginning of a gradual transition toward making
the GIL disabled by default in future Python versions.

C. PyOMP, Numba and Cython

PyOMP [4], [3]] is an approach for introducing parallel
multithreading into Python, a prototype system that brings
partial support for the OpenMP API to Python programs.
PyOMP provides a set of compiler directives, runtime rou-
tines, and environment variables that instruct the compiler to
generate multithreaded code. PyOMP leverages this model by
integrating with Numba [2f], a JIT compiler that translates a
subset of Python code into efficient machine-level LLVM in-
structions. This translation allows PyOMP to bypass Python’s
GIL, thereby enabling true multithreaded execution. A key
aspect of PyOMP’s design is its reliance on NumPy arrays
for data handling. Since Numba operates on statically typed
data structures and compiles numerical functions to LLVM IR
(Intermediate Representation), any array-based computations
within a PyOMP-parallelized function must use NumPy arrays.
This makes PyOMP particularly suitable for numerical and
scientific computing workloads, where data is often already
structured in this format.

However, PyOMP inherits some of the limitations of Num-
ba. In particular, it struggles with Python’s dynamic features,
such as arbitrary function calls, object manipulation, and
flexible data structures like dictionaries or lists. These dynamic
behaviors are challenging to compile into efficient machine
code, limiting PyOMP’s applicability to programs that are
more static and computation-intensive. Because Python lacks
native syntax for compiler directives, PyOMP introduces a
Pythonic interface using the with statement to define OpenMP
constructs. For example, a parallel region in PyOMP is written
as ‘with openmp(”parallel”):’ a direct analogue to the
C/C++ directive ‘#pragma omp parallel’. This design choice
makes PyOMP more accessible to Python developers while
preserving the underlying OpenMP semantics. In its latest
version (v0.2.0, released in April 2025), PyOMP supports
approximately 90% of the OpenMP Common Core, with
notable omissions such as the nowait clause and the dynamic
scheduling policy in for loopsﬂ This new version introduces
support for some directives from more recent OpenMP stan-
dards, such as teams and target, with a focus on enabling
GPU offloading.

Cython [[7] is an optimizing static compiler that allows users
to write Python code with C-like performance by optionally
adding type declarations. It allows seamless interaction be-
tween Python and C/C++ code, making it ideal for speeding

3https://pyomp.readthedocs.io/en/latest/openmp.html [online, accessed Nov
3, 2025]
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up Python programs, wrapping C libraries, and building high-
performance Python extensions. Cython presents a powerful
alternative to Numba for cases where more compatibility is
needed. While a JIT compiler like Numba can only provide
significant performance improvements for certain workloads,
Cython offers near-complete support for Python, with only
minimal limitations. Cython optimizes the portions of code
that can benefit from static typing and low-level optimizations,
while leaving the rest of the code unaffected. In the worst
case, the performance of Python code remains unchanged.
This stands in contrast to Numba, where non-optimized code
cannot be mixed with optimized code within the same function
block. With Cython, however, developers have the flexibility
to use any Python library or module without restricting the
possibilities of the user, enabling the integration of both high-
performance, Cython-optimized sections and pure Python code
together. In the realm of numerical computing, Cython can
further enhance performance by leveraging Pythran [15] as
an additional backend for NumPy-based code. This allows
Cython to compete with Numba in terms of raw performance
while providing the user with the flexibility to fine-tune
their results. By optimizing the compilation process, Pythran
integration achieves even greater performance improvements
and offers users more control to tweak and optimize their code
for specific use cases, ensuring the best possible performance
in numerical computations.

III. OMP4PY

OMP4Py is a novel implementation of the OpenMP stan-
dard, specifically designed for Python. It fully covers the
specifications of version 3.(ﬂ and incorporates certain features
from newer standards such as declare reduction. The
OpenMP standard has historically provided support for C,
C++, and Fortran, which are compiled, low-level languages
that use directives for handling parallelism. These directives
are interpreted by the compiler before the code is compiled.
In C/C++, these commands begin with #pragma, while in
Fortran, they are indicated by the marker !$. The main goal of
OMP4Py is to introduce the well-known parallelization model
of OpenMP to Python, allowing Python programmers to create
parallel code with the same degree of control and flexibility
as they have in C, C++, or Fortran. It is important to note
that, as in standard OpenMP, incorrect usage of constructs
(e.g., placing barriers inside work-sharing constructs) may
lead to correctness issues such as deadlocks or data races,
and it remains the programmer’s responsibility to ensure
conforming usage of the API. OMP4Py attempts to adapt the
OpenMP model, ensuring that all code execution is handled
natively using Python threads with a fully integration with
Python’s libraries. OMP4Py integrates the core functionalities
of OpenMP into Python in the following ways:

o Parser: OMPA4Py lets Python users incorporate parallel
constructs into their code by adapting OpenMP’s directive-

4https://www.openmp.org/wp-content/uploads/spec30.pdf [online, accessed
Nov 3, 2025]

from omp4py import *

1
3 @omp
4 def pi(n):
5 w=1.0/n
6 pi_value = 0.0

with omp(”parallel for reduction(+:pi_value)"):
8 for i in range(n):
9 local = (i + 0.5) *w
10 pi_value += 4.0 / (1.0 + local * local)
11 return pi_value * w

13 print(pi(10000000))

Fig. 1. Example of a method for 7 calculation using OMP4Py.

based methodology. These directives instruct OMP4Py to
transform the code for parallel execution.

o Runtime: The runtime is responsible for implementing the
low-level routines generated by the parser, which define
the behavior of the corresponding OpenMP directives and
clauses. In addition, it provides a set of runtime library
functions, similar to those in OpenMP, that allow users to
obtain information about or control the parallel behavior of
their Python scripts (e.g., omp _get num_threads()).

A. Parser

Since Python lacks a preprocessor, we integrated OpenMP
directives directly into the language while following Pythonic
conventions. To do this, we defined an omp function that
mirrors OpenMP directives in C/C++ in both syntax and be-
havior. This function itself does nothing at runtime—it simply
serves as a container for OpenMP directives. For example, a
directive like ‘#pragma omp parallel num_ threads(2)’ is
written in Python with OMP4Py as ‘with omp("parallel
num_threads(2)"”):’. When used within structured blocks,
the directive is placed inside a with statement (similar to
PyOMP [5])); otherwise, it can appear as a standalone func-
tion call. Regardless of their placement, calls to the omp
function alone do not produce any effect. Consequently, we
must instruct the interpreter to transform the code accord-
ing to each directive before execution. This is done using
Python decorators. A decorator can modify the behavior of
a function or class in a clear and elegant manner. To enable
directive-based transformation, the target must be decorated
with @omp. Figure [I] shows an example of Python code for
the parallel calculation of 7 using OMP4Py. First, in line
3, the pi function is decorated with @omp, indicating that it
contains OpenMP directives that need to be processed. Next,
in line 7, a parallel region is started using ‘omp("parallel
for reduction(+:pi value)")’. This statement instructs
OMP4Py to parallelize the following for loop, where each
thread contributes to the reduction operation on pi value.
Finally, line 11 returns the computed value of .

Since Python is an interpreted language, it does not include
a compilation phase like lower-level languages that support
OpenMP. Thus, OpenMP code generation occurs when the
OMP4Py module is loaded. At this point, global definitions are
evaluated, including imports, variables, and decorated func-
tions or classes. When a decorator is applied, the interpreter
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calls it with the target object as an argument, replacing the
original with the transformed version. The @omp decorator
processes all directives within a function or class, producing
a new version with parallel behavior. It first uses the inspect
module to extract the source code, then constructs an abstract
syntax tree (AST) using Python’s ast module. This tree, which
is easy to analyze and modify, is traversed in order. Each
directive is parsed, validated, and transformed. If any errors
are detected, a SyntaxError is raised. Once processing is
complete, the modified AST is compiled and executed with
exec, and the decorated object replaces the original.

B. Runtime

The OMP4Py runtime, as previously mentioned, has two
main responsibilities. The first is implementing the runtime
API, which allows users to customize the execution environ-
ment and retrieve relevant information from it. This includes
functions for controlling the number of threads, scheduling
policies, and other execution details. The second objective is
to implement the low-level routines generated by the parser to
execute the corresponding OpenMP directives and clauses.

An early prototype of the OMP4Py runtime was developed
in pure Python [16], implementing all features using only
the language’s standard modules and without any external
dependencies. The experimental evaluation demonstrated that
this implementation has significant potential for non-numerical
workloads. However, the threading limitations of Python’s
interpreter (v3.13) hinder its scalability for numerical appli-
cations. It is important to consider that Python is still in the
early stages of multithreading support and, for example, does
not yet provide critical features such as atomic operations in its
public API. These operations are essential for ensuring thread
safety without relying on locks, and are therefore fundamental
in OpenMP for efficiently managing shared data between
threads. Although atomic operations are now part of the
interpreter’s internal implementation, they remain inaccessible
at the Python language level. On the other hand, another well-
known and important issue is the performance gap between
standard Python code and the machine code generated by
tools like Numba when using PyOMP. Although PyOMP
restricts the use of important Python features, as we mentioned
previously, it provides significantly reduced execution times in
numerical computations, a level of performance that cannot be
achieved with a runtime implemented purely in Python.

In this way, to overcome the above limitations, we introduce
a completely new version of OMP4Py. It relies on Cython
(see Section to generate a second native runtime, which
we call cruntime. A new pure Python runtime was designed
and implemented to enable efficient Cython code generation,
ensuring that cruntime could be effectively produced using
the Python runtime. From now on, we refer to the Python
runtime simply as runtime. This design allows us to combine
the benefits of pure Python code with the performance and
low-level capabilities required to maximize efficiency in com-
putational tasks. With both runtimes available, OMP4Py can
be executed in three different modes:

e Pure: User’s code makes calls only to the runtime written
entirely in Python.

o Hybrid: Defined as the default option, this mode replaces
the runtime with the cruntime, so that internal OpenMP
API operations are implemented using native code instead
of Python code.

o Compiled: This option uses the cruntime and also passes
the user’s code through Cython to generate native code. The
resulting code links directly to the cruntime, eliminating
Python interpreter overhead.

The execution mode can be selected passing different argu-
ments to the omp decorator and importing the corresponding
module. The execution flow can combine functions that use
Hybrid and Compiled modes, as both rely on the cruntime,
but they should not be mixed with the Pure mode. Each run-
time operates independently, and they do not share information
between them, which may lead to unexpected results.

As previously explained, the runtime module is a pure
Python implementation, while the cruntime module is a native
extension generated using Cython. The Python-based runtime
implements the full logic of OMP4Py, structured into high-
level modules that define the core logic and low-level modules
that handle common basic operations. The cruntime, on the
other hand, implements only the low-level modules to take
advantage of native code performance, while the remaining
logic modules are reused directly from the Python runtime.
The runtime is written in .py files, like any typical Python
module. In contrast, Cython introduces two special file types
to enable integration between Python and C: .pyx and .pxd.
The .pyx files contain the actual Cython implementation,
similar to .py files but with a superset of Python syntax
that enables easier static typing and direct calls to C-level
functions. The .pxd files act as interface or header files, like
C header files (.h), and are used to declare structures, types,
and functions that can be shared between multiple Cython
modules without Python overhead. These declarations help
separate the interface from the implementation and allow the
reuse and extension of C-level components across modules. To
avoid duplicating logic and reduce maintenance complexity,
as mentioned above, the cruntime reuses most of the code
from the runtime. Its strategy is structured as follows: for
each module, if the cruntime includes both a .pxd and a
corresponding . pyx file, the native module is created by com-
piling the .pyx file. However, if only a .pxd file is available
(declaring the expected interface) and no .pyx file exists,
the system automatically falls back to copying and using the
corresponding .py implementation from the runtime. In this
case, the Cython compiler leverages the native types declared
in the .pxd file to accelerate the Python code and generate
a native module. With this methodology, it is possible to
maintain a single implementation of the core logic and only
duplicate the low-level modules.

C. Parallel Directive

At the start of execution, a Python program using OMP4Py
begins with a single thread running the main program, just like
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any other Python script. According to the OpenMP standard,
this thread is known as the initial thread. OMP4Py initializes
the context for this initial thread upon the first call to any
function in its API. All threads in an OpenMP program are
associated with either an implicit or explicit parallel direc-
tive. The initial thread, and any other threads created outside
OpenMP constructs, such as those spawned using threading,
asyncio, concurrent.futures, or the multiprocessing
module, are not part of any OpenMP-created team by default.
These threads are implicitly part of a single-thread parallel
team that consists only of themselves. If one of these external
threads subsequently calls any function from the OMP4Py
API, a new OpenMP context will be created for that thread,
treating it as a new and independent initial thread. Each of
these threads can then use the full functionality of OMP4Py
independently. However, it is the programmer’s responsibility
to manage any concurrency or synchronization issues that
may arise when multiple initial threads are used in parallel.
Threads created within OpenMP via a parallel directive, by
contrast, are part of the team generated by that directive and
share the OpenMP context derived from the original thread
that executed the parallel directive. In OMP4Py, the context
is implemented as a task stack, where the first task is the
parallel region, and subsequent tasks are pushed onto the
stack as the thread processes OpenMP directives, and popped
as the directives complete. This context is stored locally
for each thread. In the runtime, it is stored using Python’s
threading.local, while in the cruntime, it is stored in a
variable marked with the C thread local modifier, which
ensures a separate instance of the variable for each thread, as
handled by the compiler. Both runtimes use the same class
structure to store task information. The runtime stores tasks
using Python classes defined for each directive, while the
cruntime uses C structs generated from those same classes via
Cython. This ensures consistency in how tasks are represented
across runtimes. However, since each runtime maintains its
own separate context, threads from one runtime are treated as
initial threads when used in the other.

The parallel directive allows a block of code to run con-
currently across multiple threads. When used, it creates a team
of threads, including the main thread, that execute the code
simultaneously. OpenMP supports nested parallelism, which
means threads can create new teams using nested parallel
directives. This feature must be explicitly enabled with the
omp set nested function. Even without explicitly defining
parallel regions, all OpenMP programs start within an implicit
single-threaded parallel context. This allows API functions
such as omp get num_threads to operate globally. Inside
a parallel block, variables declared within the block are local
to each thread. Variables defined before the block are shared
by default, which means all threads access the same value.
To give each thread its own independent copy, a variable can
be declared as private. These private copies start uninitialized
and are discarded after the parallel block ends, leaving the
original variable unchanged. To initialize private copies with
the original value, use the firstprivate clause.

def pi(n):
w=1.0/n
pi_value = 0.0
def __omp_parallel():
nonlocal pi_value
__omp_pi_value = @
for i in range(n):
8 local = (i + ©0.5) * w
9 __omp_pi_value += 4.0 / (1.0 + local * local)
10 try:
11 __omp.mutex_lock()
12 pi_value += __omp_pi_value

R Y I ST O,

13 except:
14 __omp.mutex_unlock()
15 __omp.parallel_run(__omp_parallel, ...)

Fig. 2. Code generated by OMP4Py for the pi function in Fig. [T} after
processing the parallel directive.

The implementation of the parallel directive requires
encapsulating the parallel code inside a function so that it
can be executed by multiple threads. To preserve consistency
with the original code, it is necessary to analyze how local
variables are used within the parallel block. Since the original
code is already inside a function, the generated parallel code
will be placed inside an inner function, which by default has
read access to all variables in the outer function. However, this
access is limited to reading; if a variable is modified within the
inner function, it must be explicitly declared as nonlocal so
that Python updates the variable in the outer function instead
of creating a new local instance.

Figure [2] shows the code generated by OMP4Py only for
the parallel directive presented in the example of Figure
It is important to note that, in code generation examples,
__omp refers to the runtime/cruntime module, and the
prefix _ omp_ is used for all internal OMP4Py symbols.
Generated names will include numerical suffixes to avoid nam-
ing collisions. Once transformed, the decorator and directives
are removed, as they are no longer necessary and must be
eliminated to prevent repeated processing. The example shows
that the code originally inside the parallel directive has been
moved into a function named __ omp _parallel. The variable
w (line 2) is only read and therefore does not require any spe-
cial handling. In contrast, pi _value (line 3) is modified inside
the block and must be declared as nonlocal. Furthermore,
because pi_value is part of a reduction clause (line 7, Figure
[T), the parser first creates a private copy of the variable, named
__omp_pi value, which replaces pi value within the
parallel function. Once the parallel code finishes, pi value is
updated using the private value ~ omp pi value (line 12)
inside a critical section protected by a mutex (lines 11 and 14).
Finally, the parallel execution by multiple threads is triggered
by the call to parallel run, which internally creates the
threads, assigns them a context, and starts the parallel task
by executing the ~_ omp parallel function. Both runtimes
create threads using Python’s threading module. Although
creating threads in C might seem more efficient, each thread in
both runtimes must call a Python API function to initialize its
Python stack before interacting with the interpreter. Therefore,
any potential benefit of creating them in C would be lost. The
parallel run function accepts additional arguments, which
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__omp_bounds = __omp.for_bounds([@, n ,1])
__omp.for_init(__omp_bounds, ...)
while __omp.for_next(__omp_bounds):
for i in range(__omp_bounds[@]
local = (i + 0.5) * w
6 __omp_pi_value += 4.0 / (1.0 + local * local)

omp_bounds[1]):

D =

woE W =

Fig. 3. Code generated by OMP4Py for the loop inside the pi function in
Fig.[I] after processing the for directive. The code replaces lines 7-9 in Fig. ]

have been omitted here for simplicity. For example, if the user
specifies the num_threads clause, the corresponding thread
count will be passed as a parameter to the function. Finally,
note that according to the OpenMP standard, runtimes do not
propagate exceptions thrown within parallel regions; they must
be caught and handled locally in each thread.

D. Worksharing Constructs

In OpenMP, efficient parallelism relies on how tasks are
distributed among threads. Rather than having each thread exe-
cute the same code, OpenMP provides work-sharing constructs
that allow developers to logically divide tasks. This mechanism
ensures that different threads contribute to the overall workload
without redundant computation. There are three primary forms
of work-sharing: for, sections, and single. Each serves
a distinct purpose: for distributes iterations across threads,
sections divides the program into separate code blocks
executed by different threads, and single ensures a particular
segment is executed by only one thread, avoiding duplicated
effort. The first thread to reach a work-sharing region can
begin its portion of the task immediately. However, unless
specified otherwise, it must wait until all other threads in
the team have arrived at the same region before continuing.
This synchronization is implicit and helps maintain program
correctness, particularly when subsequent operations depend
on the completion of shared tasks. If developers want to bypass
this implicit barrier and allow threads to proceed independently
once their task is done, they can use the nowait clause.

The for directive is widely used to parallelize loops
by distributing iterations among threads according to a se-
lected scheduling policy. These include static, which as-
signs chunks in advance in a round-robin fashion, dynamic,
where threads request chunks as they complete previous ones,
and guided, which uses decreasing chunk sizes to reduce
scheduling overhead. Other options like auto and runtime
allow the compiler or the execution environment to determine
the scheduling policy. To improve flexibility, developers can
also use additional clauses. For example, collapse enhances
parallelism in nested loops by combining them into a single
iteration space, while ordered allows specific sections within
a loop to maintain a defined execution order when necessary.

Figure [3| illustrates, as example, the code generated by
OMP4Py to implement the for directive shown in Figure [I]
Recall that  omp refers to the runtime/cruntime module,
and all internal OMP4Py identifiers use the =~ omp  prefix.
The for bounds (line 1) function initializes the loop bound-
aries by taking the start, end, and step values from the orig-

inal loop’s range function. Although Python’s range allows
these values to be omitted, all three are explicitly specified
here. This is important because, when using the collapse
clause, the triplets for all nested loops are also included. The
function performs initial computations, such as determining
the number of iterations, and generates the _ omp_bounds
array containing all relevant information. Note that this ap-
proach covers traditional range-based loops but does not
support Python list comprehensions, as they do not align
with the structured loop semantics required by OpenMP. The
next call, for init (line 2), is responsible for preparing the
parallel loop execution environment, creating the loop task and
adding it to each thread’s context. This function determines
how the iteration space is divided according to the scheduling
policy and prepares the initial chunk(s) for each thread. It
receives all relevant information from the clauses specified
in the directive and updates __ omp bounds accordingly to
reflect the parallel distribution. It is important to note that
___omp_bounds is not a shared variable among threads and
each thread maintains and updates its own independent copy.
The core of the loop is driven by for next (line 3), which
acts as a condition to continue iteration within the thread.
This function checks whether more work is available for the
current thread and updates the bounds if necessary. Inside the
while loop, the standard Python for loop iterates over the
subrange assigned to the thread, from _ omp bounds[@]
to _ omp_bounds[1], which represent the current chunk,
allowing independent execution of loop iterations.

Figure [3| also illustrates how OMP4Py strategically se-
lects the way it generates code for directives, highlighting
the performance advantages of the cruntime. To maintain
efficiency, the standard Python range function is preserved
instead of being replaced by a custom iterator or a generator
using yield, as range is a built-in function highly optimized
at the C level. All mathematical computations related to
workload distribution are offloaded to runtime-implemented
functions. This design allows cruntime to execute these
computations as native machine code. In particular, with the
help of Cython, the for bounds function generates a highly
efficient numeric array that stores the iteration boundaries.
This enables Python to simply read the required positions from
memory, minimizing overhead and keeping the control logic
lightweight and fast. On the other hand, unless the static
scheduler is used, threads must coordinate dynamically to
divide the work. The dynamic and guided scheduling policies
require sharing a counter that keeps track of the last assigned
iteration. The implementation of this mechanism is critical to
the overall performance of the scheduling policy and presents
several challenges. Thread communication is possible because
threads created by the same parallel directive share a queue for
exchanging information. Still, the threads must coordinate to
determine who creates the shared counter and how its updates
are managed. In the runtime, this coordination relies on a
shared mutex: to create or update the counter, threads must
acquire the mutex. In contrast, cruntime uses atomic opera-
tions, where counter creation is done with an atomic swap,
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1 @omp

2 def fibonacci(n):

3 if n<=1:

4 return n

5 fib1 = @

6 fib2 = @

7 with omp(“task”):

8 fib1 = fibonacci(n - 1)

9 with omp(“task"):
10 fib2 = fibonacci(n - 2)
11 omp(“taskwait")

12 return fib1l + fib2

13

14 @omp

15 def run(n):

16 with omp(“parallel”):
17 with omp("single”):
18 fibonacci(n)

Fig. 4. Example of Fibonacci number calculation using OMP4Py tasks.

and updates are performed using a fetch add operation.
This significantly boosts performance by enabling lock-free,
hardware-level synchronization, which is much more efficient.
The sections and single directives share a similar un-
derlying mechanism, as both are designed to assign specific
blocks of code to individual threads. Conceptually, single
can be viewed as a special case of sections with only
one section. In practice, the implementation of sections
resembles that of a parallel for loop using a shared counter,
similar to the one used in the dynamic scheduling policy,
to manage work distribution. Each section is associated with
a unique sequence ID, which is a fixed integer assigned in
the order the sections appear in the code. At runtime, a
shared counter is incremented by the threads. Each thread then
compares the current counter value to the sequence ID of each
section. If the values match, the thread executes that section.
This approach ensures that each section is executed exactly
once by a single thread, avoiding conflicts or duplication.

E. Tasking Directive

Tasking in OpenMP offers a powerful and adaptive approach
for parallelizing workloads that are irregular, dynamic, or not
easily divisible upfront. The task directive defines individual
units of work, called tasks, which can be picked up and
executed by any thread in the current team. When a thread
encounters a task directive, it packages the enclosed code
and its context into a task object. These tasks are not executed
immediately; instead, they are usually placed in a shared task
queue. Threads dynamically pull tasks from this queue as they
become idle, ensuring efficient resource use. Task execution
can be synchronized explicitly with the taskwait directive
or implicitly through the runtime’s scheduling. Regardless of
timing, all tasks complete before the team of threads finishes
its execution scope.

Figure |4] presents a recursive implementation of Fibonacci
number calculation using the tasking model. In this example,
each recursive call to fibonacci(n-1) and fibonacci(n-2)
(lines 8 and 10) is wrapped in a task directive, allowing to
create two separate tasks that can be executed in parallel
by any available thread in the team. Because the function is
recursive, this task creation process repeats at each level of

the call stack, potentially generating a large number of fine-
grained tasks. This pattern showcases how tasking can be used
to exploit parallelism in divide-and-conquer algorithms, where
the workload naturally branches out into smaller subproblems.
The implementation of the task directive follows the same
structural approach as parallel, encapsulating the task body
inside an inner function so it can be scheduled for execution by
any thread in the team. Variable scoping is handled in the same
way, and in the example, fib1 and fib2 are shared variables
used to store the results of the tasks. The generated code is
functionally equivalent to that shown in Figure [2] with the call
to parallel run replaced by a call to task submit. This
function places the task into a shared queue, accessible to all
threads within the team. Meanwhile, the taskwait directive
is translated into a call to the task wait function, which
starts retrieving tasks from the queue. Each retrieved task
can be in one of three possible states: free, in-progress,
or completed. If the task is free, the thread marks it as
in-progress and begins execution. Once the task finishes, it
is marked as completed. If the task is already in-progress,
another thread is executing it, so the current thread skips it and
checks for other tasks. When no more tasks are available, the
thread waits until all in-progress tasks finish, ensuring that
all direct child tasks have been completed before continuing.

The shared task queue is created by the parallel directive
and implemented as a linked list, where each node represents
a task and stores its execution state, a completion event, the
task function itself, and a next-reference. The completion event
allows threads to wait for a task to finish, which is essential
for implementing the taskwait directive. In the runtime,
this is handled using Python’s threading.Event. Although
interpreters with free-threading support implement this object
using atomic variables, the cruntime bypasses Python code
entirely by interfacing directly with PyEvent, the internal
implementation underlying threading.Event, in order to
eliminate the overhead associated with the Python object.
Another key difference lies in task enqueuing: the runtime
uses a mutex to update the next-reference for thread safety,
while the cruntime relies on the atomic compare exchange
operation to update the reference without locking.

Finally, the task scheduling policy in OpenMP is closely
tied to its implicit barrier semantics, ensuring synchronization
among threads. As discussed earlier, several directives intro-
duce an implicit barrier at the end, requiring all threads to wait
until the team reaches the same point. Rather than remaining
idle, OpenMP allows threads to consume pending tasks from
the shared queue during this wait. Internally, the barrier uses
an event-based mechanism: each thread waits on an event, and
the last thread to arrive signals it, allowing all to proceed. If
new tasks are submitted while some threads wait at the barrier,
they are reawakened to execute the work. Once the queue is
empty and all tasks are complete, threads resume waiting if the
team has not fully reached the barrier. In Figure ] the single
directive (line 17) introduces an implicit barrier. As the thread
executing the block begins generating tasks, the other threads,
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initially waiting for the directive to complete, are reactivated
and start consuming the newly submitted tasks.

F API

The OMP4Py API is composed of OpenMP-style runtime
library functions and the omp decorator, which drives the code
transformation process. To use the API, users should begin
by importing the omp4py module. Upon import, the module
attempts to load the compiled cruntime backend if available,
Hybrid mode; otherwise, it defaults to the Python runtime,
Pure mode. The cruntime is included when OMP4Py is
installed via pip, but it may be unavailable if the library
is obtained from source or run on platforms that lack a
compatible compiled extension. If you explicitly wish to use
the Python runtime, you can import omp4py.pure, which
ensures that only the Python-level implementation is used.

Any function or class that uses directives must be annotated
with the omp decorator. While the decorator automatically
parses and transforms code, it also accepts optional argu-
ments to customize its behavior. For example, cache enables
reuse of transformed code by storing .py and .pyc files.
dump outputs the transformed source for inspection. debug
shows transformation-time debug information. compile uses
Cython to generate native code, always caching the result.
force disables caching by reprocessing on every run and,
finally, options allows additional flags for the parser or
compiler (e.g., cython cdivision = True enables Cython’s
cdivision optimization). Default argument values can be set
via environment variables using the prefix OMP4PY  followed
by the parameter name in uppercase.

Finally, when we select the Compiled mode, @omp (compile
= True), we can improve performance by explicitly specifying
the native types of numeric variables. In particular, annotating
variable declarations with Python’s built-in types int and
float allows for straightforward type annotations without
dealing directly with Cython’s low-level details.

IV. EXPERIMENTAL RESULTS

Next, we evaluate the performance and scalability of dif-
ferent Python applications parallelized using OMP4Py. We
consider all four OMP4Py execution modes: Pure, Hybrid,
Compiled, and compiled with data type annotations (i.e.,
explicitly specifying int or float for numeric variables).
For simplicity, we refer to the latter as CompiledDT. For
comparison, we also include performance results from Py-
OMP, a Numba-based OpenMP prototype. Experiments were
conducted on a server with a 32-core Intel Xeon Ice Lake
8352Y @2.2GHz processor and 256 GB of RAM. Hardware
threads (Intel’s Hyper-Threading) are disabled on the server.
The software used was Python 3.14b1 (without GILﬂ Cython
v3.1.0, NumPy v2.2.5, mpidpy v4.0.3, NetworkX v3.4.2, and

5 According to PEP 779 (https://peps.python.org/pep-0779, June 2025), the
no-GIL build of Python 3.14 is now a supported feature and is considered
functionally correct. The PEP identifies remaining concerns primarily in
performance and memory, not correctness. In our tests with Python 3.14bl,
we found no issues, and results matched those from a GIL-enabled interpreter.

TABLE I
STATIC CHARACTERISTICS OF EVALUATED BENCHMARKS.

OpenMP Features Synchronization

St parallel, for Implicit barriers
Jjacobi parallel, for reduction(+), single Explicit barrier
lu parallel, multiple for loops, single Implicit barriers
md parallel reduction(+) with inner for, Implicit barriers

parallel for

pi parallel for reduction(+) Implicit barriers
gsort parallel, single, task with if clause Implicit barriers
bfs parallel, single, task Implicit barriers

PyOMP v0.2.0 (April 2025). Running times were averaged
over 10 measurements for each test.

A. Numerical Algorithms

We have selected seven algorithms that represent different
types of numerical application patterns to evaluate the perfor-
mance and scalability of OMP4Py. In particular:

o Fast Fourier Transform (fft). The algorithm efficiently com-
putes the Discrete Fourier Transform (DFT) of a sequence,
converting a signal from the time domain to the frequency
domain. Performance tests used a complex data vector of
16 million numbers.

e Jacobi method (jacobi). The iterative algorithm solves sys-
tems of linear equations A -z = b, where A is a matrix and
x, b are vectors. Each iteration updates the solution using
values from the previous iteration. A 3k x 3k square matrix
A was used, with up to 1,000 iterations and a stopping
criterion of 1 x 1079 error tolerance.

o LU decomposition (lu). This method factors a matrix A into
a lower triangular matrix L and an upper triangular matrix
U, such that A = L - U. LU decomposition simplifies
solving linear systems, matrix inversion, and determinant
calculation. We applied it to a 2k x 2k square matrix.

o Molecular dynamics simulation (md). The simulation stud-
ied particle motion over time using the velocity Verlet
integration scheme to update positions, velocities, and ac-
celerations. We simulated 8,000 particles interacting via a
central pair potential.

e Riemann integration (pi). The area under the curve y =
ﬁ from O to 1 approximates . We estimated this integral
using numerical summation with 20 billion intervals.

o Quicksort (gsort). This algorithm recursively partitions an
array around a pivot element, sorting elements into lower
and higher subarrays. We applied it to an array of 400
million floating-point numbers.

o Pathfinding (bfs). Solved via breadth-first search on a 2.1k x
2.1k grid (entrance at the top-left, exit at the bottom-right).
Zeros are paths and ones are walls; moves are allowed only
between O-cells, and each feasible move spawns a task.

Table [I] displays a summary of the static characteristics
of the benchmarks. All the source codes can be found in
the OMP4Py repository. Figure [5] shows the execution times
of the different parallel benchmarks using between 1 and
32 threads, considering all OMP4Py execution modes: Pure,
Hybrid, Compiled, and CompiledDT. Results show that the
scalability of the Pure Python implementation is limited. For
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Fig. 5. Scalability of the parallel numerical applications. Axis in log scale.

instance, using 16 threads is beneficial in only a few cases.
The maximum speedup, calculated as the ratio of sequential
to parallel execution time, is 3.6 with the jacobi application.
These results demonstrate that the current version of the
Python interpreter (v3.14bl) still lacks mature support for
multithreading, with several unresolved implementation issues
that hinder its efficient use. In particular, as of September
2025, Python developers are dealing with more than 80 open
issues labeled under the free-threading topic, half of which
are bugs. While this new version is an important step forward
compared to V3.13E], it still limits the use of the OMP4Py
Pure implementation to a few number of threads when running
compute-intensive applications. However, it is important to
highlight that as these issues in the Python interpreter are
progressively resolved, the scalability limitations will grad-
ually disappear without requiring any modifications to its
implementation.

Performance differences between the Pure and Hybrid ver-
sions are generally very small but consistently favor the Hybrid
mode. The advantage is more pronounced for jacobi, gsort
and bfs, due to the specific characteristics of each benchmark:
Jjacobi performs iterative calls to the single directive, while
gsort and bfs exploits fine-grained task parallelism. In both
cases, the Hybrid implementation benefits from the cruntime
optimizations, which avoid mutex locks and instead rely on
faster atomic operations for synchronization.

Regarding OMP4Py’s Compiled mode, it outperforms the
Pure and Hybrid versions in all cases considered. For example,
when using 32 threads, it is on average 2.5x faster than the
Pure implementation. Additionally, this version shows a clear
improvement in scalability, with speedups of up to 10.6x ob-
served at 32 threads. This improvement is due to optimizations
introduced through Cython compilation of user code, which
is executed as native C code rather than interpreted Python.
However, the performance gains are not huge compared to the

%Due to page limitations, results with Python v3.13 are not included;
however, its scalability is worse than that of v3.14bl.

Pure and Hybrid versions. This is because Cython, by default,
is conservative in type inference and assumes generic Python
objects unless data types are manually annotated, resulting
in additional overhead from Python’s dynamic type system,
including reference counting and boxed arithmetic.

On the other hand, execution times using the CompiledDT
mode are significantly faster than those of the other OMP4Py
modes. Notably, performance differences can reach up to
three orders of magnitude. For instance, using 32 threads, the
CompiledDT mode is on average 785x faster than the pure
Python implementation across all applications. This dramatic
improvement is due to the use of explicit native data types
in performance-critical sections of the code. As previously
commented, Cython is conservative with type inference and
assumes generic Python objects unless instructed otherwise.
This leads to additional overhead from Python’s dynamic type
system. In CompiledDT mode, data types such as integers
and floating-point variables are explicitly declared using C-
native types, allowing Cython to generate highly optimized
machine code. This eliminates the cost of dynamic dispatch
and enables tight, low-level numerical loops that rival the
performance of hand-written C code. Scalability is also good,
with execution times decreasing up to 32 threads, except for
the jacobi application. The average speedup with 32 threads
is 10.1x, with a maximum of 16.2x for the gsort application.

Finally, the performance comparison with PyOMP shows
that OMP4Py (CompiledDT mode) offers slightly better over-
all performance in terms of both execution times and scalabil-
ity. For example, excluding gsort, the average speedup with
32 threads is 9.9x for PyOMP, which means that OMP4Py
achieves approximately 4.5% better performance on average.
Note that the gsort application cannot be implemented in
PyOMP, as it relies on a parallel recursive algorithm using
OpenMP tasks with the if clause, which is not supported in
the current version of PyOMP. For bfs, an error is raised during
execution of the PyOMP code related to Numba.

B. Limitations of PyOMP

As previously mentioned, PyYOMP is a fork of the Numba
project. The njit decorator in Numba improves performance
by compiling Python functions into machine code, but it
also introduces important limitations. It restricts the use of
functions from libraries that are not optimized for Numba,
as well as certain Python objects and data structures. Only
specific libraries, such as math and NumPy, are supported and
their functions can be used within @njit-compiled functions.
In contrast, OMP4Py is explicitly designed to fully support
Python language and its libraries, including those that may
not be compatible with Numba’s restrictions. To demonstrate
the benefits of this full Python support, we have implemented
two applications as illustrative examples:

o Clustering coefficient. The clustering coefficient of a node
in an unweighted, undirected graph is the fraction of pos-
sible triangles through that node that actually exist. This
application computes the clustering coefficient for each node
in the graph. We used a 300k-node graph with 100 edges

342



Clustering coefficient

—&— OMP4Py - Pure

—£— OMP4Py - Hybrid
OMP4Py - Compiled

—6— OMP4Py - CompiledDT

Time (sec)

1 2 16 32

4 8
Threads

n

& Wordcount

Time (sec)

1 2 4 8
Threads

Fig. 6. Scalability of the clustering coefficient and wordcount applications.
Axis in log scale.

O Pure-Static O Hybrid-Static /A~ CompiledDT-Static
O Pure-Dynamic 1 Hybrid-Dynamic ~ Z\  CompiledDT-Dynamic
O Pure-Guided I Hybrid-Guided /A CompiledDT-Guided

Clustering coefficient & 15 | Wordcount VY

——s o o |

1 2 4 8 16 32
Threads

Threads

Fig. 7. Speedups using different scheduling policies of the clustering
coefficient and wordcount applications. X axe in log scale.

per node, generated and processed using NetworkX [17].
PyOMP cannot run this benchmark because Numba cannot
compile NetworkX’s Graph object and related functions.

o Wordcount. 1t is performed using as input the Spanish
Wikipedia dump as of May 2025 (21 GB). The latest version
of PyOMP (April 2025) is still based on an older release of
Numba and lacks support for compiling Python dictionaries,
which are required for this benchmark.

Figure [6] shows the execution times for the above applica-
tions. First, observe that the scalability of the clustering coef-
ficient calculation is similar across all OMP4Py modes. Com-
piled modes offer no significant advantage because Cython’s
optimization capabilities are limited to the portions of the
code interacting directly with the NetworkX external library.
The remaining computations are handled by NetworkX it-
self, which means optimization beyond the function call is
not possible. On the other hand, the wordcount benchmark
shows slight improvements with the cruntime-based modes.
However, these gains are limited because wordcount primarily
involves string and dictionary operations, which Cython cannot
optimize effectively. In any case, both applications scale with
the number of threads, achieving an average speedup of
approximately 5x and 10x with 32 threads, respectively.

Unlike OMP4Py, PyOMP only supports the static
scheduling policy. To broaden the evaluation, we include
results with the dynamic and guided policies in Figure [/ (see
Section [II-D). Chunk size is 300. Speedups are calculated
with respect to the Pure execution time using one thread and
static scheduling. The results show the good performance of
dynamic scheduling, particularly for wordcount, where load
imbalance is more pronounced. In contrast, guided scheduling
performs worse than the other policies, especially in the Pure

jacobi MP1+OpenMP

——OMP4Py - Pure OMP4Py - Compiled
—£— OMP4Py - Hybrid —5—~OMP4Py - CompiledDT

Times (sec)

| —e

m TT—— 3

1x16 2x16 4x16 8x16
nodes x threads

16x16

Fig. 8. Scalability of the jacobi hybrid MPI/OpenMP application using
different number of computing nodes (16 threads per node). Axis in log scale.

mode, which does not scale effectively. We also vary the chunk
size. With a chunk half the original size (150), we observe a
slight time reduction for wordcount in Pure mode, while the
other cases become slightly slower compared to Figure[/} With
a doubled chunk (600), there are no noticeable changes, except
for wordcount in Pure mode, where times worsen.

C. Hybrid MPI/OpenMP Parallel Applications

A key feature of OMP4Py is its ability to combine with
mpidpy [8] to implement hybrid parallel applications exploit-
ing intra- and inter-node parallelism. The mpidpy package
provides Python bindings for the MPI standard [18], the
dominant HPC programming model. Although mpidpy is a
Python interface to the MPI C library, Numba cannot use MPI
within its functions because it treats mpidpy as an external
library. Numba compiles only Python code and does not
integrate external libraries like MPI, so it cannot translate
mpidpy calls into native code. As a result, PyOMP cannot
be combined with mpi4py.

As a case study, we implemented a hybrid MPI/OpenMP
version of the Jacobi method for solving Az = b as described
in Section [V-Al MPI distributes the matrix A and vector b
across processors, each responsible for a subset of rows and
elements. Within each iteration, processors update x using
OpenMP based on their local data. The updated vector x
is exchanged using MPI Allgather to maintain consistency
across processors. Convergence is monitored by computing
the global error, with MPI _Allreduce used to evaluate the
stopping criterion.

Figure [§] illustrates the scalability of the hybrid jacobi
application across different numbers of nodes. Note that the
CompiledDT version used a 20k x 20k matrix as input, while
the other modes used a 3k x 3k matrix, to demonstrate
scalability with increasing node counts. The application scales
in all OMP4Py modes, with the Compiled modes achieving
the highest performance. For example, speedups over single-
node performance of 1.6, 3%, 5.2%, and 8.6 x were observed
with CompiledDT on 2, 4, 8, and 16 nodes, respectively.
Note that there is some overhead in the Compiled modes,
as MPI functions must be invoked from Python after each
iteration to synchronize the result array. However, although
mpidpy is a Python library, it interfaces with a C-based MPI
implementation that can directly access NumPy arrays at the
memory level, thereby limiting the impact of this overhead.
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V. CHALLENGES IN EXTENDING OPENMP SUPPORT

Although OMP4Py primarily targets OpenMP 3.0, its devel-
opment was guided by later specifications, including the 6.0
draft. Accordingly, it selectively incorporates improvements
that enhanced functionality or were straightforward to imple-
ment. For example, the default clause supports all variants
(shared, none, private, firstprivate), even though only the first
two were in 3.0. Custom reductions via declare reduction
(introduced in 4.0) are included, as are minor extensions
such as the optional argument in nowait. Finally, while full
OpenMP 6.0 functionality is not implemented, the OMP4Py
parser supports its complete syntax (e.g., spaces or underscores
in combined directives, semicolons separating clauses, direc-
tive names within clauses), easing future extensions.

While OMP4Py already incorporates selected improvements
beyond OpenMP 3.0, extending full support to the latest stan-
dard introduces non-trivial challenges due to both the increased
complexity of directives and clauses and the larger number
of constructs. Some directives, such as teams or taskloop,
are relatively straightforward since their semantics build on
existing constructs and do not introduce new conceptual or
architectural difficulties. The main effort in their inclusion lies
in the development time required to implement the necessary
transformations and runtime support.

On the other hand, other constructs introduce more sig-
nificant challenges, particularly task dependencies added in
OpenMP 4.0. In version 3.0, tasks are managed with an
optimized queue based on the producer—consumer pattern;
supporting dependencies would require replacing this queue
with a dependency graph and implementing a scheduling
policy to ensure tasks execute only after their dependencies
are satisfied. Although this problem is well studied in other
OpenMP implementations, the main difficulty in OMP4Py
lies in how dependencies are defined: the standard relies on
variables marked as in or out. In low-level languages this
can be handled through memory addresses, but in Python this
approach is infeasible. Variable names might work within a
single function if no duplication occurs, yet full compliance
with the standard demands a more robust mechanism. Using
Python’s id function is a possible first step, but it fails for
immutable objects with identical values, leaving support for
task dependencies as a major challenge for future work.

The second major challenge concerns the features intro-
duced in recent OpenMP standards to support accelerators and
heterogeneous computing. These standards define the concept
of a device—a computational unit separate from the host CPU,
such as a GPU, FPGA, or other specialized processor. Device
programming requires mechanisms to offload code and data,
manage memory transfers efficiently, and ensure synchroniza-
tion between host and device. Extending these capabilities
to Python raises additional difficulties. The runtime must be
extended to detect and manage devices: whereas current func-
tions execute only on the CPU, they must behave consistently
across devices and maintain device-specific information, with
parts of the runtime able to run on the accelerator. User code

presents further challenges, since Python must be translated
or compiled into code executable on the target accelerator,
much like C requires a CUDA-capable compiler to run on
NVIDIA GPUs. This can be achieved either through tools that
generate device-compatible binaries or through interpreters
capable of executing directly on the accelerator. In the current
implementation, Cython is used to compile both the runtime
and user code, and when combined with Numba, these tools
provide a promising foundation for robust device support while
preserving Python’s high-level abstractions.

Finally, new constructs for memory allocation and vector-
ization are of low importance to most Python users, who
prefer abstraction from low-level memory and vectorization
details. Python already offers high-level libraries like NumPy
with efficient internal vectorization. If OMP4Py supports these
constructs, the practical path is to delegate them to such
libraries by translating user operations into library calls, allow-
ing compliance with the OpenMP standard while leveraging
optimized Python implementations and minimizing direct low-
level handling.

VI. CONCLUSIONS

We have presented OMP4Py, which brings OpenMP’s
directive-based parallelization paradigm to Python. It fully
supports the complete OpenMP 3.0 API and includes selected
directives from later versions, but it does not provide features
such as accelerator offloading, full tasking, or advanced syn-
chronization from newer standards. Its goal is two-fold: to
reduce the performance gap caused by Python’s interpreted
nature, and to take advantage of GIL-free Python interpreters
for efficient multithreading. To this end, OMP4Py employs a
dual-runtime architecture, consisting of a pure Python runtime
and a native C-based runtime generated using Cython. As
a result, OMP4Py supports three modes of operation: Pure,
using the Python-only runtime; Hybrid, using the native C-
based runtime; and Compiled, which also uses the C-based
runtime but compiles user code with Cython for maximum
performance. There is also a variant of the Compiled mode
that includes explicit numerical data type annotations.

Experimental results show that the scalability of the Pure
implementation is limited when running numerical applica-
tions. Hybrid mode consistently outperforms Pure, though
with modest gains, due to native runtime optimizations. The
Compiled mode offers further improvements in execution
time and scalability through Cython-based compilation, but its
benefits are limited by default type inference. In contrast, the
Compiled mode with explicit native data types achieves sig-
nificantly higher performance and scalability, reducing Python
runtime overhead by up to three orders of magnitude. On
the other hand, this version delivers slightly better overall
execution times and scalability than the Numba-based PyOMP
tool. Additionally, unlike PyOMP, OMP4Py fully supports the
Python language and its libraries, allowing it, for example, to
be combined with mpidpy to build hybrid applications that
exploit both intra- and inter-node parallelism.

Additional data related to this paper may be found in [[19].
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ARTIFACT APPENDIX

This artifact contains the source code of OMP4Py, all
benchmark programs used in the evaluation, and the scripts
to reproduce the results presented in the paper. We provide
an automated script to run each experiment and generate the
corresponding results for both OMP4Py and PyOMP. Each
framework is preconfigured in a dedicated Docker image,
ensuring full reproducibility and simplifying the setup across
different systems.

A. Artifact Check-List (Meta-Information)

o Algorithm: OpenMP-style parallel loop scheduling, work-sharing,
and reduction mechanisms.

o Program: OMP4Py (Python package).

« Compilation: Python bytecode (no native compilation required).

« Transformations: Source-to-source parallel transformation using
decorators.

« Binary: Not applicable.

e Model: Shared-memory parallel execution model.

o Data set: Synthetic data generated from a fixed seed and
Spanish Wikipedia for Wordcount (https://dumps.wikimedia.org/
eswiki/latest/eswiki-latest-pages-articles.xml.bz2)

« Run-time environment: Python 3.14bl free-threading

Hardware: Multi-core CPU (reference hardware: 32-core Intel

Xeon Ice Lake 8352Y @ 2.2GHz)

Run-time state: Deterministic with configurable random seed

Execution: Command-line with Python benchmark main script

Metrics: Execution time and speedup

Output: Execution time and benchmark result

Experiments: Numerical algorithms : Fast Fourier Transform

(fft), Jacobi method (jacobi), LU decomposition (lu), Molecular

dynamics simulation (md), Riemann integration (pi), Quicksort

(gsort) and Pathfinding (bfs). Non-Numerical algorithms: Cluster-

ing coefficient and Wordcount

« How much disk space required (approximately)?: Minimal disk
usage; computations are performed entirely in memory.

« How much time is needed to prepare workflow (approxi-
mately)?: 1-2 minutes.

« How much time is needed to complete experiments (approxi-

mately)?: Note that with the default sizes, all the experiments

together may take many hours to complete. For example, the
sequential run for one execution mode of the longest benchmark
alone takes about two hours on the reference hardware.

Publicly available?: Yes, https://github.com/citiususc/omp4py

Code licenses (if publicly available)?: GPL-3.0 license

Data licenses (if publicly available)?: Not applicable.

Workflow automation framework used?: Not applicable.

Archived (provide DOI)?: https://doi.org/10.5281/zenodo.

17987713

B. Description

1) How to Access: OMPA4Py is publicly available and can
be installed on any Python 3.12 and later, which include
the Global Interpreter Lock (GIL). However, to fully exploit
multithreading for scaling applications, it is necessary to use
Python 3.13 (free-threading) or later, which offers a no-GIL
option. The source code, all benchmarks, and installation
instructions are hosted in the GitHub repository:

https://github.com/citiususc/omp4py

In particular, all benchmark scripts used in the paper are
provided in the examples/ directory.

In addition, we provide two preconfigured Docker images
that include all dependencies and benchmarks, allowing users
to run experiments without additional setup.

2) Software Dependencies: As mentioned, when using the
Docker images, all software dependencies required to run
OMP4Py and every benchmark included in the artifact are
already installed and preconfigured inside the container. This
ensures a fully isolated and reproducible environment without
requiring any additional setup from the user. For users wishing
to run OMP4Py directly on a local machine (outside Docker),
it is important to remember that a free-threading Python
interpreter (Python 3.13+ with no-GIL support) must be used;
otherwise, the code will execute sequentially regardless of
the number of threads specified. The core package does not
require any mandatory dependencies. However, to enable the
Compiled and CompiledDT execution modes, it is necessary
to have both Cython and setuptools installed in the system,
since these modes rely on the generation and compilation of
C extensions.

C. Installation

To install only OMP4Py, users can clone the repository and
install it manually:
git clone https://github.com/citiususc/omp4py.git

cd omp4py
pip install .

However, the simplest approach is to use the Poetry pack-
age manager from the examples/ folder that automatically
install locally OMP4Py, the benchmarks and all dependencies
required:
pip install poetry
poetry env use <python_binary>

poetry install --no-root
eval $(poetry env activate)

In addition, we provide two preconfigured Docker images
to simplify reproducibility:
o OMP4Py: Python 3.14b1 free-threading, available as
cesarpomar/omp4py
« PyOMP: Python 3.10 (maximum supported version),
available as cesarpomar/pyomp

D. Experiment Workflow

All tests can be executed locally using the following com-
mand syntax:

python3 examples/main.py <mode> <test> <threads> [args...]

Where the parameters are defined as follows:

« mode: execution mode: 0 — Pure (OMP4Py), 1 — Hybrid
(OMP4Py), 2 — Compiled (OMP4Py), 3 — Compiled with
data types (OMP4Py), and -1 — PyOMP.

« test: Benchmark to run. Available tests include numerical
applications—fft (Fast Fourier Transform), jacobi (Ja-
cobi method), 1ud (LU decomposition), maze (pathfind-
ing, BFS), md (molecular dynamics simulation), pi (Rie-
mann integration), and gsort (Quicksort)—and non-
numerical applications—wordcount (word count) and
graphc (clustering coefficient).
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o threads: number of threads to use for the execution
« args: optional arguments to modify the problem size; by
default, the problem size corresponds to the values used
in the article for reproducibility.
Using the provided Docker images, the corresponding com-
mands are:

e OMP4Py: docker run
/omp4py/examples/main.py [0-3] <test> <threads>
« PyOMP:

/omp4py/examples/main.py -1 <test> <threads>

--rm cesarpomar/omp4py python3

docker run --rm cesarpomar/pyomp python3

E. Evaluation and Expected Results

The performance evaluation consists of running each bench-
mark while varying the number of threads within the same
execution mode. For example, to illustrate how to obtain
execution times and compare performance between OMP4Py
in Compiled with data types (CompiledDT) mode (mode 3)
and PyOMP, we provide the following example using the pi
benchmark. The commands below execute the benchmark with
2 and 4 threads for both frameworks using the Docker images:

docker run --rm cesarpomar/omp4py python3 /omp4py/examples

/main.py 3 pi 2

docker run --rm cesarpomar/omp4py python3 /omp4py/examples
/main.py 3 pi 4

docker run --rm cesarpomar/pyomp python3 /omp4py/examples/
main.py -1 pi 2

docker run --rm cesarpomar/pyomp python3 /omp4py/examples/
main.py -1 pi 4

To simplify the reproduction of the full experimental eval-
uation presented in the paper, both Docker images include
an automated script that runs all thread configurations for
a given benchmark (1, 2, 4, 8, 16, and 32 threads) across all
execution modes supported by each framework. The script can
be invoked as follows:

docker run --rm cesarpomar/omp4py omp4py-test <test>
docker run --rm cesarpomar/pyomp omp4py-test <test>

To reproduce the experiments in Figure 5, run both scripts
for the following benchmarks: fft, jacobi, lud, md, pi,
gsort, and maze. Note that with the default sizes, all the
experiments may take many hours to complete. It is also
possible to pass additional arguments to <test> when calling
the automated scripts, for example to set the problem sizes,
seeds, and other parameters.

The experiments in Figure 6 correspond to running only
the OMP4Py test script with graphc and wordcount. In the
case of the wordcount benchmark, both the single benchmark
execution and the batch evaluation require passing a text file as
an argument. If no input file is provided, the benchmark will
automatically generate a synthetic dataset from a fixed seed.
To reproduce the results reported in Figure 6, users should
supply the Spanish Wikipedia dump as the input dataset (21
GB). The dataset can be downloaded as follows:

wget https://dumps.wikimedia.org/eswiki/latest/eswiki-

latest-pages-articles.xml.bz2
bzip2 -d eswiki-latest-pages-articles.xml.bz2

Once downloaded and decompressed, the file can be passed
as the final argument to the benchmark:

docker run --rm -v $(pwd)/eswiki-latest-pages-articles.xml
:/eswiki cesarpomar/omp4py python3 /omp4py/examples/
main.py <mode> wordcount <threads> \"/eswiki\"”

docker run --rm -v $(pwd)/eswiki-latest-pages-articles.xml
:/eswiki cesarpomar/omp4py omp4py-test wordcount \"/
eswiki\”

Regarding the hybrid OpenMP/MPI applications, Docker
provides an isolated runtime environment, which prevents
programs running inside a container from using software
installed on the host system. This includes the host’s MPI
implementation, making it impossible to execute MPI-based
applications such as the jacobi benchmark from within the
provided Docker images. Since mpi4py depends on an existing
local MPI installation, both MPI (for example, MPICH or
OpenMPI) and mpi4py must be installed directly on the host
machine. Once MPI is installed, the recommended approach is
to use a Poetry-managed environment and install the Python
bindings by running poetry install mpi4py. Finally, the
command required to run the jacobi benchmark with MPI in
a local (non-Docker) installation is:

mpirun -n <procs> python3 <omp4py-folder>/examples/main.py

<mode> jacobi <threads>

For numerical benchmarks, the expected performance order-
ing is consistent and correlated with the OMP4Py execution
mode. The CompiledDT mode is expected to achieve the
highest performance, since the generated code is closest to C
and benefits from type-specialized optimizations. In contrast,
the Pure mode yields the lowest performance, as execution re-
mains entirely in Python and is subject to higher interpretation
overhead. In the case of PyOMP, its performance is expected
to be similar to the CompiledDT mode of OMPA4Py for
the benchmarks that the library supports. For non-numerical
benchmarks, performance across the OMP4Py modes is gen-
erally similar, with a small advantage for the Cython-based
modes, since native-code optimization is not feasible and
PyOMP cannot run these benchmarks. Results should follow
the trends reported in the paper’s figures. Execution time
decreases as thread count increases, but scalability depends on
the execution mode. The Pure and Hybrid modes are limited
by the scalability constraints of the Python 3.14bl interpreter,
so their speedup is not expected to improve beyond 8 threads.
In contrast, the Compiled and CompiledDT modes rely on
Cython-generated native code and scale with higher thread
counts, with CompiledDT achieving the best performance.

Note that when using problem sizes smaller than those
employed in the evaluation, it is important to ensure that the
chosen sizes are large enough so that Python’s overhead does
not dominate the total execution time. Although the compu-
tation runs in native code in the Compiled and CompiledDT
modes, extremely small workloads may complete so quickly
that the measured time primarily reflects Python. To obtain
meaningful and comparable results, users should therefore
select input sizes where the native compute phase clearly
outweighs Python’s inherent overhead.
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