
Review of Intermediate Representations for
Quantum Computing

F. Javier Cardama1*†, Jorge Vázquez-Pérez1†, César Piñeiro1,2†,
Juan C. Pichel1,2†, Tomás F. Pena1,2†, Andrés Gómez3†

1Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS),
Universidade de Santiago de Compostela, Santiago de Compostela,

15782, Galicia, Spain.
2Departamento de Electrónica e Computación, Universidade de Santiago

de Compostela, Santiago de Compostela, 15705, Galicia, Spain.
3Galicia Supercomputing Center (CESGA), Santiago de Compostela,

15705, Galicia, Spain.

*Corresponding author(s). E-mail(s): javier.cardama@usc.es;
Contributing authors: jorgevazquez.perez@usc.es;

cesaralfredo.pineiro@usc.es; juancarlos.pichel@usc.es; tf.pena@usc.es;
andres.gomez.tato@cesga.es;

†These authors contributed equally to this work.

Abstract
Intermediate representations (IRs) are fundamental to classical and quan-
tum computing, bridging high-level quantum programming languages and the
hardware-specific instructions required for execution. This paper reviews the
development of quantum IRs, focusing on their evolution and the need for
abstraction layers that facilitate portability and optimization. Monolithic quan-
tum IRs, such as QIR [1], QSSA [2], or Q-MLIR [3], their effectiveness in handling
abstractions and their hybrid support between quantum-classical operations are
evaluated. However, a key limitation is their inability to address qubit locality,
an essential feature for distributed quantum computing (DQC).
To overcome this, InQuIR [4] was introduced as an IR specifically designed for
distributed systems, providing explicit control over qubit locality and inter-node
communication. While effective in managing qubit distribution, InQuIR’s depen-
dence on manual manipulation of communication protocols increases complexity
for developers. NetQIR [5], an extension of QIR for DQC, emerges as a solution
to achieve the abstraction of quantum communications protocols. This review

1



emphasizes the need for further advancements in IRs for distributed quantum
systems, which will play a crucial role in the scalability and usability of future
quantum networks.

Keywords: intermediate representation, quantum compiling, distributed quantum
computing, compilers

1 Introduction
The evolution of computing has consistently aimed to abstract hardware complexities
to facilitate architecture-agnostic software development. A key milestone in classical
computing was the introduction of compilers, which played a central role in translating
high-level programming languages into hardware-specific instructions. Without them,
every piece of software would have to be tailored to a specific hardware platform,
significantly slowing the development and adoption of new technologies. As computing
systems became more sophisticated, so did the need for more flexible and efficient
compilation processes [6–9].

However, compilers are some of the most complex programs ever developed, often
rivalling operating systems in their intricacy. Their development and maintenance
require significant resources. To address this, the field of classical computing intro-
duced the concept of Intermediate Representations (IR) or Intermediate Languages.
These serve as a middle layer between the high-level languages (such as C++ or
Python) and the low-level instructions specific to the hardware (such as x86 or ARM
instruction sets). The IR allows for a modular compilation process, simplifying the
creation of new compilers and facilitating the introduction of new languages and
hardware architectures [10–12].

On the other hand, in recent decades, quantum computing has emerged as a
groundbreaking field with the potential to revolutionize many areas of science and
technology. The development of Shor’s algorithm, which promises an exponential
speedup in factoring large numbers, shows the immense computational power that
quantum systems could bring [13]. This was a direct challenge to classical cryptogra-
phy, which relies on the difficulty of prime factorization. Since then, the race to develop
quantum computers has intensified, with the promise of solving problems currently
intractable for classical computers [14, 15].

As the field of quantum computing evolves, we are seeing the emergence of new
languages, libraries and frameworks designed to facilitate the programming of quan-
tum hardware and simulators. Like classical computing, quantum computing has to
follow a path of abstraction and simplification, building on decades of knowledge of
classical compiler design. A key area is the proper development of quantum compilers
and the integration of intermediate representations for quantum languages, easing the
path towards more accessible quantum programming [16–19].

The need for quantum intermediate representations arises from what has been
learned in classical computing, where abstraction has played a critical role in reducing

2



the complexity of compiler development and, by extension, has enabled the pro-
liferation of new languages. Intermediate quantum representations also serve as a
bridge between the front-end (high-level quantum languages) and the back-end (quan-
tum hardware implementations) and include quantum-specific instructions such as
quantum gates, qubit registers, and entanglement operations. These abstractions are
essential for the future of quantum computing, as they will enable the development of
more efficient compilers, foster new quantum programming languages and ultimately
make quantum computing more accessible to end users [1, 20].

2 Background
In the early days of computing, programs were written in assembly language, which is
highly specific to the underlying hardware architecture. This close coupling between
software and hardware severely limited code reusability across different machines.
Assembly language, although highly efficient for specific hardware, hindered software
portability and presented a problem for developers, who had to manage hardware-
specific instructions manually. As a result, the need for higher levels of abstraction
in programming languages became evident. Higher-level languages, such as Fortran,
COBOL, and later C, emerged to abstract the complexities of hardware-specific
details, making programming more efficient and portable [21].

One of the critical innovations that facilitated this shift was the development of
compilers. A compiler translates high-level code into machine code, effectively decou-
pling the programming language from the hardware. This abstraction made it possible
to write software once and run it on multiple architectures without modification,
fostering code reusability. However, developing a compiler for every programming lan-
guage and hardware architecture combination was a monumental task. This led to
introducing intermediate representations (IR), which bridge the high-level source code
and the low-level machine instructions. An IR allows a single high-level language to
be translated into an intermediate form, which can then be compiled into machine
code for different architectures. This reduced the complexity of compiler design, as
developers only needed to target the IR rather than every possible hardware platform
directly. The IR allows for a modular compilation process. Fig. 1 shows this advantage
incorporating an IR into a simple compilation scheme, where the number of compil-
ers required scales from a potentially exponential number of n ·m (Fig. 1a) to a more
manageable n+m compilers (Fig. 1b), where n is the number of high-level languages
and m the number of hardware platforms.

One of the most influential developments in intermediate representations was cre-
ating the Low-Level Virtual Machine (LLVM) framework [22], initially designed for
C and C++ programs. LLVM introduced a flexible, retargetable IR that could be
used across multiple hardware platforms, making it a foundational tool in modern
compiler design. LLVM abstracts code into a platform-independent form that can
later be optimized and translated into architecture-specific machine code. Its modular
design has allowed LLVM to support a wide range of languages beyond C++, includ-
ing Swift, Rust, and Julia, making it a cornerstone in the development of modern
compilers [23–25].

3



High-level
language

Machine
code

C++
compiler

Rust
compiler

Julia
compiler

IR to
x86

IR to
AMD

IR to
ARM

Front-end Back-end

(a) Front-end to back-end scheme.

High-level
language

Intermediate
language

Machine
code

C++
compiler

Rust
compiler

Julia
compiler

IR to
x86

IR to
AMD

IR to
ARM

Front-end Back-endMiddle-end

IR

(b) IR as middle-end in the scheme

Fig. 1: Comparison between integrating IRs into a simple compilation scheme.

However, as computing systems have evolved, the need for more advanced IRs has
grown, particularly with the rise of heterogeneous systems. These systems combine
different types of processors, such as central processing units (CPUs), graphics pro-
cessing units (GPUs), and field-programmable gate arrays (FPGAs), each of which
excels at different types of computations [26, 27]. In GPUs and FPGAs, where tasks
are highly parallelized, traditional IRs had to be adapted for efficient task distribution
and execution. OpenCL, CUDA, and other parallel computing platforms introduced
specialized IRs to manage the complexity of these devices, ensuring that high-level
code could be effectively translated into machine-level instructions capable of running
on these specialized architectures.

The Multi-Level Intermediate Representation (MLIR) [28] is a significant exten-
sion of LLVM, designed to address the complexity of heterogeneous architectures
by supporting multiple levels of abstraction. MLIR enables high-level optimizations
for domains like machine learning while still providing low-level hardware-specific
optimizations. This multi-level approach facilitates parallelism, concurrency, and
communication across different devices, making it ideal for handling the needs of het-
erogeneous systems. This is achieved by implementing the concept of dialects. Each
dialect is a specialized language with its own vocabulary—operations and types—
tailored to a specific subject, for instance, as already mentioned, machine learning.
Just as you would choose a language that best suits a topic, in MLIR, you choose
dialects that best match the domain you are working in.

In addition to MLIR, Standard Portable Intermediate Representation (SPIR) [29]
is another vital IR in the domain of heterogeneous systems. SPIR was developed for
the OpenCL framework to provide a platform-neutral IR that enables code portabil-
ity across different hardware platforms, including CPUs, GPUs, and FPGAs. SPIR
simplifies the compilation of OpenCL kernels into optimized machine code, ensuring
performance and compatibility across diverse architectures.

4



NVVM-IR (NVIDIA Virtual Machine Intermediate Representation) plays a similar
role for NVIDIA hardware systems. Based on LLVM, NVVM-IR supports CUDA,
NVIDIA’s parallel computing platform. It abstracts CUDA code into a form that can
be optimized and compiled for efficient execution on NVIDIA GPUs, thus improving
performance and enabling parallelization on highly specialized hardware.

With the advent of quantum computing, the complexity of hardware has reached
an entirely new level, requiring an entirely new class of intermediate representations.
Quantum computing platforms, unlike classical ones, are based on principles such
as superposition and entanglement, which require fundamentally different instruction
sets. Quantum software frameworks such as Qiskit and Cirq were developed to allow
high-level quantum programming. These frameworks generate code that can run on
quantum hardware, such as superconducting qubits, trapped ions, and photonic sys-
tems. However, each of these hardware platforms has unique characteristics, making
the development of a unified quantum IR essential for the long-term scalability of
quantum programming.

3 Quantum Intermediate Representations:
characteristics and classification

In this section, the characteristics that a standard IR should fulfil are defined by
compiling information from different citations in the literature. In the following, the
quantum IRs developed in the literature are classified and detailed, and a qualita-
tive comparison of different characteristics important for quantum software is made.
Finally, an example code for a quantum teleport circuit is shown.

3.1 Characteristics of an Intermediate Representation
An Intermediate Representation (IR) has to meet specific characteristics that distin-
guish it from a high-level or machine code language. A fundamental question has to
be asked: Why is C language—or any other high-level language— not an intermediate
representation?

Different characteristics can be analyzed to define an IR. The most important one
we should focus on is that an IR is created by and for machines. Therefore, it
does not need to be fully readable by the human encoder; in most situations, the IR
code is encoded in binary.

First, an IR has to be abstract enough to represent a set of high-level languages
(HLLs) rather than just one. This implies that it is at a different level from HLLs and
machine codes, so there is a process of compilation, not transpilation.

On the other hand, the compilation process to the IR must keep the informa-
tion from the compiler’s previous analysis phase. For example, in quantum
computing, it would be a mistake to transpose high-level gates to a set of elementary
gates, essentially because hardware particularities such as the supported gate set itself
or the error propagated by each gate are not known.

Some of the characteristics of an IR that can be taken into account are the
following [30]:

5



• Comprehensive Representation: The IR must encapsulate all necessary con-
structs, abstractions, and concepts from programming languages to ensure precise
execution across diverse computing platforms. A key measure of this capability is
how easily the IR can be transformed into and from widely used IRs across multiple
programming languages.

• Device Independence: The IR should remain neutral to specific hardware fea-
tures. Its execution model should reflect the programming language’s semantics
rather than the underlying hardware, allowing it to be compiled across various
devices. This neutrality must be achieved by carefully balancing the abstraction
level.

• Direct Programmability: Like assembly languages, IRs offer programmers the
ability to fine-tune their code manually. This is beneficial not only for optimization
purposes but also for supporting compiler developers during the construction pro-
cess. Typically, higher-level IRs make manual programming more straightforward.

• Forward Compatibility: As programming languages evolve, the IR must be flex-
ible enough to integrate new paradigms without sacrificing backward compatibility.
This adaptability is crucial to ensure the IR remains relevant and functional as
programming practices change over time.

From the compiler design perspective, the following three attributes are critical for
an IR’s effectiveness as a program representation tool during the compilation process:
• Simplicity in Design: The ideal IR should limit the variety of its constructs while

still capturing all computations expressible by source languages. This simplicity
facilitates the canonicalization process, where source code is standardized before
optimization, thereby reducing code variation and easing the compiler’s workload.

• Retention of Program Details: The original source code contains the rich-
est information about the program. If critical details are lost during translation,
optimization can suffer. Therefore, the IR should include mechanisms to retain
important high-level details, such as type information and pointer aliasing, which
are essential for effective optimization.

• Inclusion of Analytical Data: Successful program transformations often rely on
additional data, such as information on data dependencies and aliasing patterns.
Embedding this analytical data in the IR allows it to be used by different parts of the
compiler. However, this must be managed carefully to avoid the risk of invalidation
by later transformations. Balancing the inclusion of analytical information with the
complexity it adds to the IR is a crucial design consideration.

3.2 Intermediate Representations for Quantum Computing
In the compilation process, IR serves as a crucial intermediary between high-level
programs and machine-executable instructions, as has already been shown. This rep-
resentation improves translation efficiency and allows for optimization. When it comes
to quantum computing, specialized IR becomes essential to take full advantage of
the intrinsic characteristics of quantum computing. A variety of IR languages have
been developed to bridge the gap between high-level quantum programming lan-
guages and low-level quantum machine code. In this subsection, we will attempt to

6



Language extensions
Name Language
Q-MLIR [3] MLIR [28]
QIR [1] LLVM [22]
QSSA [2] SSA [31]
QIRO [32] MLIR and SSA

(a)

Standalone
Nombre
SQIR [33]

(b)

IR Framework
Name Framework
XACC IR [18] XACC
QBIR [34] Yao
t|ket⟩ IR [35] t|ket⟩

(c)

Table 1: Classification of existing IRs in the literature.

address the large number of IR languages proposed in the literature. Table 1 shows
the classification of the IR of the literature in the following categories:
• Language extensions: IRs that extend an intermediate representation of classic

computation to add components of quantum features.
• Standalone languages: IRs that have been designed for quantum computing

without having any basis in another classic IR.
• IR Framework: an IR that is integrated within a complete compilation scheme

or framework and has been created specifically for that scheme.

The initial intermediate language to be examined is Quantum Intermediate
Representation (QIR) [1]. QIR, developed by the QIR Alliance, which counts
Microsoft among its members, should be distinguished from the broader concept of
quantum Intermediate Representation (qIR) previously outlined. It functions as a uni-
versal interface between quantum programming languages or frameworks and various
quantum computing platforms. Moreover, it delineates a series of protocols for rep-
resenting quantum programs in a language and hardware-neutral format within the
LLVM IR [22]. Concerning the translation from high-level languages, QIR remains
non-specific to any particular quantum programming framework, thereby facilitating
its adoption for articulating quantum programs. Conversely, regarding the translation
of IR to machine-specific instructions, QIR is designed to be hardware-independent,
abstaining from prescribing a specific quantum instruction or gate set and instead
deferring to the preferences of the target computation environment.

Moving on to other quantum IRs, Q-MLIR, an extension of quantum computing
to the IR Multi-Level Intermediate Representation (MLIR) described in Section 2,
is introduced in citeMcCaskey2021, highlighting the potential of this dialect to con-
form to the QIR standards recently proposed by Microsoft. This facilitates a shared
optimization and execution generation framework across multiple source languages.

Furthermore, additional quantum computing oriented extensions of MLIR, such
as Quantum Intermediate Representation for Optimization (QIRO) detailed
in [32], are noteworthy. The QIRO framework is tailored for quantum-classical co-
optimization and embeds data flow directly within the IR, enabling a range of
optimizations through data flow analysis. It comprises two dialects: one for input
and another for optimization. In contrast, Q-MLIR focuses on defining a quantum IR
by extending MLIR but does not explore or implement optimizations that leverage
MLIR’s capabilities for quantum program improvement.

7



int a = 10;
int b = a + 5;
a = a * 2;
int c = a * b;
return c;

(a) Example of C++
source code.

%1 = 10
%2 = %1 + 5
%1 = %1 * 2
%4 = %1 * %2
return %4

(b) Representation in
LLVM IR without SSA.

%1 = 10
%2 = %1 + 5
%3 = %1 * 2
%4 = %3 * %2
return %4

(c) Representation in
LLVM IR with SSA.

Fig. 2: Comparison between an LLVM IR code with and without SSA.

Moreover, IRs can adhere to specific properties or constraints to facilitate optimiza-
tion and verification processes. One such property, extensively explored in classical
compilation literature, is the Static Single Assigment (SSA) form [31, 36, 37]. An SSA
form mandates that each variable in the source code is assigned uniquely in the inter-
mediate representation. This implies that additional variables must be introduced if
a variable receives assignments at multiple points in the source code to denote the
distinct versions required.

Figure 2 exemplifies the LLVM IR translation of C++ source code where the
variable a undergoes reassignment. In an SSA compliant code, it is imperative to
generate a new variable (%3 as shown in Figure 2c) to signify the updated version,
thereby preserving the original variable (%1 as depicted in Figure 2b).

The usefulness of this property in verification and optimization, together with the
extensive study in classic compilation, allows the use of this approach in quantum
compilation as a suitable and perfectly tested basis. The IR previously discussed,
QIRO, uses this SSA property for the co-optimization of quantum codes.

On the other hand, the work presented in [2] as Quantum Static Single Assig-
ment (QSSA) performs an extension of the SSA properties to generate a quantum
IR that performs a special emphasis on the verification in the compile-time of the
physical constraints of quantum nature, such as the no-cloning theorem.

Figure 3 shows a graphical representation of the various quantum IRs that extend
a classic representation such as LLVM. It is shown in a set format to characterize
those representations that extend more than one language or feature.

LLVM MLIR SSA

QIR Q-MLIR QIRO QSSA

Fig. 3: Venn diagram with the different quantum IRs shown in the "Language exten-
sions" section. Each set represents a language or feature of classic computing, and
each element is a quantum IR.

8



Outside the classic IR extensions such as LLVM or MLIR, there are also standalone
IR languages like Small Quantum Intermediate Representation (SQIR), pro-
posed in [33]. Its primary purpose is to serve as an intermediate language to verify the
correctness of the quantum circuit once optimizations have been applied to it. This
IR is built on top of the mathematical definition language Coq.

In addition, some frameworks implement the complete compilation scheme or a
high-level language that develops its specific IR, such as eXtreme-scale Accelerator
programming framework (XACC) [18] that implement the compilation scheme
in full, based on a three-level scheme: a front-end that maps the quantum code to its
own IR; a middle-end related to the transformation and optimization of the IR, and,
finally, a backend that processes the IR to the specific machine code. Another example
is the Quantum Block Intermediate Representation (QBIR) [34], which is
used in the high-level quantum language Yao.jl.

3.3 Comparision of quantum IRs
The purpose of this section is to provide a comparative analysis of the different IRs
discussed in this work. It is important to emphasize that this is a qualitative compar-
ison to maintain objectivity, as a quantitative study is not viable due to the lack of
standardized benchmarks and the different levels of maturity of the different IRs. To
achieve this, a set of key properties has been established to evaluate how each IR per-
forms in different contexts. This comparison aims not to declare one IR superior to
another but to provide insights that will help readers decide which IR is best suited
to their particular implementation priorities. This framework allows readers to make
informed decisions based on their specific needs, whether hardware compatibility,
optimization efficiency, or support for hybrid quantum-classical operations.

Table 2 presents a qualitative comparison of seven quantum IRs: QIR, SQIR,
QSSA, QIRO, XACC, QBIR, and Q-MLIR, based on the next essential features for
quantum software development:

1. Hybrid Quantum-Classical Operations: Quantum programs often combine
classical and quantum computations, especially for hybrid algorithms like the Vari-
ational Quantum Eigensolver (VQE). An IR that supports hybrid operations allows
efficient execution of both quantum instructions and classical control logic (e.g.,
conditionals, loops).

2. Hardware Agnosticism: an IR hardware agnosticism determines how well
it abstracts away hardware-specific details, making code portable across vari-
ous quantum architectures (e.g., superconducting qubits, trapped ions, photonic
systems).

3. Optimizations and Compiler Passes: Quantum computations require signif-
icant optimizations (e.g., gate reduction, circuit simplifications) to be executable
on quantum hardware, where resource constraints like qubit coherence times and
gate fidelity are critical.

4. Expressiveness: refers to how flexibly the IR can describe quantum pro-
grams, supporting modularity, advanced quantum gates, and complex quantum
operations.

9



5. Simulator Compatibility: The ability to simulate quantum circuits before exe-
cuting them on actual hardware is a crucial step in quantum program development.

6. Community Support: IRs community support is critical for its development
and adoption. A strong ecosystem ensures access to tools, libraries, and active
collaboration.

In the context of table 2, qualifiers such as High or Medium are used to provide a
qualitative assessment of how well an IR matches the characteristic being assessed. For
example, in the case of Expressiveness, most IRs are rated High due to their ability
to represent a wide range of quantum operations. However, Q-MLIR is rated Very
High because its multi-level structure allows for the definition of new instructions,
providing greater flexibility and extensibility compared to other IRs.

Each quantum IR brings unique strengths to quantum software development. QIR
and Q-MLIR perform particularly well in handling hybrid quantum-classical opera-
tions, optimizations and hardware agnosticism, which makes them an excellent fit for
scalable quantum computing applications. SQIR excels in formal verification, while
XACC offers solid support across the software stack and full compilation. QSSA
and QIRO emphasize optimizations and error correction, which are fundamental to
long-term fault-tolerant quantum computing.

By comparing these features, developers can choose the most appropriate IR
based on their specific needs, such as hardware compatibility, optimization and
expressiveness.

Feature QIR Q-MLIR QSSA QIRO XACC QBIR SQIR
Hybrid Quantum
Classical Ops

Yes
(via LLVM) Yes Yes Yes Yes No No

Hardware
Agnosticism High High High Medium

High
(via XACC
compiler)

High High
(Coq-based)

Optimizations
Built-in
(LLVM
passes)

Built-in
(via MLIR)

Compiler
Optimizations Limited LLVM

Optimizations
Circuit

Simplifications
Formal

Verification

Expressiveness High Very High High High High Medium Medium

Simulator
Compatibility

High
(LLVM

simulators)
High Medium Medium High Medium High

Community
Support

Strong
(LLVM,

Microsoft)

Growing
(MLIR

community)

Growing
(Quantum
research)

Limited
Strong
(XACC

framework)
Limited

Growing
(Coq

community)

Table 2: Qualitative comparison of the different IRs existing in the bibliography.

3.4 Example of code: teleport circuit
In this subsection, two IRs that extend LLVM, QIR and Q-MLIR, will be compared
to analyze the differences between the two models. We aim to demonstrate how differ-
ent IRs work when implementing a complex circuit, such as quantum teleportation,
where several critical aspects are involved, such as quantum gates between qubit pairs,
intermediate measurement, or physically separated qubits.

10



The circuit to be implemented is the one shown in Figure 4, corresponding to the
classical teleport circuit between two physically separated qubits. The codes generated
for this circuit are shown in Figure 5a for QIR and Figure 5b for Q-MLIR.

Alice
|ψ⟩ H

|0⟩ H

Bob |0⟩ X Z |ψ⟩

Fig. 4: Circuit for teleporting a quantum state |ψ⟩ between two physically separated
qubits (from Alice to Bob).

The QIR code for the teleport circuit is very similar to the LLVM IR format.
It focuses on low-level quantum operations and directly invokes quantum gates like
Hadamard and CNOT with explicit quantum instruction calls. Measurements are
performed with conditions applied to control subsequent gates (X and Z correc-
tions), reflecting the hybrid nature of QIR, which integrates quantum operations with
classical control through conditional branches. This low-level representation ensures
detailed control and optimization but requires more explicit operations management.

In contrast, the Q-MLIR code operates at a higher level of abstraction, using
MLIR’s modular structure. While the circuit structure is similar—applying Hadamard
and CNOT gates followed by measurements—the code is more declarative. The
quantum gates and measurements are invoked in a more abstract manner, emphasiz-
ing flexibility and modularity rather than fine-tuned control. Q-MLIR simplifies the
representation, making it easier to map to different hardware backends or domain-
specific optimizations while maintaining a clearer structure for higher-level quantum
algorithms.

These examples show that both QIR and Q-MLIR effectively handle intermedi-
ate measurements (hybrid quantum-classical operations) and quantum gates between
qubit pairs. However, the major unresolved challenge lies in communication between
physically separated qubits. The current IRs do not specify whether qubits are
located on different nodes, a crucial factor in distributed quantum computing (DQC).
Without addressing this issue, managing the necessary quantum communication and
synchronization between distant quantum processors becomes impossible.

To address this limitation, the following section will explore various intermediate
languages specifically designed for DQC, which incorporate mechanisms to handle
physically separated qubits and quantum communication.

11



define void @Teleportation__body(%Qubit* %msg, %Qubit* %ent1, %Qubit* %ent2) {
entry:

; Create entanglement between ent1 and ent2
call void @__quantum__qis__h(%Qubit* %ent1)
call void @__quantum__qis__cnot(%Qubit* %ent1, %Qubit* %ent2)

; Apply CNOT between msg and ent1 and next the Hadamard gate to msg
call void @__quantum__qis__cnot(%Qubit* %msg, %Qubit* %ent1)
call void @__quantum__qis__h(%Qubit* %msg)

; Measure msg and ent1
%meas_msg = call %Result* @__quantum__qis__mz(%Qubit* %msg)
%meas_ent1 = call %Result* @__quantum__qis__mz(%Qubit* %ent1)

; Apply the classical controlled gates
call void @__quantum__qis__x(%Qubit* %ent2) if (%meas_ent1 == 1)
call void @__quantum__qis__z(%Qubit* %ent2) if (%meas_msg == 1)

ret void
}

(a) QIR code

module {
func @Teleportation(%msg: !quantum.qbit, %ent1: !quantum.qbit, %ent2: !quantum.qbit) {

// Entanglement creation
"quantum.h"(%ent1) : (!quantum.qbit) -> ()
"quantum.cnot"(%ent1, %ent2) : (!quantum.qbit, !quantum.qbit) -> ()

// Teleportation step
"quantum.cnot"(%msg, %ent1) : (!quantum.qbit, !quantum.qbit) -> ()
"quantum.h"(%msg) : (!quantum.qbit) -> ()

%m1 = "quantum.mz"(%msg) : (!quantum.qbit) -> !quantum.result
%m2 = "quantum.mz"(%ent1) : (!quantum.qbit) -> !quantum.result

"quantum.x"(%ent2) if %m2 == 1
"quantum.z"(%ent2) if %m1 == 1
return

}
}

(b) Q-MLIR code

Fig. 5: Implementation of a teleport circuit in two quantum intermediate represen-
tations (QIR and Q-MLIR).

4 IRs for Distributed Quantum Computing (DQC)
In this section, we describe IRs for programming distributed quantum computers,
trying to overcome the shortcoming of all quantum IRs presented in the previous
section: the inability to define physically separated qubits. In DQC, where quantum
systems are distributed over multiple physical locations, it becomes crucial to specify
the locality of each qubit and to manage the communication between qubits located
in different nodes.

In distributed quantum systems, operations like quantum teleportation and entan-
glement swapping require an IR that can effectively model both the quantum gates and

12



the communication between distant qubits [38]. This need leads to the introduction of
InQuIR (Intermediate Representation for Interconnected Quantum Computers) [4], an
IR designed to overcome the limitations of previous representations by incorporating
explicit support for qubit locality and inter-node communication.

As an illustrative example, consider the teleporting circuit, where the goal is to
transfer the state of a qubit from one node to another. In a distributed quantum
system, this involves entangling two qubits at different locations and using classical
communication to transfer the qubit’s state. The InQuIR code is shown in Figure 6,
where it can be seen that there is a different code for each qubit node (Alice or Bob).
Therefore, this IR allows to specify the physical separation of a register of qubits and,
additionally, to program them in a different way depending on this characteristic.

It is important to highlight the functions incorporated in this new representation,
such as genEnt() to generate the entanglement between the systems and send() and
recv() to send measurements (classic bits).

0 {
world = open[0,1];
q0 = init();
_cq0 = genEnt[1](l0);
CX q0 _cq0; H q0;
_m0 = measure _cq0;
_m1 = measure q0;
free _cq0; free q0;

send[1](world, l1:_m0);
send[1](world, l1_2:_m1);

}

(a) InQuIR code, 0 node (Alice).

1 {
world = open[0];

q1 = init();
_cq1 = genEnt[0](l0);

recv(world, l1:_m3);
recv(world, l1:_m4);

X[_m3] _cq1;
Z[_m4] _cq1;

}

(b) InQuIR code, 1 node (Bob).

Fig. 6: InQuIR code to implement the teleport circuit in the different nodes.

InQuIR provides important tools for managing qubit locality and inter-node com-
munication in distributed quantum computing. However, its limitations arise from
its dependence on manual control over communication processes, which restricts its
ability to fully abstract the complexities inherent in quantum networking. In par-
ticular, InQuIR’s reliance on explicit entanglement generation (genEnt) and manual
control over the transmission of classical data (send and recv) requires developers
to work directly with the low-level details of the quantum communication process.
This lack of abstraction contrasts strongly with the practice in classical distributed
computing, where frameworks like MPI effectively hide the details of the underlying
communication protocols.

The abstraction of the communication layer in traditional distributed systems pro-
vides flexibility to work with different network architectures and protocols without
exposing their complexity to the user, which allows developers to focus on high-
level logic without managing the intricacies of the interconnection network. However,
InQuIR’s dependence on explicitly managing communication through teleportation
or entanglement protocols requires developers to handle the complexities of quantum

13



networking, which can increase the risk of errors and limit scalability. As quantum net-
works grow in complexity, with more nodes and greater distances between them, this
approach becomes less feasible and more cumbersome. The need for a more abstract
and flexible system becomes evident, one that can manage communication efficiently
and transparently.

To address these issues, NetQIR [5] emerges as an extension of QIR [1]. NetQIR
introduces high-level instructions such as qsend() for transmitting qubits and
expose() for making qubits available to other nodes in the network. These instructions
abstract the communication process, allowing the system to automatically manage
the complexities of quantum entanglement, teleportation, and classical communica-
tion. This approach mirrors the abstraction seen in classical distributed computing
frameworks, where message-passing or data synchronization details are hidden from
the user. By integrating such abstraction, NetQIR not only simplifies the develop-
ment process but also increases the flexibility and scalability of distributed quantum
systems.

Figure 7 shows the same teleport circuit discussed throughout this article, high-
lighting the reduction in code complexity achieved by abstracting the communication
protocol. The implementation becomes more agile and efficient by delegating these
low-level details to the backend, which has access to more specific information about
the connecting network and the hardware involved.

A significant advantage of NetQIR is that, by extending QIR, it inherits a strong
foundation from the QIR framework, which itself is built on LLVM. This allows
NetQIR to leverage the extensive optimization and tooling infrastructure developed
for QIR and LLVM, including compiler passes, simulation tools, and debugging envi-
ronments. As a result, developers can utilize high-level abstractions for distributed
quantum operations and benefit from the robust ecosystem of tools available in the
LLVM framework. On the other hand, one of the main disadvantages of NetQIR is that
it is currently still in a work-in-progress phase. While the IR has been defined concep-
tually, there is a significant gap in the availability of practical tools and infrastructure
for working with it. Unlike established quantum IRs such as QIR, which benefit from
a mature ecosystem of compilers, optimizers, and simulators, NetQIR lacks concrete
implementations and tools at this stage. As a result, developers and researchers are
not yet able to fully utilize NetQIR in real-world distributed quantum systems.

5 Conclusions
This work explored the design, evaluation, and limitations of intermediate representa-
tions (IRs) for monolithic and distributed quantum computing. To develop an effective
IR, certain core characteristics must be defined, such as hardware agnosticism, opti-
mization capabilities, modularity, and the ability to handle quantum-classical hybrid
operations. These features ensure that an IR can bridge the gap between high-level
quantum programming languages and the hardware, ensuring efficient performance
and adaptability across various quantum architectures. This paper began by reviewing
quantum IRs designed for monolithic quantum systems, followed by a more in-depth
discussion of the challenges associated with IRs for distributed quantum computing.

14



define void @main(i32 noundef %0, ptr noundef %1) #0 {
entry:

; Variable allocation
%2 = alloca i32, align 4

; Init the NetQIR communication and get the rank of the process
%3 = call i32 @__netqir__init(i32 noundef %0, ptr noundef %1)
%4 = call i32 @__netqir__comm_rank(%Comm* @netqir_comm_world, ptr %2)

; Choose if it is the process receiving or sending the qubit
%5 = load i32, ptr %2, align 4
%6 = icmp eq i32 %5, 0
br i1 %6, label %7, label %9

; Process sending
7:

%8 = call i32 @__netqir__qsend(%Qubit* null, i32 noundef 1,
%Comm* @netqir_comm_world)

; Process receiving
9:

%10 = call i32 @__netqir__qrecv(%Qubit** null, i32 noundef 0,
%Comm* @netqir_comm_world)

; End of the program
%11 = call i32 @__netqir__finalize()

}

; Function declaration
declare i32 @__netqir__init()
declare i32 @__netqir__qsend(%Qubit*, i32, %Comm)
declare i32 @__netqir__qrecv(%Qubit**, i32, %Comm)
declare void @__netqir__finalize()

Fig. 7: NetQIR code for the state teleportation between Alice and Bob.

The study of monolithic quantum computing focused on IRs like QIR, Q-MLIR,
SQIR or QSSA, which are primarily designed for quantum processors located in a
single physical location. These IRs support features such as gate-level abstractions,
hardware-agnostic instruction sets, and optimizations targeting performance across
various quantum platforms. They are well-suited for tasks that do not involve inter-
node communication or distributed architectures. However, they still face challenges in
scaling with increasing qubit counts and handling the specificities of different quantum
technologies.

The evolution of quantum IRs reflects the need for such tools to facilitate the
development of new compilers and a complete quantum software stack. This work
highlights the current limitations of quantum IRs, particularly the lack of support for
managing qubit locality in systems where quantum processors are distributed across
multiple physical locations. Therefore, IRs for DQC, such as InQuIR or NetQIR, have
emerged in the literature.

InQuIR takes an important step by allowing programmers to define qubit locality
and manage communication explicitly, but this approach has significant drawbacks.
Namely, it requires developers to handle low-level communication protocols (e.g.,
genEnt, send, recv) manually, adding to the complexity and potential for error. In
contrast, NetQIR introduces a higher level of abstraction, where instructions like
qsend and expose delegate the details of quantum communication to the backend.

15



This allows for a more flexible and scalable programming model, similar to how
classical distributed systems abstract network protocols through frameworks like MPI.

The key strength of NetQIR is its foundation in QIR, which is itself built on
LLVM. This allows it to take advantage of LLVM’s well-established ecosystem of
optimization tools, compilers, and simulators. This strong base ensures that NetQIR
not only simplifies the programming model for distributed quantum computing but
also benefits from powerful optimizations and debugging capabilities developed for
classical computing.

In summary, while InQuIR provides an initial solution for managing distributed
qubit locality and communication, its explicit handling of communication protocols
limits its scalability. NetQIR, as an extension of QIR, offers a more abstract, scalable
solution for distributed quantum systems. By integrating high-level instructions that
hide the complexity of quantum communication, NetQIR provides a pathway to more
efficient and manageable distributed quantum computing frameworks. However, it is
important to note that NetQIR remains in a work-in-progress phase, with the
intermediate representation defined but without practical tools available yet for real-
world implementations. Further development is required to fully realize its potential
in distributed quantum systems.

Acknowledgements. This work was supported by MICINN through the European
Union NextGenerationEU recovery plan (PRTR-C17.I1), and by the Galician Regional
Government through the “Planes Complementarios de I+D+I con las Comunidades
Autónomas” in Quantum Communication. This work was also supported by financial
support from the Agencia Estatal de Investigación (Spain) (PID2022-141623NB-I00),
the Xunta de Galicia - Consellería de Cultura, Educación, Formación Profesional e
Universidades (Centro de investigación de Galicia accreditation 2024-2027 ED431G-
2023/04 and Reference Competitive Group accreditation ED431C-2022/016) and the
European Union (European Regional Development Fund - ERDF).

References
[1] Lubinski, T., Granade, C., Anderson, A., Geller, A., Roetteler, M., Petrenko,

A., Heim, B.: Advancing hybrid quantum–classical computation with real-time
execution. Frontiers in Physics 10 (2022) https://doi.org/10.3389/fphy.2022.
940293

[2] Peduri, A., Bhat, S., Grosser, T.: QSSA: an SSA-based IR for quantum com-
puting. In: Proceedings of the 31st ACM SIGPLAN International Conference on
Compiler Construction. CC 2022, pp. 2–14. Association for Computing Machin-
ery, New York, NY, USA (2022). https://doi.org/10.1145/3497776.3517772

[3] McCaskey, A., Nguyen, T.: A MLIR dialect for quantum assembly languages.
Proceedings - 2021 IEEE International Conference on Quantum Computing
and Engineering, QCE 2021, 255–264 (2021) https://doi.org/10.1109/QCE52317.
2021.00043

16

https://doi.org/10.3389/fphy.2022.940293
https://doi.org/10.3389/fphy.2022.940293
https://doi.org/10.1145/3497776.3517772
https://doi.org/10.1109/QCE52317.2021.00043
https://doi.org/10.1109/QCE52317.2021.00043


[4] Nishio, S., Wakizaka, R.: InQuIR: Intermediate Representation for Intercon-
nected Quantum Computers (2023). https://arxiv.org/abs/2302.00267

[5] Vázquez-Pérez, J., Cardama, F.J., Piñeiro, C., Pena, T.F., Pichel, J.C., Gómez,
A.: NetQIR: An Extension of QIR for Distributed Quantum Computing (2024).
https://arxiv.org/abs/2408.03712

[6] Alfred, V.A., Monica, S.L., Jeffrey, D.U.: Compilers Principles, Techniques &
Tools. Pearson Education, Inc, London, UK (2007)

[7] Schneck, P.B.: A survey of compiler optimization techniques. In: Proceedings of
the ACM Annual Conference, pp. 106–113 (1973)

[8] Tremblay, J.-P., Sorenson, P.G.: Theory and Practice of Compiler Writing.
McGraw-Hill, Inc., New York (1985)

[9] Torczon, L., Cooper, K.: Engineering a Compiler. Morgan Kaufmann Publishers
Inc., Cambridge, MA (2007)

[10] Conway, M.E.: Proposal for an UNCOL. Commun. ACM 1(10), 5–8 (1958) https:
//doi.org/10.1145/368924.368928

[11] Ottenstein, K.J.: Intermediate program representations in compiler construction:
A supplemental bibliography. SIGPLAN Not. 19(7), 25–27 (1984) https://doi.
org/10.1145/988574.988579

[12] Stanier, J., Watson, D.: Intermediate representations in imperative compilers:
A survey. ACM Comput. Surv. 45(3) (2013) https://doi.org/10.1145/2480741.
2480743

[13] Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509
(1997) https://doi.org/10.1137/s0097539795293172

[14] Steane, A.: Quantum computing. Reports on Progress in Physics 61(2), 117
(1998) https://doi.org/10.1088/0034-4885/61/2/002

[15] Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.:
Quantum computers. Nature 464(7285), 45–53 (2010) https://doi.org/10.1038/
nature08812

[16] Chong, F.T., Franklin, D., Martonosi, M.: Programming languages and compiler
design for realistic quantum hardware. Nature Publishing Group (2017). https:
//doi.org/10.1038/nature23459

[17] Häner, T., Steiger, D.S., Svore, K., Troyer, M.: A software methodology for
compiling quantum programs. Institute of Physics Publishing (2018). https:
//doi.org/10.1088/2058-9565/aaa5cc

17

https://arxiv.org/abs/2302.00267
https://arxiv.org/abs/2408.03712
https://doi.org/10.1145/368924.368928
https://doi.org/10.1145/368924.368928
https://doi.org/10.1145/988574.988579
https://doi.org/10.1145/988574.988579
https://doi.org/10.1145/2480741.2480743
https://doi.org/10.1145/2480741.2480743
https://doi.org/10.1137/s0097539795293172
https://doi.org/10.1088/0034-4885/61/2/002
https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nature23459
https://doi.org/10.1038/nature23459
https://doi.org/10.1088/2058-9565/aaa5cc
https://doi.org/10.1088/2058-9565/aaa5cc


[18] McCaskey, A.J., Lyakh, D.I., Dumitrescu, E.F., Powers, S.S., Humble,
T.S.: XACC: a system-level software infrastructure for heterogeneous quan-
tum–classical computing. Quantum Science and Technology 5(2), 024002 (2020)
https://doi.org/10.1088/2058-9565/ab6bf6

[19] Mintz, T.M., McCaskey, A.J., Dumitrescu, E.F., Moore, S.V., Powers, S.,
Lougovski, P.: QCOR: A language extension specification for the heterogeneous
quantum-classical model of computation. J. Emerg. Technol. Comput. Syst. 16(2)
(2020) https://doi.org/10.1145/3380964

[20] McCaskey, A.J., Dumitrescu, E.F., Liakh, D., Chen, M., Feng, W., Humble, T.S.:
A language and hardware independent approach to quantum-classical computing.
SoftwareX 7, 245–254 (2018) https://doi.org/10.1016/j.softx.2018.07.007

[21] Knuth, D.E., Pardo, L.T.: The early development of programming languages. A
History of Computing in the Twentieth Century, 197–273 (1980) https://doi.org/
10.1016/B978-0-12-491650-0.50019-8

[22] Foundation, L.: LLVM Assembly Language Reference Manual. https://releases.
llvm.org/2.6/docs/LangRef.html

[23] Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program
analysis & transformation. In: International Symposium on Code Generation
and Optimization, 2004. CGO 2004., pp. 75–86 (2004). https://doi.org/10.1109/
CGO.2004.1281665

[24] Terei, D.A., Chakravarty, M.M.: Low level virtual machine for glasgow haskell
compiler. PhD thesis, Bachelor’s Thesis, Computer Science and Engineering
Dept., The University of New South Wales (2009)

[25] S, tirb, I., Gillich, G.-R.: A low-level virtual machine just-in-time prototype
for running an energy-saving hardware-aware mapping algorithm on C/C++
applications that use pthreads. Energies 16(19) (2023) https://doi.org/10.3390/
en16196781

[26] Weaver, G.: Compiler representations for heterogeneous processing. Technical
Report UM-CS-1995-102, University of Massachusetts (1995)

[27] Belwal, M., TSB, S.: Intermediate representation for heterogeneous multi-core: A
survey. In: 2015 International Conference on VLSI Systems, Architecture, Tech-
nology and Applications (VLSI-SATA), pp. 1–6 (2015). https://doi.org/10.1109/
VLSI-SATA.2015.7050496

[28] Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis, A., Pienaar, J., Riddle,
R., Shpeisman, T., Vasilache, N., Zinenko, O.: MLIR: Scaling compiler infras-
tructure for domain specific computation. CGO 2021 - Proceedings of the 2021
IEEE/ACM International Symposium on Code Generation and Optimization,

18

https://doi.org/10.1088/2058-9565/ab6bf6
https://doi.org/10.1145/3380964
https://doi.org/10.1016/j.softx.2018.07.007
https://doi.org/10.1016/B978-0-12-491650-0.50019-8
https://doi.org/10.1016/B978-0-12-491650-0.50019-8
https://releases.llvm.org/2.6/docs/LangRef.html
https://releases.llvm.org/2.6/docs/LangRef.html
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.3390/en16196781
https://doi.org/10.3390/en16196781
https://doi.org/10.1109/VLSI-SATA.2015.7050496
https://doi.org/10.1109/VLSI-SATA.2015.7050496


2–14 (2021) https://doi.org/10.1109/CGO51591.2021.9370308

[29] Kessenich, J., Ouriel, B., Krisch, R.: SPIR-V specification. Khronos Group 3, 17
(2018)

[30] Chow, F.: Intermediate representation. Queue 11, 30–37 (2013) https://doi.org/
10.1145/2542661.2544374

[31] Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: An efficient
method of computing static single assignment form. In: Proceedings of the 16th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’89, pp. 25–35. Association for Computing Machinery, New York, NY,
USA (1989). https://doi.org/10.1145/75277.75280

[32] Ittah, D., Häner, T., Kliuchnikov, V., Hoefler, T.: QIRO: A static sin-
gle assignment-based quantum program representation for optimization. ACM
Transactions on Quantum Computing 3(3) (2022) https://doi.org/10.1145/
3491247

[33] Hietala, K., Rand, R., Hung, S.-H., Wu, X., Hicks, M.: Verified Optimization
in a Quantum Intermediate Representation (2019). https://arxiv.org/abs/1904.
06319

[34] Luo, X.-Z., Liu, J.-G., Zhang, P., Wang, L.: Yao. jl: Extensible, efficient frame-
work for quantum algorithm design. Quantum 4, 341 (2020) https://doi.org/10.
22331/q-2020-10-11-341

[35] Sivarajah, S., Dilkes, S., Cowtan, A., Simmons, W., Edgington, A., Duncan,
R.: t|ket〉: a retargetable compiler for NISQ devices. Quantum Science and
Technology 6(1), 014003 (2020) https://doi.org/10.1088/2058-9565/ab8e92

[36] Van Emmerik, M.J.: Static single assignment for decompilation. PhD thesis,
University of Queensland, Queensland, Australia (2007)

[37] Rastello, F., Tichadou, F.B.: SSA-based compiler design. Springer International
Publishing, 1–382 (2022) https://doi.org/10.1007/978-3-030-80515-9

[38] Barral, D., Cardama, F.J., Díaz, G., Faílde, D., Llovo, I.F., Juane, M.M.,
Vázquez-Pérez, J., Villasuso, J., Piñeiro, C., Costas, N., et al.: Review of Dis-
tributed Quantum Computing. From single QPU to high performance quantum
computing (2024). https://arxiv.org/abs/2404.01265

19

https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/2542661.2544374
https://doi.org/10.1145/2542661.2544374
https://doi.org/10.1145/75277.75280
https://doi.org/10.1145/3491247
https://doi.org/10.1145/3491247
https://arxiv.org/abs/1904.06319
https://arxiv.org/abs/1904.06319
https://doi.org/10.22331/q-2020-10-11-341
https://doi.org/10.22331/q-2020-10-11-341
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1007/978-3-030-80515-9
https://arxiv.org/abs/2404.01265

	Introduction
	Background
	Quantum Intermediate Representations: characteristics and classification
	Characteristics of an Intermediate Representation
	Intermediate Representations for Quantum Computing
	Comparision of quantum IRs
	Example of code: teleport circuit

	IRs for Distributed Quantum Computing (DQC)
	Conclusions
	Acknowledgements


