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Abstract—The rapid advance of quantum computing has
highlighted the need for scalable and efficient software infras-
tructures to fully exploit its potential. While current quantum
processors have significant scalability problems due to the limited
number of qubits on each chip, distributed quantum computing
offers a promising solution by networking multiple quantum
processing units (QPUs). To support this paradigm, robust
intermediate representations (IRs) are crucial for translating
high-level quantum algorithms into executable instructions across
distributed systems. This paper introduces NetQIR, an extension
of Microsoft’s Quantum Intermediate Representation (QIR),
specifically designed for distributed quantum computing. NetQIR
is designed to meet the specific needs of distributed quantum
systems by incorporating functions to manage quantum and
classical communications between QPUs. The main objective is
to facilitate the development of new distributed compilers by
improving the integration and execution of quantum programmes
in a distributed infrastructure, taking advantage of modular
architectures to improve scalability. By extending QIR to support
distributed quantum computing, NetQIR aims to complement
and add capabilities to an already supported quantum IR
and, at the same time, take advantage of the tools previously
created for QIR. Throughout this paper the specification of the
intermediate representation is introduced, including the basic
instructions necessary to enable distributed quantum computing
in an abstract form independent of the target machine.

I. INTRODUCTION

The evolution of computing has progressed from simple
mechanical calculators to modern-day classical computers,
which have significantly transformed numerous fields includ-
ing science, engineering, and everyday life. Despite these
advances, classical computers face limitations in solving cer-
tain complex problems efficiently, such as factoring large
numbers, simulating quantum systems, and optimising large-
scale systems [12], [22]. This has led to the emergence of
quantum computing, which leverages the principles of quan-
tum mechanics to process information in fundamentally new
ways, offering the potential to solve these intractable problems
more efficiently than classical computers can achieve [8], [27].

Over the last few years, the development of a comprehensive
software stack for quantum computing has gained importance
in order to be able to program quantum devices in a scal-
able and easy way. This software stack includes quantum
high-level languages, compilers, and runtime environments,
designed to enable the programming and execution of quantum

algorithms on quantum devices [17], [20]. High-level quantum
programming languages such as Q# [32], Quipper [16] or
Qiskit [2] facilitate the development of quantum algorithms
by abstracting the complexities of quantum hardware [30].

For the efficient development of these software tools, quan-
tum code compilers will play a crucial role. A compiler
is a software that translates high-level languages into low-
level instructions that quantum processors can execute [1]. In
classical computing, the concept of IR is introduced as an
abstract-machine code to facilitate the development of new
compilers [31]. This concept is extended in the world of quan-
tum computing to allow a common IR for target high-level
languages and a starting point for low-level instructions. The
main objectives of using an IR is to optimise the quantum code
and ensure compatibility with various hardware backends [18],
[24].

Despite these advances, one of the critical challenges in
quantum computing remains the scalability and noise of the
qubits. Current quantum hardware is limited by the number
of qubits that can be reliably maintained and manipulated on
a single chip, thus complicating the development of more
complex algorithms [3]. These limitations have led to the
development of new computing approaches, one of which
is distributed quantum computing (DQC) in modular archi-
tectures where multiple QPUs are networked together to
work on a problem collaboratively [6], [21], [36]. DQC uses
both quantum and classical communications to distribute and
synchronise computations across QPUs, thereby potentially
overcoming the scalability constraints of individual quantum
chips [5], [23], [28].

DQC introduces the need for an IR that can efficiently han-
dle the complexities of distributing quantum operations across
multiple QPUs in addition to represent quantum communica-
tions as classical. Currently there is no distributed quantum
IR that allows interoperability between other languages or
systems, therefore this requires the extension of an IR for
quantum computing such as Microsoft’s QIR, with the goal
of extending existing features with new communications and
distributed computing directives.

NetQIR, our proposed extension to QIR, aims to address
these challenges by providing an IR specifically designed for
DQC. The main objective is to adapt QIR, an IR commonly
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used because it is based on LLVM IR and allows taking
advantage of the optimisations already developed for these
systems, thus obtaining an IR with greater interoperability and
machine-abstract independence. In order to properly explain it,
first, in Section II the related work to this one is presented.
Here both DQC IRs and other distributed quantum works
are presented. Then, in Section III the protocols in quantum
communication are presented: teledata and telegate. After all
the concepts required are introduced, in Section IV the NetQIR
data types and functions are introduced and thoroughly ex-
plained. After this, and looking to exemplify the difference
between the functions presented in the previous section, in
Section V a representative example is presented with two
different implementations shown and compared. Finally, in
Section VI, a set of conclusions in stated, along with the future
work that this article leaves ahead.

II. RELATED WORK

Regarding the related work, not a lot of IRs have been
considered for DQC in contrast with the notable amount of
them developed for monolithic quantum computing. In fact,
not a lot of high level languages—or even libraries—have also
been developed. A more exhaustive analysis on this can be
found in a review of the DQC state of the art by Barral et al.
[5].

From monolithic quantum computing we will highlight only
one IR and that has already been mentioned in the previous
section. It represents the core and the starting point of our
work: Microsoft’s QIR [26]—-from now on, it will be referred
to as QIR—. This IR is based on the LLVM IR [14] in
an attempt to integrate quantum computation into the LLVM
infrastructure. LLVM is a versatile framework for building
compilers and code transformation tools. It lets developers
write high-level language code that can be efficiently compiled
to machine code for various architectures, with extensive sup-
port for code optimisation and analysis. Among the multiple
tools and softwares included in LLVM there is the aforemen-
tioned LLVM IR which bridges the gap among the multiple
front-ends to the architectures. Back to QIR, this approach of
extending the LLVM IR to include quantum directives aims to
achieve an integration with the classical compilation stack in
order to benefit from its advanced tools to facilitate the path of
producing high efficient quantum instructions. This work will
extend QIR—and, therefore, it will further extend the LLVM
IR—by adding the necessary directives to perform quantum
communications. Throughout this manuscript this extension
will be explained and exemplified.

Now, regarding the quantum communications, there are
some works that are considered the basis of this one. First of
all, there is the Quantum Message Passing Interface (QMPI)
[17]. As its own name implies, it represents an adaptation of
the classical Message Passing Interface (MPI) [13] protocol
for quantum communications. In this work, they observed a
clear analogy between the classical send and receive directives
with the quantum send and receive directives and they took
advantage of this analogy to define them. Moreover they differ

between copy semantics and move semantics. These terms
are usually referred to, in the literature, as telegate or remote
gate—for the copy semantics—and teledata or teleport—for
the move semantics—. We will understand the difference when
talking about the communication directives in the following
section [34].

They also defined collective operations, which do not
present the same analogy to classical ones. This is mainly
due to a reason: the non-cloning theorem. The fact that
arbitrary quantum data cannot be copied erases the possibility
of having collective operations in quantum communication
that operate on data as collectives operations do in classical
communications. For instance, a classical broadcast sends a
copy of a specified data to every node on the communicator.
A quantum broadcast cannot be implemented following this
scheme because it would not be allowed to send a copy of the
quantum data to each node. QMPI tries to solve these problems
regarding collective operations, as it also tries this work. In
future sections our collective operations are presented and the
pertinent comparison with the ones introduced by QMPI is
made.

In terms of IRs for DQC two are found: InQuIR [25]
and NetQASM [9]. The first one, InQuIR, is developed from
the starting point solely as an IR for DQC. Their primary
motivation stemmed from the absence of a dedicated IR for
distributed quantum systems. InQuIR stands out for formally
defining the grammar of the IR. Using this formal syntax it
defines the operational semantics of the IR, which allows to
define and predict how the InQuIR programs will behave under
several circumstances. They even propose some important ex-
amples as deadlocks and qubit exhaustion, and they propose a
roadmap solving these type of inconveniences. But InQuIR has
several drawbacks: the syntax definition is quite inconsistent,
mixing quantum and classical data without differentiating, and
it provides a too low level approach with explicit generation of
the Einstein-Podolsky-Rosen (EPR) pairs and instructions that
acknowledge the architecture of the machine, which should
be left to the backend, not to the IR. The InQuIR it also
contributes with a toy compiler which, by giving it a QASM
code and an architecture returns the corresponding InQuIR
code. This exemplifies the abstraction problem that InQuIR
presents: an IR should be platform independent.

As an alternative, as we already mentioned, there is
NetQASM [9]. NetQASM is not so clearly defined as an IR
from the get-go as InQuIR is. This is because it is much
more than that. NetQASM presents an abstract model of the
architecture composed by an application layer—responsible
for the classical communications between nodes—and a so
called quantum network processing unit (QNPU)—responsible
for the quantum computations and communications—. This
hints the scope of NetQASM: the Quantum Internet. This
means, it is thought for quantum networks and sets aside
the between-cores communications which do not need these
extra layers that NetQASM presents. Moreover, NetQASM
presents a basic language, called vanilla, and a set of variations
specifically designed for the different quantum architectures,



called flavours. As they themselves state, the vanilla version
acts as an IR and the different flavours act as the assemblies.
NetQASM, as an IR for DQC, has the main disadvantage that
requires the aforementioned abstract model so much network-
oriented. It also does not consider conditional gates, which
are constantly employed in quantum communication protocols,
as part of the IR. What they actually do is performing a
measurement, sending the result to the application layer and
waiting until the application layer returns a subroutine with
the gate—if the measurement was 1—or without the gate—in
the opposite case—.

As it can be noticed, every work here mentioned has some
aspects that, from our point of view, suppose or could suppose
a drawback for an IR. We will try to resolve all of these
inconveniences presented in the different works here exposed.
Along the work there will be references to these problems in
the precise points where our proposal presents a response to
one, or more, of them.

III. COMMUNICATION PROTOCOLS

Quantum communication is an exploitation of one of the
main features of quantum computing: entanglement. Because
of this, there are a large number of variants for communicating
quantum information using specific protocols, each with its
advantages and disadvantages [10], [11].

This section explains the two communication protocols
considered to perform quantum information sharing for DQC:
teledata and telegate. In this case, both techniques use an
entangled EPR pair, with one qubit of the pair residing on
a QPU and the other qubit located on a physically separated
QPU. Those EPR pairs are employed to create a link between
the two QPUs, allowing, through sending and receiving clas-
sical information from measurements of specific qubits, the
quantum data to travel from one QPU to the other.

Figure 1 shows the basic structure of the teledata [7] (in
Figure 1a) and the telegate [15] (in Figure 1b). The objective is
the same in both techniques, starting from a state |a⟩ = α|0⟩+
β|1⟩ it is necessary that the QPU2 (remote) can compute using
this information through the EPR pair |Φ+⟩. Each protocol is
explained below:

The effect of the first one, the teledata protocol, is to
transmit the state of the qubit |a⟩ in the QPU1 to an empty
qubit in QPU2. This transmission involves a teleportation of
the quantum state, so that at the origin the qubit collapses
when measured and is transmitted to the destination qubit.

On the contrary, the effect of the latter, the telegate protocol,
is to generate a pair in the state α|00⟩ + β|11⟩ where the
first qubit of the pair is in the QPU1 and the second qubit
is in QPU2. This second qubit is used as a control qubit
for a controlled operation. Taking into account that the qubit
intended for use as control is of the form |a⟩ = α|0⟩+ β|1⟩,
it can be observed that using the second qubit of the pair
will have the same effect, performing a controlled operation
in QPU2 with the state of the qubit in QPU1.

The main difference that can be observed between teledata
and telegate is that in the former the status is transferred and

the computation is performed locally. On the other hand, in
the case of telegate, the state is not transferred since quantum
gates are performed remotely.

Table I compares both techniques by evaluating four char-
acteristics of interest for this type of protocol:

1) Collapsed qubit: indicates whether the source qubit
collapses once the protocol is executed, thus being
necessary a reset of the qubit.

2) Entanglement result: refers to the scope affected by the
entanglement generated between the remote and local
qubit. This entanglement can be local to the computation
node or global to the distributed system.

3) Measures: how are the measures to be taken to imple-
ment the protocol.

4) Number of synchronizations: the number of synchro-
nizations between the QPUs needed just to execute the
communication protocol.

Characteristics Collapsed
qubit

Entanglement
result Measures Number of

synchronisations

Teledata ✓ Local Local - Local 1
Telegate ✗ Global Local - Remote 2

TABLE I: Comparative features between teledata and telegate
techniques.

As can be seen, in the case of teledata the qubit collapses
when sending the information, requiring a future reset. This
occurs because the quantum state is completely transferred to
the target node, therefore the operations will be performed
locally and, as a consequence, the generated entanglement
will also be local. On the other hand, the measurements are
performed at the same time in the two qubits local to the
QPU, therefore it will only be necessary to synchronise the
two QPUs once.

In the case of telegate it is completely different, since
the quantum information is shared as a reference, without
destroying the qubit, so it will not be necessary to reset it
at any time. Since a reference is shared, it also implies that
the entanglement generated will be global to the distributed
system. Finally, an initial measurement is performed locally
and the last one in the remote QPU, therefore two isolated
synchronisations between the QPUs will be necessary. This
second synchronisation, also known as Cat-DisEnt, is up to
the compiler to decide when it should be applied, especially
when the qubit is no longer used.

As can be seen after observing both protocols, both have ad-
vantages and disadvantages and there is no clear predominant
option, being very variable the decision taken depending on
the problem to be solved, therefore the proposed specification
will take into account both options.

IV. FUNCTIONS AND DATA TYPES ADDED BY NETQIR

In this section we are going to cover the different functions
and data types added by NetQIR. In a lot of ways these
present a resemblance with MPI. This is intentional and
happens for two main reasons: the years of research behind
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(a) Teledata.
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(b) Telegate.

Fig. 1: Examples of teledata and telegate circuits for the application of CZs.

classical communications and the intention of facilitating the
understanding of NetQIR directives in a high-performance
computing (HPC) environment (that is, precisely, where they
are going to be employed).

First of all, classical communications research come a long
way. This is something which cannot be simply ignored and,
in fact, the mistakes made in this area have to be taken into
account to avoid committing them again. MPI was thought to
be a robust, long-term standard for enabling communication
in parallel computing environments, but the aim of most
researchers at the time was to find an automatic parallelisation
technique that avoided the need of explicitly formulate the
communication [4], [19], [33]. In DQC something similar is
happening with the automatic partitioning of circuits, which
is equivalent to an automatic graph partitioning problem and
this is considered a NP-hard problem [29]. And this is the
main reason why NetQIR adopts a similar approach to MPI in
classical communications. Nevertheless, a lot of the literature
[5] regarding DQC revolves around finding automatic circuit
partitioning methods employing a graph representation. In this
work, the automatic partitioning methods are not completely
discarded. In fact, the developer can implement or use them
provided that they transform the code to the NetQIR syntax.

And, secondly, employing a MPI-like syntax in NetQIR can
also facilitate the understanding of the directives. This is due
to the fact that HPC and quantum computing are two very
different fields that need each other. In this case, NetQIR is an
HPC software that aims to target quantum computing devices.
If this software follows a syntax similar to a widespread
software as MPI is, the learning curve will be much more
affordable than if NetQIR is completely different. Being an
extension of QIR also reiterates on this idea, because a lot
of the data types and functions employed are going to be the
same (for instance, quantum gates and measurements).

Once this similarity with MPI has been addressed and
justified, is time to talk about the implemented functions and
data types. A specification of the functions and their arguments
has been developed in order to formally display the NetQIR

extension [35]. Here we will further explain the concepts
specified there.

First, we will talk about the data types added. The data
types added on top of the QIR data types are groups and com-
municators, referred to as %Group and %Comm. These two
types encapsulate the same concepts as in classical computing,
meaning that they are responsible of defining the scope of the
functions and grouping subsets of nodes. The only difference
is that the nodes, in this case, are quantum nodes, i.e., QPUs.

Regarding the functions, they can be grouped in three cate-
gories: state functions, data type functions and communication
functions.

• State functions. There are only two functions for
this type which are called __netqir__init and
__netqir__finalize. As their names indicate, they
are responsible for initialising and finalising, respectively,
the distributed environment.

• Data type functions. These type of functions are re-
sponsible of interacting with the new data types: groups
and communicators. This is, basically, create and obtain
information about them and the nodes contained by
them—as, for instance, information about the topology1

of a communicator—.
• Communication functions. These are the quantum com-

munication directives and, so, they they represent the
most important group of functions. As we have already
mentioned, they include point-to-point and collective
communication directives. But this will be further ex-
plained in the following section.

In order to simplify the manuscript, the data type functions
are not going to be further explained. The reason for doing
this is because the concept of these functions is very similar
to those in the MPI standard. Groups and communicators are
widely employed in classical communications and so are their
associated directives. For further reading about these functions

1In this context, when talking about topology the concept referred to is not
the quantum topology, but the node topology inside a communicator.



and their use we refer the reader to the aforementioned
specification [35].

A. Communication functions

Now the bread and butter of this work is arrived at:
quantum communication directives. As already hinted, the
communication directives will be of two types: point-to-point
and collective. The first one, the point-to-point directives,
are responsible for communication solely between two nodes,
while collective directives represent one-to-many communica-
tion. Point-to-point directives will be explained first and then
collective ones, in order to progress from a simpler to a more
complicated perspective.

1) Point-to-point communication: Point-to-point commu-
nication in quantum computing is exactly the same as in
classical computing in the sense that one node sends/receives
information to/from another node. The only thing that changes
is the fact that in the classical case the information is purely
classical and in the quantum one could be classical or quantum
information.

In Table II we can see these functions. They are divided in
two subgroups: the sending and the receiving functions. The
names of the subgroups are self-explanatory: the first one is
responsible of sending the information and the second one of
receiving it. Even more, we can notice that for every sending
function there is a receiving function as a counterpart. This
fact is not arbitrary, this is due to the fact that for every send
function in a node, there has to be the specific counterpart
receive function in the destination node, and vice-versa. If not,
the result might be arbitrary or, depending on the compiler, a
compilation error could be thrown.

Talking about the sending functions, first we will talk
about the most basic function: __netqir__qsend. It rep-
resents the part of the circuit in the sending QPU (that in
Figure 1 corresponds to QPU1) of both the telegate and
the teledata. We say both because this function leaves to
the compiler the choice between teledata and telegate. If
the user wants to use one of the two protocols specifi-
cally it needs to use __netqir__qsend_teledata or
__netqir__qsend_telegate, depending on whether the
desired protocol is teledata or telegate, respectively. Lastly,
we specified the function __netqir__measure_send.
This corresponds to the sending of one classical bit from a
measurement. This function is implemented to allow the user
in the frontend to develop their own quantum communication
protocol. This way, if any other protocol arises, it can be
implemented and compared with the telegate and teledata
without the need of using another IR. Moreover, each of these
recently explained functions have a version with the “array”
tag in their name. This tag just indicates that, instead of just
sending one qubit, an array of qubits is being sent. This
means that it just changes the type of data of the function.
Now, regarding the receive functions, each sending function
in Table II has at the same level its receiving counterpart. So
the explanation that we just made for every sending function
is analogous for its receiving counterpart.

It must be specified that, for instance,
if in one node the function employed is
__netqir__qsend_teledata, then the receiving
node has to employ __netqir__qrecv_teledata.
Using __netqir__qrecv_telegate would end up in a
bad result because two parts from distinct protocols would not
correctly match and, therefore, give an unexpected result. The
only functions that could be employed with more flexibility
are the __netqir__qsend and the __netqir__qrecv.
This is because they do not specify which protocol they are
using and, therefore, if the other node does, it simply changes
to the specific protocol. Again, with the array functions
happens exactly the same, but with a change in the data type.

Something that can be noticeable in this variations on
the sending and receiving functions is the fact that both
the protocols and the data sent could be specify inside the
__netqir__qsend and the __netqir__qrecv func-
tions, without the need of specifying so many different di-
rectives. This is done in order to facilitate possible compiler
optimisation. If these variations were flaged with an argument
of a function, they would be unknown for the compiler.
This could present a problem for the compilers, because they
may not be able to perform some optimisations due to the
impossibility of knowing the type of data sent or the protocol
employed. This way everything is transparent for the compiler
in case it is of interest for a given optimisation.

Also, we mentioned in the related work that InQuIR had
some problems: problems in the syntax definition and in the
low level approach that they took by specifying the creation
and the entanglement swapping between cores. It can be noted
that with the solution presented in this work the syntax is
not a concern because is inherited from the LLVM IR and,
more important, the EPR generation and the entanglement
swapping directives are completely separated from the IR.
They are left as a responsibility of the compiler to the
backend, that is the one that actually knows the architecture
of the machine below (and, therefore, its connectivity). We
also said that NetQASM presented some inconveniences: the
tax of the abstraction model and the non-inclusion of the
conditional gates as a possible operation. Here, we never
imposed an abstract model for the programs and, regarding
conditional gates, they are implemented as a classical if
instruction, but inserting inside the if the conditioned quan-
tum gates. We even allow conditional gates between nodes
by adding the function __netqir__measure_send and
__netqir__measure_recv (and its “array” counterparts)
to send the results of a measurement to another node, as has
been already explained.

2) Collective communication: As previously mentioned,
qsend and qrecv are the essential primitives to perform
distributed computing between QPUs, but they are not always
going to be the most efficient or convenient use, which is why
collective communication directives are introduced.

Collective communication in NetQIR is designed to sup-
port sophisticated interaction patterns essential for distributed
quantum computing. Unlike point-to-point communications,



Point-to-point communication functions

Sending functions Receiving functions

netqir qsend array (Array*, i32, i32, Comm*) netqir qrecv array (Array**, i32, i32, Comm*)
netqir qsend array teledata (Array*, i32, i32, Comm*) netqir qrecv array teledata (Array**, i32, i32, Comm*)
netqir qsend array telegate (Array*, i32, i32, Comm*) netqir qrecv array telegate (Array**, i32, i32, Comm*)
netqir qsend (Qubit*, i32, Comm*) netqir qrecv (Qubit**, i32, Comm*)
netqir qsend teledata (Qubit*, i32, Comm*) netqir qrecv teledata (Qubit**, i32, Comm*)
netqir qsend telegate (Qubit*, i32, Comm*) netqir qrecv telegate (Qubit**, i32, Comm*)
netqir measure send array (Array*, i32, i32, Comm*) netqir measure recv array (i1*, i32, i32, Comm*)
netqir measure send (Qubit*, i32, Comm*) netqir measure recv (i1*, i32, i32, Comm*)

Collective communication functions

netqir scatter (Array*, i32, Array*, i32, i32, Comm*) netqir expose (Qubit*, i32, Comm*)
netqir scatter teledata (Array*, i32, Array*, i32, i32, Comm*) netqir expose array (Array*, i32, i32, Comm*)
netqir scatter telegate (Array*, i32, Array*, i32, i32, Comm*)
netqir gather (Array*, i32, Array*, i32, i32, Comm*) netqir reduce (Array*, i32, Array*, i32, i32, Comm*)
netqir gather teledata (Array*, i32, Array*, i32, i32, Comm*) netqir reduce teledata (Array*, i32, Array*, i32, i32, Comm*)
netqir gather telegate (Array*, i32, Array*, i32, i32, Comm*) netqir reduce telegate (Array*, i32, Array*, i32, i32, Comm*)

TABLE II: NetQIR functions: point-to-point and collective.

collective communications involve operations where multiple
quantum processing units (QPUs) participate in a coordinated
manner.

The functions specified are intended to be similar to those
used in classical distributed computing, with the objective of
facilitating the understanding of the high-performance com-
puting user. These functions are related to the scatter,
gather, reduce and, finally, expose operations. It should
be noted that, due to the non-cloning theorem of quantum
computing, the function specifications do not exhibit the same
behaviour as their classical alternatives. For example, it is
not possible to send a copy of a quantum value to one or
more other QPUs, so a broadcast function is meaningless,
but it can be replaced by the expose function: instead of
sending a copy, a reference to the qubit is exposed. This allows
the communicator QPUs to modify the exposed qubit using
quantum theory.

First of all, the directives that facilitate the distribu-
tion and collection of quantum information collectively are
__netqir__scatter and __netqir__gather with
similar operation to their respective classical functions. The
scatter function distributes an array of qubits from one
QPU to several others, enabling parallel processing of quantum
data. On the contrary, the gather function collects qubits
from multiple QPUs and consolidates them into a single QPU.

It is important to note that, like the point-to-point functions,
the collective directives also have a teledata or telegate option
that the user or the compiler can choose depending on the char-
acteristics previously explained. Figure 2 shows the evolution
of a quantum system when applying a scatter and a gather
using the teledata technique, observing how the computation
node loses the data when sending it due to the non-cloning
theorem.

Moreover, the __netqir__reduction directive has
been added. This allows collecting information from a set of
remote qubits to which an operation is applied to obtain a final

GatherScatter

Computational node Local qubit

Step 1 Step 2 Step 3

Fig. 2: Example on the use of a scatter teledata on a qubit
array (step 1 to 2) and the use of the inverse gather teledata
operation (step 2 to 3).

result.
This type of directive could be replaced by others that

have already been defined, such as a scatter-gather or
qsend-qrecv, but the specific use of reduce implies two
main advantages: simplifying code complexity and enhancing
computational efficiency.

Firstly, it reduces code complexity. It is easy to see if a
multi-controlled CNOT is performed, in which the target node
would have to do as many qrecv as there are remote nodes.
With the reduce directive, only this function would be called,
making the code more readable.

Secondly, it enhances computational efficiency. In terms of
efficiency, there are purely collective and reduction operations,
such as the multi-controlled gates or the qubit parity check,
which can be optimised in a more specific way if the compiler
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QPU1: |q1⟩ H R1 R2 Rn

QPU2: |q2⟩
QPU3: |q3⟩

QPUn: |qn⟩

Fig. 3: Use case for using the __netqir__expose directive
on the |q1⟩ qubit because it is the target of the rest of the
remote qubits.

QPU1: |q1⟩

QPU2: |q2⟩
QPU3: |q3⟩

QPU4: |q4⟩

Fig. 4: Use case for using the __netqir__expose directive
on the |q1⟩ qubit because it is the target of the rest of the
remote qubits.

is told so, instead of with a succession of qsend and qrecv
without semantic meaning.

Finally, in classical computing there is the broadcast
function with the main objective of send a copy of a value to all
nodes. In quantum computing it is not possible to make copies
of quantum information due to the non-cloning theorem, as
explained above, for this reason the __netqir__expose
directive has been defined, with a similar operation to the
classical broadcast. This function is based on the use of
the telegate communication technique to share a reference of
the qubit(s) to another set of QPUs. Therefore, this means that
if a QPU modifies the value of the qubit, this modification will
be visible to the entire distributed system, differing from the
classical broadcast in which copies of values are shared.

The contribution of the directive is to be able to facilitate
the sharing of a set of qubits local to the QPU to the full
complement of communicator compute nodes. This will be
very useful to improve the efficiency of different operations,
especially in those where all nodes need to use a qubit as a
target or control (as shown in Figure 3), as for example in the
case of the distributed QFT algorithm.

V. COMPARATIVE METHODS

Now, in order to compare point-to-point directives and
collective directives, an example code of NetQIR will be
displayed. The example in question is based on Figure 4.
This circuit is a clear example of how the reduce and the
expose directives, both collectives directives, can significantly

decrease the size of the code. First, a multi-CNOT, as it was
hinted before, is the perfect operation for a reduce directive.
This operation is followed by several CNOTs, each of them
with a control qubit in a different node, which represent the
perfect case for applying an expose operation as it was already
shown in 3.

Regarding the code, in Figure 5 it can be seeing the circuit
under consideration implemented by using only point-to-point
directives. In order to simplify and reduce the size of the
example code several LLVM elements have been eliminated:
the “declare” statements at the end of the file, the definition of
the data types as opaque types (for %Qubit, %Array...) and
the implementation of the loops, which require lots of lines of
code in LLVM IR. It also needs to be mentioned that, because
the development in QIR is at an early stage, there is not defined
a multi-CNOT gate. Therefore, it is left as indicated in the
example code. Back to the code, a lot of lines of code and
even the use of loops is employed for performing the required
operations to construct the circuit. On the contrary, in Figure 6,
a much simpler code is shown. It eliminates the need for loops
and, therefore, improves the amount of code displayed for this
operation. The specific way of performing the expose and the
reduce are left to the compiler. If the compiler desires to,
it can even translate the collective operations to the point-
to-point analogous. But the fact that the compiler can decide
how to perform this operations provides versatility to the code
and, even better, possibilities for optimisations and efficient
implementations at low level.

VI. CONCLUSIONS

As a conclusion to this work, a novel IR for distributed
quantum systems is proposed, called NetQIR, as an extension
of the already employed QIR. As every IR, it is thought to
be employed as an intermediate point for the frontend and the
backend. This was considered the whole time while developing
the specification in order to achieve the suitable level of
abstraction, as shown in comparisons with InQuIR and the
vanilla version of NetQASM—the other IRs for distributed
quantum systems that are available nowadays, at the best of
our knowledge—. This was facilitated by being an extension
of an already specified one as QIR is.

In this search for the suited abstraction, the definition of
MPI-like functions as send and recv resulted in a desirable
path for creating simple primitives to achieve an exchange of
communication in point-to-point communications. Along with
these directives came the ones associated with one-to-many
communication, also referred to in this work as collective
operations. These allowed for a higher abstraction layer from
the backend for those specific cases of communication.

As future work, implementing a compilation toolchain with
NetQIR as the intermediate code would be perfect for test-
ing and improving the IR. For instance, this could allow a
whole group of optimisations to be implemented and tested.
These optimisations could go from a simpler approach as the
elimination of redundant communication operations to a more



1 define void @main(i32 noundef %0, ptr noundef %1) #0 {
2 entry:
3 ; Variable allocation
4 %2 = alloca i32, align 4
5 ; Init the NetQIR communication and get the rank of the process
6 %3 = call i32 @__netqir__init(i32 noundef %0, ptr noundef %1)
7 %4 = call i32 @__netqir__comm_rank(%Comm* @netqir_comm_world, ptr %2)
8
9 ; ----------------------- REDUCTION DIRECTIVE -----------------------

10 ; Choose if it is the process receiving or sending the qubit
11 %5 = load i32, ptr %2, align 4
12 %6 = icmp eq i32 %5, 4
13 br i1 %6, label %7, label %9
14 ; Process sending
15 7:
16 %8 = call i32 @__netqir__qsend(%Qubit* %a, i32 noundef 1,
17 %Comm* @netqir_comm_world)
18 br label %exit1
19 ; Process receiving
20 9:
21 ; <<<<<<<<<<<<<<<<< This code is inserted in a loop or repeated three times
22 %10 = call i32 @__netqir__qrecv(%Qubit** %b, i32 noundef 0,
23 %Comm* @netqir_comm_world)
24 %B = load %Qubit*, %Qubit** %b, align 8
25 ; >>>>>>>>>>>>>>>>>
26 ; Here it would go the QIR instruction for a multicontrolled CNOT
27 exit1:
28
29 ; ----------------------- EXPOSE DIRECTIVE -----------------------
30 ; Choose if it is the process receiving or sending the qubit
31 %11 = load i32, ptr %2, align 4
32 %12 = icmp eq i32 %11, 0
33 br i1 %12, label %13, label %15
34 ; Process sending
35 13:
36 %14 = call i32 @__netqir__qsend(%Qubit* %d, i32 noundef 1,
37 %Comm* @netqir_comm_world)
38 br label %exit2
39 ; Process receiving
40 15:
41 ; <<<<<<<<<<<<<<<<< This code is inserted in a loop
42 %10 = call i32 @__netqir__qrecv(%Qubit** %e, i32 noundef 0,
43 %Comm* @netqir_comm_world)
44 %E = load %Qubit*, %Qubit** %e, align 8
45 call void @__quantum__qis__cnot__body(%Qubit* %E, %Qubit* %f)
46 ; >>>>>>>>>>>>>>>>>
47 ; Leave the if-else
48 exit2:
49 ; End of the program
50 %11 = call i32 @__netqir__finalize()
51 }

Fig. 5: Example employing point-to-point directives.



1 define void @main(i32 noundef %0, ptr noundef %1) #0 {
2 entry:
3 ; Variable allocation
4 %2 = alloca i32, align 4
5 ; Init the NetQIR communication and get the rank of the process
6 %3 = call i32 @__netqir__init(i32 noundef %0, ptr noundef %1)
7 %4 = call i32 @__netqir__comm_rank(%Comm* @netqir_comm_world, ptr %2)
8
9 ; ----------------------- REDUCTION DIRECTIVE -----------------------

10 ; Choose if it is the process receiving or sending the qubit
11 %5 = load i32, ptr %2, align 4
12 %6 = icmp eq i32 %5, 4
13 br i1 %6, label %7, label %9
14
15 ; Process sending
16 7:
17 %8 = call i32 @__netqir__reduce(%Array* %a, i32 noundef 1,
18 %Array* null, i32 noundef NETQIR_MULTICNOT,
19 i32 noundef 4, %Comm* @netqir_comm_world)
20 br label %exit
21 ; Process receiving
22 9:
23 %9 = call i32 @__netqir__reduce(%Array* %b, i32 noundef 1,
24 %Array* %result, i32 noundef NETQIR_MULTICNOT,
25 i32 noundef 4, %Comm* @netqir_comm_world)
26
27 ; ----------------------- EXPOSE DIRECTIVE -----------------------
28 ; Choose if it is the process receiving or sending the qubit
29 %11 = load i32, ptr %2, align 4
30 %12 = icmp eq i32 %11, 4
31 br i1 %12, label %13, label %15
32 ; Process sending
33 13:
34 %8 = call i32 @__netqir__expose(%Qubit* null, i32 noundef 0,
35 %Comm* @netqir_comm_world)
36 br label %exit
37 ; Process receiving
38 15:
39 %8 = call i32 @__netqir__expose(%Qubit** null, i32 noundef 0,
40 %Comm* @netqir_comm_world)
41 %11 = call i32 @__quantum__qis__cnot__body(%Qubit* null, %Qubit* %a)
42 ; Leave the if-else
43 exit2:
44 ; End of the program
45 %11 = call i32 @__netqir__finalize()
46 }

Fig. 6: Example employing collective directives.



complicated one as optimising the mapping of the qubit to a
specific architecture given the IR code.
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