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Abstract. In the field of High Performance Computing (HPC), Mes-
sage Passing Interface (MPI) is the most widely used and prevalent pro-
gramming model. Only the low-level programming languages C, C++,
and Fortran have bindings available in the standard. Although there
are attempts to provide MPI bindings for other programming languages,
these may be limited, which could lead to incompatibilities, performance
overhead, and functional gaps. To address those problems, we present
MPI4All, a brand-new tool designed to make the process of developing
effective MPI bindings for any programming language more straightfor-
ward. Support for additional languages can be added with little difficulty,
and MPI4All is independent of the MPI implementation. Programming
language binding generators for Go and Java are included in the most
recent version of MPI4All. We demonstrate their good performance re-
sults with respect to other state-of-the-art approaches. This work is an
extended version of the ICCS-2024 conference paper [20].
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1 Introduction

The Message Passing Interface (MPI) [15] stands as the most prevalent and
dominant programming model within High Performance Computing (HPC). In
the MPI framework, processes explicitly invoke library routines specified by the
MPI standard to facilitate data exchange between two or more processes. These
routines encompass both point-to-point (two-party) and collective (many-party)
communications. High-quality implementations are available from well-known
open-source initiatives like MPICH [5] and OpenMPI [6], as well as from software
and hardware providers in the HPC sector (such as Intel MPI).

Historically, the quest for raw performance has closely associated HPC with
software development utilizing low-level compiled languages, including C/C++
and Fortran. Nevertheless, in modern scientific research, high-level program-
ming languages like Python, Go, and Julia are increasingly significant. These
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languages provide researchers with an accessible platform for crafting intricate
algorithms, examining large datasets, and deploying advanced models, even for
individuals with minimal programming expertise. However, in the realm of paral-
lel programming, high-level languages encounter challenges in their support for
MPI. These languages emphasize abstraction and user-friendliness, which can
sometimes conflict with the low-level requirements of MPI. Although there are
initiatives aimed at offering MPI bindings for these languages, the level of sup-
port may be inadequate, resulting in functionality gaps, performance overhead,
and compatibility challenges.

This paper presents an extended version of our previous conference paper [20],
which introduced MPI4All3, an innovative tool aimed at simplifying the creation
of MPI bindings for various programming languages. While the initial paper
outlined the fundamental concepts of MPI4All, this version includes significant
new features, such as a new experimental results section, an extended related
work, detailed explanations of how the bindings were generated, and practical
examples demonstrating how to implement applications using MPI4All. Note
that adding support for new languages in MPI4All only requires writing a gen-
erator code (in any language) that maps MPI C macros, functions, and data
types—automatically obtained by MPI4All—to the target language. In this man-
ner, unlike other approaches, MPI4All is not tied to a specific MPI implementa-
tion (such as OpenMPI or MPICH) and is compatible with all of them. Another
significant limitation of existing MPI bindings is that they do not support the
complete MPI API, or, due to their lack of support, they only implement func-
tions for older MPI versions. In our case, if MPI were to release a new version,
rerunning MPI4All would suffice to generate complete API bindings for the de-
sired MPI implementation and target language. In other words, we can obtain
the bindings for the new MPI version in seconds. Therefore, once a generator
code for a target language is implemented, it can be reused.

As illustrative examples, MPI4All currently provides bindings for the Java
and Go programming languages. We have evaluated these bindings against other
state-of-the-art options while running different MPI scientific applications to
demonstrate the efficiency and completeness of those generated by our tool.

The remainder of this paper is organized as follows. Section 2 discusses re-
lated work, Section 3 explains the MPI4All architecture and how to create MPI
bindings for a particular language using our tool. Section 4 provides usage exam-
ples of the API bindings and Section 5 shows the performance evaluation of the
Java and Go MPI bindings built using MPI4All. Finally, the conclusions derived
from this work are presented.

2 Related Work

The MPI Standard [15] only provides bindings for C and Fortran programming
languages. Overall, people interested in MPI features but who do not use either

3 It is publicly available at https://github.com/citiususc/mpi4all
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C or Fortran have been relying in unofficial MPI-like solutions. Languages sup-
ported by these implementations include C++, Java, C#, Go, Julia, Python,
among others. However, some of these implementations are not currently main-
tained and only provide support for an outdated MPI version or implement a
reduced set of characteristics.

The support for C++ in MPI was removed in MPI 3.0 specification due
to the high maintenance cost and minimal advantages over the C interface.
Although the C++ bindings offered little additional functionality compared to
modern C++ practices, they significantly burdened the MPI specification. The
introduction of ISO C++11 brought substantial improvements to the language,
reigniting interest in create modern C++ bindings for MPI. As a result, support
has been maintained in various MPI implementations, such as MPICH, while
libraries like Boost.MPI [9] offer a C++ friendly interface to the standard MPI.
Moreover, there are community proposals focused on refining and enhancing
the C++ interface to better align with contemporary language standards and
capabilities [21].

Java is one of the most widely used object-oriented programming languages,
particularly in applications such as Big Data processing. Typically, Big Data
applications process large data sets in parallel using the MapReduce program-
ming model, implemented in well-known open-source Java-based frameworks like
Hadoop or Spark. However, there has also been interest in utilizing Java for HPC
applications. Moreover, the convergence of HPC and Big Data has received in-
creasing attention in recent years, leading to the emergence of frameworks that
integrate compute-intensive MPI tasks with conventional data-intensive MapRe-
duce operations to develop hybrid applications [19].

Consequently, significant efforts have been made to utilize Java for paral-
lel programming. Proposed Java MPI libraries generally follow to one of the
following two approaches:

– Java Bindings of Native MPI Libraries via JNI: These type of meth-
ods implement Java bindings for communication with native MPI libraries
through the Java Native Interface (JNI). Solutions such as mpiJava [12],
along with the more recent official Java bindings for OpenMPI [18] and
MVAPICH2 [7], exemplify this approach. JNI enables Java programs to call
functions and methods written in other programming languages, including
C.

– Standalone Java Messaging Libraries for portability: This approach,
employed by MPJ Express [10] and FastMPJ [17], aims to provide a fully
Java portable solution. These methods implement a message-passing API on
top of a Java communication middleware, usually based on low-level Java
communication APIs such as Java Remote Method Invocation (RMI) or
Java sockets. Specific high-performance solutions for low-latency networks,
such as InfiniBand, have been implemented, for instance, through Java Fast
Sockets [17].

The second approach requires a lot of development and continuous mainte-
nance because it uses Java to implement the MPI standard for high-performance
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communication. This means that any updates to the MPI standard version or
the network require low-level code changes.

On the other hand, the first method makes development and upkeep easier. It
minimizes the Java layer and uses JNI to call MPI methods provided by native,
production-quality MPI libraries in order to achieve high-performance Java MPI
libraries. Nevertheless, JNI introduces considerable time overhead due to extra
memory copying and requires recompiling the native code when migrating the
application to a new machine.

One way to mitigate the amount of code required could involve using an
intermediate language like SWIG (Simplified Wrapper and Interface Genera-
tor) [23], which allows automatic generation of bindings for multiple languages.
However, the main issue is that using SWIG for MPI would require implement-
ing and maintaining the entire standard within SWIG. Additionally, the number
of supported languages is quite limited, and in the case of Java, it generates JNI-
based code, making it incompatible with the Foreign Function Interface (FFI)
approach explored in this work as a replacement for JNI due to the novelty of
this approach.

Currently, OpenMPI Java and FastMPJ are essentially the only two well-
maintained Java MPI libraries available in the community. The MVAPICH2
Java implementation [7, 8] is still in the maturation phase. In the absence of a
standard API for Java, older implementations [10,12] follow the mpiJava 1.2. API
proposed by the Java Grande Forum (JGF) in late 90s. FastMPJ [17] has support
for both mpiJava 1.2 and the MPJ API, a minor upgrade to the mpiJava 1.2
API. Conversely, the Java OpenMPI library [18] implements a custom API that
extends the MPJ API. Similarly, the Java MVAPICH2 bindings have adopted
the OpenMPI Java API to streamline usability for end users. Though MPI4All
follows the official MPI C interface style, a simple wrapper could address the
hypothetical requirement for compliance with any of the proposed Java APIs.

There are other languages that include some kind of support for MPI. For
example, Python supports MPI through the MPI4Py implementation [13], which
underlies on the standard MPI-2 C++ bindings. The last version is compatible
with both Python 2 and Python 3, and it supports various MPI-2 implemen-
tations like OpenMPI, MPICH, and Intel MPI. Additionally, newer alternatives
such as mpiPython [22] have emerged, providing enhanced performance along
with a communication API that closely resembles C. This design choice facilitates
a smoother transition for users familiar with traditional MPI implementations,
allowing them to leverage Python’s ease of use while benefiting from optimized
performance.

Finally, JuliaMPI.jl [11] is a Julia package for MPI. Though it supports up to
MPI 3.1 many features are not yet available. Also, it does currently not support
high performance networks such as InfiniBand, which limits its scalability to
large problems. There were also several attempts to implement MPI bindings
for Go programming language [1,3,4], but available distributions implement the
MPI Standard only partially or stop keeping updating to new MPI versions.
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Fig. 1. Architecture of MPI4All.

3 MPI4All

This section will provide a detailed explanation of the MPI4All architecture and
the steps involved in creating MPI bindings for specific target languages.

MPI4All is composed of two distinct modules: the Parser and the Generator,
as depicted in Figure 1. The Parser takes an MPI compiler installed on the
system as input. Its output, known as the blueprint, can be saved in JSON
format. This blueprint is then utilized by the Generator to produce bindings for
a particular programming language. The modular design allows the Parser and
Generator to function independently, with the ability to exchange the blueprint
file as needed.

3.1 Parser

The Parser module is designed to collect variables, functions, and data types from
an MPI implementation (like MPICH), and then organizing all the extracted
data into a structured blueprint. The information is retrieved from the MPI
compiler, which, by default, looks for the compiler in the system’s PATH using
common names (mpicc, mpicxx, mpicpp, etc.), although the user has the option
to specify a different compiler. Once the compiler is identified, the parsing process
takes place in two phases: extraction and typing.

The extraction phase involves retrieving the functions, types, and variables
defined by MPI, that are identifiable by the prefix MPI. For example, func-
tions like MPI_Send and MPI_Recv, data types like MPI_Comm, and variables like
MPI_COMM_WORLD fall under this category. First, the preprocessor-defined macros
are examined, followed by the symbols. During this initial phase, distinguish-
ing between a variable and a data type is challenging, but the functions can be
correctly detected.

The purpose of the typing stage is to determine the kind of data that has
been extracted. This enables us to distinguish between types and variables, giving
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1 {
2 "macros": [
3 ...
4 {
5 "raw": "#define MPI_COMM_WORLD

↪→ ((MPI_Comm)0x44000000)",
6 "name": "MPI_COMM_WORLD",
7 "value": "((MPI_Comm)0x44000000)",
8 "type": "MPI_Comm",
9 "var": true

10 },
11 ...
12 ],
13 "functions": [
14 ...
15 {
16 "header": "int MPI_Send (const void

↪→ *, int, MPI_Datatype, int,
↪→ int, MPI_Comm)",

17 "rtype": "int",
18 "name": "MPI_Send",
19 "args": [
20 {
21 "type": "const void *",
22 "name": "buf"
23 },
24 {
25 "type": "int",
26 "name": "count"
27 },

28 {
29 "type": "MPI_Datatype",
30 "name": "datatype"
31 },
32 {
33 "type": "int",
34 "name": "dest"
35 },
36 {
37 "type": "int",
38 "name": "tag"
39 },
40 {
41 "type": "MPI_Comm",
42 "name": "comm"
43 }
44 ]
45 },
46 ...
47 ],
48 "types": {
49 ...
50 "int": "4",
51 ...
52 "MPI_Comm": "int",
53 ...
54 },
55 }

Fig. 2. Example of a blueprint fragment using MPICH 4.1.

each function’s parameters and return values, as well as its variables, the proper
type. Several C and C++ tests that are compiled and run are used to carry
out this process. For example, it can reveal whether we are working with a
variable or a data type if a test fails to compile or compiles but fails to run
correctly. Additionally, in order to collect all the data that might be needed in
the Generator module, this process determines type size and aliases.

Figure 2 shows an example of a blueprint fragment generated with MPICH
v4.1. In this example, we can see three sections: macros, functions, and types. The
macros store preprocessor definitions, where we can observe the macro name,
its associated type, and whether it is a variable or defines a MPI-specific type.
Regarding functions, the most important data includes the function name, the
types of arguments and return, and additional information such as parameter
names or their C headers, which are useful for improving the readability of
the target bindings. Finally, the types section contains information about all
types used in macros and functions. These types are first mapped to native
language types, and in the case of native types, the number of bytes they occupy
is indicated. This can assist languages in finding type equivalences based on their
names and sizes.
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3.2 Generator

The Generator is responsible for creating source code based on a blueprint for a
specific language binding. Its objective is to translate MPI C data types, func-
tions, and macros included in the blueprint into the target language. Each pro-
gramming language has a unique generation process that employs various code
generation techniques. Each programming language has a different generation
process that uses a different set of techniques to generate code. Generator scripts
for Go and Java are part of the current MPI4All implementation. However, since
the generators are independent, they can be developed as separate projects, al-
lowing third-party users to use a blueprint to create new generators. The target
bindings and generator implementations do not always need to be written in the
same language. For example, MPI4All offers generators for Go and Java that are
written in Python.

As we commented previously, the implementation of a generator must take
into account the interoperability of C with the target language. As illustrative
examples, we will describe the design in terms of the implementation of the Java
and Go generator scripts, which can be generalized to support other languages.
The interoperability between C and Go is facilitated by the cgo tool, which
allows easy calling of C functions from Go and vice versa. Likewise, in Java, the
new Foreign Function Interface (FFI) allows for bidirectional interaction between
Java and C, facilitating the integration of native code into Java applications. In
the Go approach, interoperability is facilitated by including C headers directly
into Go code, allowing seamless interaction between the two languages. This
integration is achieved by compiling the combined codebase, ensuring that Go
and C components work harmoniously together. In contrast, Java’s FFI interacts
with pre-compiled native libraries. Because these libraries are dynamically linked
during runtime, Java can access and make use of functions that are defined in
the C code. Java uses the symbols these libraries contain to communicate with
them, creating a bridge that allows native code to run within Java applications.

Macros and data types. Go and Java do not allow calling MPI C functions
directly because the macros defined in the headers cannot be accessed. In Java,
this type of data is removed during compilation, and Go lacks access to compiler
macros as well. This limitation also applies to other programming languages.

To deal with this issue, MPI4All uses a hybrid strategy, which requires two
steps. Firstly, it generates a C auxiliary library. The primary function of this
library is to convert all macros stored in the blueprint into data types or variables.
For instance, while languages like Java require a separate file for this purpose, Go
allows embedding C code directly within a string in the code. Nonetheless, the
procedure still involves iterating over all macros in the blueprint and generating
C code using the following pattern:

– Variable:
[type] [PREFIX][name] = [name];
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1 #include<mpi.h>
2
3 MPI_Comm GO_MPI_COMM_WORLD = MPI_COMM_WORLD;
4 ...
5 MPI_Datatype GO_MPI_DOUBLE = MPI_DOUBLE;
6 ...
7 int GO_MPI_THREAD_SINGLE = MPI_THREAD_SINGLE;
8 ...
9 typedef int GO_MPI_Fint;

10 ...

Fig. 3. Example of auxiliary C code output from the generator script.

1 var MPI_COMM_WORLD = C.GO_MPI_COMM_WORLD;
2 ...
3 var MPI_DOUBLE = C.GO_MPI_DOUBLE;
4 ...
5 var MPI_THREAD_SINGLE = C.GO_MPI_THREAD_SINGLE;
6 ...
7 type MPI_Fint = C.GO_MPI_Fint;
8 ...
9 type MPI_Comm = C.MPI_Comm;

10 ...

Fig. 4. Example of Go macro binding output from the generator script.

– Data type:
typedef [type] [PREFIX][name];

where the pattern names correspond to blueprint fields and PREFIX represents
any chosen value defined in the generator.

Once applied to all macros in the blueprint, we would have a result similar to
Figure 3. Note that it is necessary to include the MPI header (line 1) to compile
the library. Once the symbols corresponding to the macros are generated, we
can use them from the target language.

The process in the second step is similar to the previous one, iterating over all
the macros in the blueprint but generating code in the target language as shown
in Figure 4 for Go. Note that in the process, variables in the target language
with the same name than the macro in C are assigned to the corresponding ones
in the C auxiliary library. In this phase, we can also iterate over the data types
defined in the blueprint and generate them along with the macros following the
same procedure (line 9).

The second step for Java is slightly more complicated because it is not possi-
ble to map compiled data types in the native C library. As illustrated in Figure
5, the FFI uses a class called MemorySegment, which represents a range of mem-
ory addresses of known size, this memory can either be newly or mapped from
existing memory. Consequently, MPI4All defines MPI types as Java classes that
extend a common class Type (line 4) containing the MemorySegment that emu-
late different types. The SymbolLookup class allows a symbol to be looked up
by its name and returns the MemorySegment without size, using the reinterpret
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1 ...
2 private static SymbolLookup lib = SymbolLookup.loaderLookup();
3 ...
4 public class Type {
5 public final MemorySegment ms;
6
7 Type(String n, int sz) {
8 this.ms = lib.find(n).get().reinterpret(sz);
9 }

10 }
11 ...
12 public class MPI_Comm extends Type{
13
14 MPI_Comm(String n){
15 super(n, (int)layout(/*size*/4).byteSize());
16 }
17 }
18 ...
19 public static final MPI_Comm MPI_COMM_WORLD = new MPI_Comm("J_MPI_COMM_WORLD");
20 ...

Fig. 5. Example of Java binding output from the generator script.

function, the appropriate size is assigned to the segment (line 8). The size of the
MemorySegment are determined through the types, and this size is stored in the
corresponding class representing the MPI type (line 15). The variables are de-
fined as instances of those classes (line 19) and are assigned to static attributes.
In the case of classes representing primitive types, these are converted to simplify
the API.

Functions. The final task of the generator script is to map the functions as
described in the blueprint to the target language. This involves generating each
function using the syntax and conventions of the considered language, using the
types specified in the previous step. In the function body, we call the corre-
sponding C function, ensuring conversion of arguments and return types, and
taking care of C error codes. Figure 6 presents the Go code for the MPI_Send
function. Parameters are seamlessly passed to the C function without conver-
sion, as we have defined their types as aliases of C types. Additionally, we have
introduced the auxiliary function mpi_check to handle return values, converting
MPI function return codes into error when they are not equal to 0.

The equivalent process in Java involves more steps, as shown in Figure 7.
First, we need to locate the function symbol within the auxiliary C library gen-
erated previously (line 5), the SymbolLookup gets the symbol and the Linker
creates an object to perform the call. Then, we define the type for each pa-
rameter and return value using MemoryLayout (line 13). Finally, we can use the
function definition to invoke it from Java (line 15). While primitive types are
automatically converted into MemorySegment using the function layout, complex
types must have their layout defined manually. Similar to Go, an auxiliary func-
tion mpiCheck is defined in Java. This function will check the return code of the
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1 ...
2 func MPI_Send(buf unsafe.Pointer /*(const void *)*/, count C_int, datatype

C_MPI_Datatype, dest C_int, tag C_int, comm C_MPI_Comm) error {
3 return mpi_check(C.MPI_Send(buf, count, datatype, dest, tag, comm))
4 }
5 ...

Fig. 6. Example of Go function binding output from the generator script.

1 ...
2 private static SymbolLookup lib = SymbolLookup.loaderLookup();
3 private static final Linker linker = Linker.nativeLinker();
4 ...
5 private static MethodHandle findMethod(String name, FunctionDescriptor function){
6 java.util.Optional<MemorySegment> ms = lib.find(name);
7 if (ms.isEmpty()){
8 return null;
9 }

10 return linker.downcallHandle(ms.get(), function);
11 }
12 ...
13 private static final MethodHandle C_MPI_SEND = findMethod("MPI_Send",

FunctionDescriptor.of(ValueLayout.JAVA_INT, ValueLayout.ADDRESS,
ValueLayout.JAVA_INT, layout(4), ValueLayout.JAVA_INT, ValueLayout.JAVA_INT,
layout(4)));

14 ...
15 public static void MPI_Send(/*(const void *)*/ C_pointer<Void> buf, int count,

MPI_Datatype datatype, int dest, int tag, MPI_Comm comm) {
16 mpiCheck(()->C_MPI_SEND.invoke(buf.ms, count, datatype.ms, dest, tag, comm.ms));
17 }
18 ...

Fig. 7. Example of Java function binding output from the generator script.

MPI function and throw a RuntimeException, analogous to how Go returns an
error.

4 Application Programming

This section outlines the process of implementing an MPI4All application, using
the calculation of π through the integral approximation method as an illustrative
example. The example demonstrates how to use MPI bindings for both Java
and Go, guiding users through the steps required to integrate MPI library into
applications written in these languages.

Figures 8 and 9 show an example of a parallelized calculation of π using MPI
in Go and Java. The program first initializes the MPI environment with MPI_Init
(line 4 Go, line 5 Java) and retrieves the rank of the current process and the
total number of processes (lines 7-8 Go, lines 9-10 Java). The total number of
rectangles n is defined, and the width h of each rectangle is calculated. Each
process then computes its local sum by iterating over a subset of the rectangles
(lines 14-15 Go, lines 17-18 Java), where the function f(x) =

√
1− x2 is evalu-

ated at the midpoint of each rectangle. The loop is distributed across processes
by using the rank to determine which subset of the rectangles each process works
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1 import ("fmt"; "math"; "mpi")
2
3 func check_error(err error) {if err != nil {panic(err)}}
4
5 func main() {
6 check_error(mpi.MPI_Init(nil, nil))
7
8 var rank, size mpi.C_int
9 check_error(mpi.MPI_Comm_rank(mpi.MPI_COMM_WORLD, &rank))

10 check_error(mpi.MPI_Comm_size(mpi.MPI_COMM_WORLD, &size))
11
12 const n = 1000000
13 h := 1.0 / n // Width of each rectangle
14 local_sum, total_sum := 0.0, 0.0
15 for i := int(rank) + 1; i <= n; i += int(size) {
16 x := (float64(i) - 0.5) * h // Midpoint for rectangle
17 local_sum += math.Sqrt(1.0 - x*x) // f(x)
18 }
19
20 check_error(mpi.MPI_Reduce(mpi.P(&local_sum), mpi.P(&total_sum), 1,

mpi.MPI_DOUBLE, mpi.MPI_SUM, 0, mpi.MPI_COMM_WORLD))
21
22 if rank == 0 {
23 fmt.Println("Estimated value of pi:", total_sum*h*4)
24 }
25 check_error(mpi.MPI_Finalize())
26 }

Fig. 8. Example of π calculation using Go bindings.

on. After the local sums are computed, the program uses MPI_Reduce (line 18
Go, line 24 Java) to combine the results from all processes, summing the local
contributions on the master process with rank 0. Finally, the master process cal-
culates and prints the approximation of π. The program concludes by finalizing
the MPI environment with MPI_Finalize (line 23 Go, line 30 Java).

The Go code shown in Figure 8 is very similar to MPI programs written in
C, with a few key differences due to Go’s language characteristics. One main
difference is that MPI functions in Go return a Go error type instead of an
integer error code as in C. This aligns error handling with standard Go practices;
we use check_error to trigger a panic if an error occurs. Another important
difference is that MPI integers in Go must be declared as mpi.C_int (line 8),
rather than the default Go int, because the number of bits in a Go int may
differ from the C int used by the MPI library. This ensures compatibility with
the MPI library, avoiding potential issues related to mismatched integer sizes.
Additionally, functions like MPI_Reduce (line 20), which in C take a void pointer,
require the use of an auxiliary function mpi.P to convert a Go pointer into a C
pointer. This functions is only for objects, Go slice/array must use mpi.PA to
expose the memory instead of the Go object that represents the collections.

In the Java MPI code shown in Figure 9, there are some differences due to
Java’s memory management and the way Java interacts with native libraries.
One key difference is the use of Mpi.C_int (lines 8-9) for MPI integers instead of
Java’s int. This is necessary because Java integers are managed by the garbage
collector and do not have a fixed physical memory address that can be passed
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1 import org.mpi.Mpi;
2 import java.lang.Math;
3
4 public class Main {
5 public static void main(String[] args) throws Throwable {
6 Mpi.MPI_Init(Mpi.C_pointer.NULL.cast(), Mpi.MPI_ARGVS_NULL);
7
8 var c_rank = Mpi.C_int.alloc();
9 var c_size = Mpi.C_int.alloc();

10 Mpi.MPI_Comm_rank(Mpi.MPI_COMM_WORLD, c_rank.pointer());
11 Mpi.MPI_Comm_size(Mpi.MPI_COMM_WORLD, c_size.pointer());
12
13 int n = 1000000;
14 int rank = c_rank.get(), size = c_size.get();
15 double h = 1.0 / n; // Width of each rectangle
16 double local_sum = 0.0;
17 for (int i = rank + 1; i <= n; i += size) {
18 double x = (i - 0.5) * h; // Midpoint for rectangle
19 local_sum += Math.sqrt(1.0 - x * x); // f(x)
20 }
21
22 var c_local_sum = Mpi.C_double.alloc();
23 var c_total_sum = Mpi.C_double.alloc();
24 c_local_sum.set(local_sum);
25 Mpi.MPI_Reduce(c_local_sum.pointer().cast(), c_total_sum.pointer().cast(), 1,

Mpi.MPI_DOUBLE, Mpi.MPI_SUM, 0, Mpi.MPI_COMM_WORLD);
26
27 if (rank == 0){
28 System.out.println("Estimated value of pi:" + c_total_sum.get() * h * 4);
29 }
30
31 Mpi.MPI_Finalize();
32 }
33 }

Fig. 9. Example of π calculation using Java bindings.

directly to C functions. In this case, Mpi.C_int acts as a wrapper that allocates
memory outside of the Java heap, providing a direct pointer that can be passed
to C-based MPI functions. Additionally, the primitive values stored in Mpi.C_int
(or Mpi.C_double for floating-point numbers) are accessed and modified using
getter (lines 14 and 28) and setter methods (line 24). Finally, when dealing
with pointers in MPI functions like MPI_Reduce (line 25), the pointer method
retrieves the memory address of the variable, and the cast method converts it
to the void* type required by the function. In Java, error handling is managed
through exceptions, which are automatically thrown and can be caught using
try-catch blocks.

5 Experimental Evaluation

Next we will evaluate the performance of the bindings for Go and Java that
currently can be generated by MPI4All. With that goal in mind, we will com-
pare their performance with respect to other state-of-the-art solutions. Since
MPI4All is agnostic regarding the MPI implementation considered, unlike other
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approaches, we will prove that it is capable of generating bindings for OpenMPI
and Intel MPI, for example.

Experiments were conducted using up to 8 computing nodes of the FinisTer-
rae III [2] supercomputer installed at CESGA (Spain). Each node contains two
32-core Intel Xeon Ice Lake 8352Y @2.2GHz processors and 256 GB of mem-
ory interconnected with Infiniband HDR 100. A 100Gb Ethernet network is also
available on all nodes. It is a Linux cluster running Rocky Linux v8.4 (kernel
v4.18.0).

5.1 Java

In this section, we present the evaluation results obtained from testing four
different Java MPI implementations. To estimate the performance of MPI4All,
we ran a selection of the NAS parallel benchmarks, which have been ported to
Java as described in the work by Mallón et al. [14]. We made some modifica-
tions to the source code in order to adapt these benchmarks to the MPI4All
Java bindings. The specific subset of Java NAS parallel benchmarks chosen for
the evaluation included five key benchmarks. The first benchmark, CG, imple-
ments a Conjugate Gradient method, which is used to compute approximations
to the smallest eigenvalues of a sparse unstructured matrix. This benchmark
is useful for testing iterative solver performance on large, sparse systems. The
second benchmark, EP (Embarrassingly Parallel), is designed to measure the
performance of parallel applications where independent tasks can be executed
concurrently without requiring any communication or synchronization between
them. It is ideal for systems where tasks can be easily split and distributed. FT,
the third benchmark, focuses on the computational kernel of a 3D Fast Fourier
Transform (FFT), testing the system’s ability to handle complex operations re-
lated to signal processing and scientific computing. The fourth benchmark, SP,
simulates a Computational Fluid Dynamics (CFD) application. It solves a Scalar
Pentadiagonal system of linear equations, which is typically encountered in mod-
eling fluid flow or heat transfer. Note that the SP benchmark requires a square
number of processors to run, rather than the more usual power-of-two configu-
ration. Finally, MG utilizes a V-cycle Multi-Grid method to solve the 3D scalar
Poisson equation. This benchmark is essential for evaluating the performance of
hierarchical grid-based solvers, which are commonly used for problems involving
partial differential equations. Together, these benchmarks provide a comprehen-
sive assessment of the MPI4All Java bindings across different types of parallel
computing tasks.

We used class D benchmarks, which correspond to considerably large problem
sizes. A strong scaling test was conducted for each benchmark, except for the SP,
using up to 128 cores (in 4 nodes, 32 cores per node), of the Finisterrae III cluster
and the Infiniband HDR 100 interconnection. The corresponding strong scaling
test for SP benchmark was carried out with various configurations of a square
number of cores up to 121 (112). Performance was measured using JDK 22.0.1,
and Java bindings were generated for OpenMPI v4.1 and IntelMPI v.2021.3.0.
Each measurement was computed as the median of five executions. Note that
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each new JDK release starting from version 19 has required to generate new
MPI4All Java bindings. This is due to the fact that the Java FFI was preview
feature of the Java Platform subject to changes. This API has been upgraded to
a permanent feature in the JDK 22 release, so it is expected to remain stable.
Nevertheless, in our case the JDK update barely involves a change in a couple
lines of code in the generation process of MPI4All Java bindings.

Also, for comparison purposes we selected and ran the same subset of the
NAS parallel benchmarks over two representative MPI Java implementations:
the FastMPJ library [17], and the official OpenMPI Java bindings [18]. The
former uses JNI to invoke networking native library primitives (including Infini-
band ones) while the later uses JNI to call MPI C primitives. It is worth noting
that the NAS benchmarks were also evaluated in the original papers introducing
FastMPJ and the official OpenMPI Java bindings.

Figure 10 shows the speedups obtained for the FastMPJ library and the
OpenMPI and IntelMPI bindings generated by MPI4All, using the official Open-
MPI Java bindings as a reference. The scalability analysis reveals varying perfor-
mance across different benchmarks. In the CG benchmark, MPI4All-IntelMPI
stands out, achieving a 3.5× speedup with 128 cores, while FastMPJ also sur-
passes OpenMPI, though to a lesser extent. MPI4All-OpenMPI remains close
to the baseline but performs slightly better. For the EP benchmark, FastMPJ
performs best, reaching up to 1.7× speedup at higher core counts, with MPI4All-
IntelMPI showing significant improvements, especially as core counts increase.
Meanwhile, MPI4All-OpenMPI shows moderate benefits. In the FT benchmark,
MPI4All-IntelMPI demonstrates excellent scalability, with FastMPJ following
closely, while MPI4All-OpenMPI shows only minor gains over OpenMPI. In
the SP benchmark, all bindings clearly outperform OpenMPI, with MPI4All-
IntelMPI leading, achieving speedups up to 2.2×. Lastly, in the MG bench-
mark, MPI4All-OpenMPI shows modest improvements over the reference, and
MPI4All-IntelMPI improves performance only at 64 and 128 cores. However, for
this benchmark, FastMPJ performs worse than OpenMPI.

Therefore, when comparing the overall behavior of the four Java MPI bind-
ings, their scalability and performance reveal clear distinctions. MPI4All-Intel-
MPI consistently shows the best scalability, performing significantly better than
the other bindings as the number of cores increases. FastMPJ also delivers strong
performance, though it slightly lags behind MPI4All-IntelMPI at higher core
counts. However, a key drawback is that the current version of FastMPJ only
supports MPI-2, and upgrading or incorporating new functionalities would re-
quire significant programming effort. MPI4All-OpenMPI generally mirrors the
performance of the reference OpenMPI, offering similar results with only minor
improvements in scalability. In contrast, the reference OpenMPI is outperformed
by the other bindings, showing degraded performance mainly due to the over-
head introduced by JNI calls to the MPI native library. Notably, the MPI4All
bindings invoke the same MPI C library functions using FFI. Therefore, the
performance improvement of the MPI4All Java bindings comes from using FFI
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Fig. 10. Speedup of the different Java MPI implementations when executing the NAS
Parallel Benchmarks (class D) using as reference the official OpenMPI Java bindings.
N is the number of computing nodes.

instead of JNI, which minimizes the cost associated with copying data from Java
to C.

5.2 Go

In this section, we will evaluate the performance obtained by the MPI Go bind-
ings generated by MPI4All. In particular, we have generated bindings for Intel
MPI version 2021.10.0. Go version 1.20.4 was used for compiling and deploying
purposes.

In our previous work [20], we have focused on evaluating the performance
of communication patterns using the Ember benchmark suite4, originally devel-
4 http://proxyapps.exascaleproject.org/ecp-proxy-apps-suite
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oped in C with MPI, which includes four key communication patterns: Halo3D
(structured nearest neighbor communication), Halo3D-26 (unstructured near-
est neighbor communication), Incast (small groups of nodes sending messages
to a single node, typical in parallel I/O systems), and Sweep3 (communication
with strong dependencies, mimicking scientific applications). Our experiments
compared the performance of the C implementation with our Go port using
MPI4All bindings. Results demonstrated that the Go implementation achieved
performance nearly identical to the C version, with performance ratios close to 1
across all patterns, highlighting the efficiency of the MPI4All bindings. Despite
Go’s garbage collector, the absence of memory allocation during communication
minimized any performance impact.

In this extended study, we shift our focus from communication patterns to
evaluating real Go-based scientific applications. We assess three key applica-
tions: the Jacobi method, a molecular dynamics simulation (md), and merge
sort (msort). The Jacobi method, an iterative algorithm for solving systems of
linear equations A ·x = b, was executed with a square matrix A of size 14k×14k.
We performed up to 1,000 iterations, with a stopping criterion based on an error
tolerance of 1× 10−6. The molecular dynamics simulation (md) aimed to study
particle motion over time. In this simulation, positions, velocities, and accelera-
tions of 64k particles were updated using the velocity Verlet integration scheme,
modeling their interaction through a central pair potential. Finally, the merge
sort (msort) algorithm, a divide-and-conquer approach to sorting, recursively
splits an array into smaller subarrays until each contains a single element, then
merges them back together in sorted order. We applied this process to sort twenty
different arrays, each containing 1 billion double-precision numbers, achieving a
time complexity of O(n log n).

These applications are highly relevant for the scientific community. The Ja-
cobi method is crucial for solving large systems of linear equations that frequently
arise in simulations related to engineering and physical sciences, such as com-
putational fluid dynamics and structural analysis. The molecular dynamics sim-
ulation is pivotal in studying the behavior of complex biological systems, such
as protein folding and drug interactions, as well as material properties at the
atomic level, which is essential for materials design and nanotechnology. Addi-
tionally, merge sort is foundational for processing large datasets generated in
scientific experiments and simulations, allowing researchers to efficiently analyze
and visualize data. As a consequence, this expanded evaluation will offer deeper
insights into Go’s performance in high-performance computing scenarios.

Our experiments focus on comparing the performance of the original C code
of the applications with our Go port implementation, which utilizes MPI4All
bindings (see Figures 11 and 12). The performance analysis of the three parallel
applications—Jacobi, Molecular Dynamics and Merge Sort—implemented in C
and Go demonstrates significant speedups relative to their sequential execution,
with varying degrees of improvement as the number of cores increases to 512.
In Jacobi, C achieves a speedup of around 276× when using 512 cores, whereas
Go achieves a speedup of about 265×. At 512 cores, Go is approximately 13.3%
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Fig. 11. Scalability of the original MPI C implementation of the scientific applications
and the Go one that uses the bindings generated by MPI4All.

slower than C, with the C/Go ratio decreasing from 0.92 to 0.88, further reflect-
ing Go’s relatively slower performance. For Molecular Dynamics, C achieves a
speedup of roughly 315× with 512 cores, while Go achieves a speedup of about
305×. At 512 cores, Go is approximately 8.3% slower than C, with the C/Go
ratio decreasing from 0.95 to 0.92, demonstrating a consistent gap in perfor-
mance. For Merge Sort, C achieves a speedup of approximately 139×, while Go
speedup is about 136× using 512 cores. At this level, Go is approximately 3.4%
slower than C, with the C/Go ratio decreasing from 0.99 at 1 core to 0.97 at 512
cores, indicating consistent performance across the board. Overall, both C and
Go exhibit substantial speedups in parallel execution compared to sequential
performance, with significant improvements observed across all applications as
the number of cores increases. However, as expected, C consistently outperforms
Go, with performance differences at 512 cores being up to 13.3% in favor of C
in the Jacobi application. In any case, the seamless integration of C into Go has
enabled MPI4All to produce a binding library with performance close to that of
a C implementation.

Note that while other MPI Go bindings exist [1,3,4], none can fully implement
the above applications due to limitations in asynchronous communication and
Intel MPI support.
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Fig. 12. Performance ratio between the original MPI C implementation of the scientific
applications and the Go one that uses the bindings generated by MPI4All.

6 Conclusions

In this paper, we describe in detail MPI4All5, an innovative tool aimed at fa-
cilitating the creation of MPI bindings for any programming language. Adding
support for new languages merely requires developing a script that maps MPI
C macros, functions, and data types to the target language. Notably, unlike
other approaches, MPI4All is not tied to a specific MPI implementation; it is
compatible with all of them. Once the script for a programming language is
available, generating bindings for the complete API of any MPI implementation
(and version) takes seconds. This ensures completeness and avoids maintenance
issues.

MPI4All includes scripts for generating MPI bindings for the Go and Java
programming languages. We evaluated these bindings in terms of performance
compared to other state-of-the-art solutions. The MPI4All Java bindings for
OpenMPI and IntelMPI clearly outperform the official Java OpenMPI bindings
when running several NAS benchmarks. While FastMPJ also provides consis-
tent performance, it is important to note that it only supports MPI-2 routines.
Regarding Go, the MPI4All bindings for Intel MPI achieve performance similar

5 It is publicly available at https://github.com/citiususc/mpi4all
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to that of the native Intel C MPI library when running several relevant scientific
applications.
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