
MPI4All: Universal Binding Generation for MPI
Parallel Programming

César Piñeiro1[0000−0001−6490−7128], Alvaro Vazquez2[0000−0002−4719−8099], and
Juan C. Pichel2,3[0000−0001−9505−6493]

1 CITIC, Universidade da Coruña, Spain
cesar.pomar@udc.es

2 Electronics and Computer Science Department, Universidade de Santiago de
Compostela, Spain

alvaro.vazquez@usc.es
3 CITIUS, Universidade de Santiago de Compostela, Spain

juancarlos.pichel@usc.es

Abstract. Message Passing Interface (MPI) is the predominant and
most extensively utilized programming model in the High Performance
Computing (HPC) area. The standard only provides bindings for the
low-level programming languages C, C++, and Fortran. While efforts
are being made to offer MPI bindings for other programming languages,
the support provided may be limited, potentially resulting in function-
ality gaps, performance overhead, and compatibility problems. To deal
with those issues, we introduce MPI4All, a novel tool aimed at simplify-
ing the process of creating efficient MPI bindings for any programming
language. MPI4All is not dependent on the MPI implementation, and
adding support for new languages does not require significant effort. The
current version of MPI4All includes binding generators for Java and Go
programming languages. We demonstrate their good performance with
respect to other state-of-the-art approaches.

Keywords: Parallel computing · MPI · Bindings · Java · Go.

1 Introduction

Message Passing Interface (MPI) [13] is the most widely used and dominant
programming model in High Performance Computing (HPC). In MPI, processes
make explicit calls to library routines defined by the MPI standard to communi-
cate data between two or more processes. These routines include both point-to-
point (two party) and collective (many party) communications. Quality imple-
mentations can be found from prominent open-source projects like MPICH [5]
and OpenMPI [6], as well as from software and hardware vendors of HPC systems
(for instance, Intel MPI).

Traditionally, in the pursuit of raw performance, HPC has been closely tied
to software development using low-level compiled languages such as C/C++
and Fortran. However, in contemporary science and research, high-level pro-
gramming languages like Python, Go, and Julia play a crucial role. They offer



2 C. Piñeiro et al.

researchers a user-friendly platform for developing complex algorithms, analyz-
ing vast datasets, and implementing sophisticated models, even for those with
limited programming experience. In parallel programming, high-level languages
face limitations in their support for MPI. These languages prioritize abstraction
and ease of use, which can conflict with the low-level nature of MPI. While ef-
forts exist to provide MPI bindings for these languages, support may be limited,
leading to gaps in functionality, performance overhead and compatibility issues.

In this paper, we introduce MPI4All4, a novel tool designed to simplify the
creation of MPI bindings for any programming language. Adding support for a
new language only requires writing a generator code (in any language) that maps
MPI C macros, functions, and data types, automatically obtained by MPI4All,
to the target language. It is important to note that unlike other approaches,
MPI4All is not tied to a specific MPI implementation (such as OpenMPI or
MPICH), it is compatible with all of them. Another important limitation of the
existent MPI bindings is that they do not support the complete MPI API, or
due to their lack of support, they only implement functions for old MPI versions.
In our case, if MPI were to release a new version, running MPI4All again would
suffice to generate complete API bindings for the desired MPI implementation
and language. In other words, we will obtain the bindings for the new MPI
version in seconds. Therefore, once there is an implementation of the generator
code for a target language, it can be reused.

As illustrative examples, currently MPI4All provides bindings for Java and
Go programming languages. We have evaluated them with respect to other state-
of-the-art bindings when running different MPI applications to demonstrate the
efficiency and completeness of the ones generated by our tool.

The remainder of this paper is organized as follows. Section 2 discusses re-
lated work, Section 3 explains the MPI4All architecture and how to create MPI
bindings for a particular language using our tool. Section 4 shows the perfor-
mance evaluation of the Java and Go MPI bindings built using MPI4All. Finally,
the conclusions derived from this work are presented.

2 Related Work

The MPI Standard [13] only provides bindings for C and Fortran programming
languages5. Overall, people interested in MPI features but who do not use either
C or Fortran have been relying in unofficial MPI-like solutions. Languages sup-
ported by these implementations include C++, Java, C#, Go, Julia, Python,
among others. However, some of these implementations are not currently main-
tained and only provide support for an outdated MPI version or implement a
reduced set of characteristics.

Java is one of the most popular object-oriented languages and is widely used,
for instance, in Big Data processing. Therefore, many efforts have been done
4 It is publicly available at https://github.com/citiususc/mpi4all
5 C++ bindings where introduced in the MPI 2.0 specification but have been removed

since the MPI 3.0 specification.



MPI4All: Universal Binding Generation for MPI Parallel Programming 3

in using Java for parallel programming. Mainly, proposed Java MPI libraries
subscribe to one of these three approaches:

– Relying on standalone Java APIs in order to provide a fully portable solution.
Though it was followed by some MPI libraries, it finally proved out not to
be practical since all of the MPI features need to be re-implemented.

– Relying on native MPI libraries for communication using the Java Native
Interface (JNI), as it was adopted by solutions like mpiJava [10], and more
recently the OpenMPI [16] and MVAPICH2 [7] official Java bindings. JNI
allows Java programs to invoke functions and methods written in other lan-
guages including C.

– A hybrid approach, taken by MPJ Express [8] and FastMPJ [15], where
message-passing libraries have custom device and network layers implemented
in Java combined with JNI communication devices that call native methods.

The third approach, of implementing the MPI standard in Java aiming for
high-performance communications, requires substantial development and main-
tenance effort. As a consequence, any change in the network and/or MPI stan-
dard version implies modifications in the code at low-level. On the other hand,
the second approach allows easier development and maintenance. In order to
get high-performance for Java MPI libraries, it keeps the Java layer as mini-
mal as possible and uses JNI to invoke MPI methods implemented by native
production-quality MPI libraries. The downside is that the JNI introduces a
substantial amount of time overhead due to additional memory copying opera-
tions and requires recompiling the native code when porting the application to
a new computer.

Currently, OpenMPI Java and FastMPJ are practically the only two well-
maintained Java MPI libraries in the community. The MVAPICH2 Java imple-
mentation [7] is still in a maturation phase.

In the absence of a standard API for Java, older implementations [8, 10]
follow the mpiJava 1.2. API proposed by the Java Grande Forum (JGF) in
late 90s. FastMPJ [15] has support for both mpiJava 1.2 and the MPJ API, a
minor upgrade to the mpiJava 1.2 API. On the other hand, the Java OpenMPI
library [16] implements a custom API that is an extension of the MPJ API.
Likewise, the Java MVAPICH2 bindings have adopted the OpenMPI Java API in
order to facilitate end users. Though MPI4All follows the official MPI C interface
style, a simple wrapper would solve the hypothetical necessity to comply with
any of the proposed Java APIs.

There are other languages that include some kind of support for MPI. For
example, Python supports MPI through the MPI4Py implementation [11], which
underlies on the standard MPI-2 C++ bindings. The last version is compatible
with both Python 2 and Python 3, and it supports various MPI-2 implementa-
tions like OpenMPI, MPICH, and Intel MPI. JuliaMPI.jl [9] is a Julia package
for MPI. Though it supports up to MPI 3.1 many features are not yet avail-
able. Also, it does currently not support high performance networks such as
InfiniBand, which limits its scalability to large problems. There were also sev-
eral attempts to implement MPI bindings for Go programming language [1,3,4],



4 C. Piñeiro et al.

Parser

Java
Library

Generator
MPI

Compiler

MPI
Blueprint

Go
Library

Parser

Java
Library

Generator
MPI

Compiler

MPI
Blueprint

Go
Library

Parser

Java
Library

Generator
MPI

Compiler

MPI
Blueprint

Go
Library

Parser

Java
Library

Generator
MPI

Compiler

MPI
Blueprint

Go
Library

Parser

Generator

MPI
Compiler

MPI
Blueprint

Go
Library

Java
Library

Any Target Language
Library

Fig. 1. Architecture of MPI4All.

but available distributions implement the MPI Standard only partially or stop
keeping updating to new MPI versions.

3 MPI4All

In this section we will explain in detail the MPI4All architecture and how to pro-
ceed in order to build MPI bindings for a particular target language. MPI4All
is composed of two distinct modules: the Parser and the Generator, as depicted
in Figure 1. The Parser takes an MPI compiler installed on the system as in-
put. Its output, known as the blueprint, can be saved in JSON format. This
blueprint is then utilized by the Generator to produce bindings for a particular
programming language. The modular design allows the Parser and Generator to
function independently, with the ability to exchange the blueprint file as needed.

3.1 Parser

The Parser module is in charge of collecting functions, data types and variables
from an MPI implementation (for example, MPICH) and then creating a struc-
tured blueprint to organize all the extracted information. The information is
obtained from the MPI compiler, which by default searches for the compiler in
the system’s PATH using the common names (mpicc, mpicxx, mpicpp, etc.), al-
though the user can specify the compiler to use. Once the compiler is detected,
the parsing task is carried out in two stages: extraction and typing.

The extraction phase involves retrieving the functions, types, and variables
defined by MPI, that are identifiable by the prefix MPI. For example, func-
tions like MPI_Send and MPI_Recv, data types like MPI_Comm, and variables like
MPI_COMM_WORLD fall under this category. First, the preprocessor-defined macros
are examined, followed by the symbols. During this initial phase, distinguish-
ing between a variable and a data type is challenging, but the functions can be
correctly detected.



MPI4All: Universal Binding Generation for MPI Parallel Programming 5

1 {
2 "macros": [
3 ...
4 {
5 "raw": "#define MPI_COMM_WORLD

↪→ ((MPI_Comm)0x44000000)",
6 "name": "MPI_COMM_WORLD",
7 "value": "((MPI_Comm)0x44000000)",
8 "type": "MPI_Comm",
9 "var": true

10 },
11 ...
12 ],
13 "functions": [
14 ...
15 {
16 "header": "int MPI_Send (const void

↪→ *, int, MPI_Datatype, int,
↪→ int, MPI_Comm)",

17 "rtype": "int",
18 "name": "MPI_Send",
19 "args": [
20 {
21 "type": "const void *",
22 "name": "buf"
23 },
24 {
25 "type": "int",
26 "name": "count"
27 },

28 {
29 "type": "MPI_Datatype",
30 "name": "datatype"
31 },
32 {
33 "type": "int",
34 "name": "dest"
35 },
36 {
37 "type": "int",
38 "name": "tag"
39 },
40 {
41 "type": "MPI_Comm",
42 "name": "comm"
43 }
44 ]
45 },
46 ...
47 ],
48 "types": {
49 ...
50 "int": "4",
51 ...
52 "MPI_Comm": "int",
53 ...
54 },
55 }

Fig. 2. Example of a blueprint fragment using MPICH 4.1.

The typing phase serves to identify the type of the extracted information.
This allows us to differentiate between variables and types, assigning the appro-
priate type to variables, as well as to the parameters and return values of each
function. This process is carried out through different C and C++ tests that are
compiled and executed. If a test fails to compile or compiles but fails to execute
correctly, it indicates, for instance, whether we are dealing with a variable or a
data type. Furthermore, this process identifies type size and aliases to gather all
the necessary information, which may be required in the Generator module.

Figure 2 shows an example of a blueprint fragment generated with MPICH
v4.1. In this example, we can see three sections: macros, functions, and types. The
macros store preprocessor definitions, where we can observe the macro name,
its associated type, and whether it is a variable or defines a MPI-specific type.
Regarding functions, the most important data includes the function name, the
types of arguments and return, and additional information such as parameter
names or their C headers, which are useful for improving the readability of
the target bindings. Finally, the types section contains information about all
types used in macros and functions. These types are first mapped to native
language types, and in the case of native types, the number of bytes they occupy
is indicated. This can assist languages in finding type equivalences based on their
names and sizes.



6 C. Piñeiro et al.

3.2 Generator

The Generator is in charge of generating the source code for a particular language
bindings following a blueprint. Its goal is mapping the MPI C macros, functions,
and data types included in the blueprint to the target language. The genera-
tion process is different for each programming language and employs different
strategies for code generation. The current implementation of MPI4All includes
generator scripts for Java and Go. However, since generators have no dependen-
cies between them, they can be implemented as independent projects, allowing
for the creation of new generators by three party users using a blueprint. It is
not mandatory for the generator implementation to be in the same programming
language as the target bindings. For instance, MPI4All, implemented in Python,
provides generators for Go and Java programmed in that language.

As we commented previously, the implementation of a generator must take
into account the interoperability of C with the target language. As illustrative
examples, we will describe the design in terms of the implementation of the Java
and Go generator scripts, which can be generalized to support other languages.
The interoperability between C and Go is facilitated by the cgo tool, which al-
lows easy calling of C functions from Go and vice versa. Likewise, in Java, the
new Foreign Function Interface (FFI) allows for bidirectional interaction between
Java and C, facilitating the integration of native code into Java applications. In
the Go approach, interoperability is facilitated by including C headers directly
into Go code, allowing seamless interaction between the two languages. This
integration is achieved by compiling the combined codebase, ensuring that Go
and C components work harmoniously together. In contrast, Java’s FFI inter-
acts with pre-compiled native libraries. These libraries are linked dynamically
at runtime, enabling Java to access and utilize functions defined within the C
code. Java communicates with these libraries using the symbols they contain,
providing a bridge for the execution of native code within Java applications.

Macros and data types. In Go and Java, in any case, it is not possible to
directly call MPI C functions because macros defined in the headers cannot be
accessed. Go lacks access to compiler macros, and in Java, such information
is removed after compilation. This behavior is common to other programming
languages.

To deal with this issue, MPI4All uses a hybrid strategy, which requires two
steps. Firstly, it generates a C auxiliary library. The primary function of this
library is to convert all macros stored in the blueprint into data types or variables.
For instance, while languages like Java require a separate file for this purpose, Go
allows embedding C code directly within a string in the code. Nonetheless, the
procedure still involves iterating over all macros in the blueprint and generating
C code using the following pattern:

– Variable:
[type] [PREFIX][name] = [name];



MPI4All: Universal Binding Generation for MPI Parallel Programming 7

1 #include<mpi.h>
2
3 MPI_Comm GO_MPI_COMM_WORLD = MPI_COMM_WORLD;
4 ...
5 MPI_Datatype GO_MPI_DOUBLE = MPI_DOUBLE;
6 ...
7 int GO_MPI_THREAD_SINGLE = MPI_THREAD_SINGLE;
8 ...
9 typedef int GO_MPI_Fint;

10 ...

Fig. 3. Example of auxiliary C code output from the generator script.

1 var MPI_COMM_WORLD = C.GO_MPI_COMM_WORLD;
2 ...
3 var MPI_DOUBLE = C.GO_MPI_DOUBLE;
4 ...
5 var MPI_THREAD_SINGLE = C.GO_MPI_THREAD_SINGLE;
6 ...
7 type MPI_Fint = C.GO_MPI_Fint;
8 ...
9 type MPI_Comm = C.MPI_Comm;

10 ...

Fig. 4. Example of Go macro binding output from the generator script.

– Data type:
typedef [type] [PREFIX][name];

where the pattern names correspond to blueprint fields and PREFIX represents
any chosen value defined in the generator.

Once applied to all macros in the blueprint, we would have a result similar to
Figure 3. Note that it is necessary to include the MPI header (line 1) to compile
the library. Once the symbols corresponding to the macros are generated, we
can use them from the target language.

The process in the second step is similar to the previous one, iterating over all
the macros in the blueprint but generating code in the target language as shown
in Figure 4 for Go. Note that in the process, variables in the target language
with the same name than the macro in C are assigned to the corresponding ones
in the C auxiliary library. In this phase, we can also iterate over the data types
defined in the blueprint and generate them along with the macros following the
same procedure (line 9).

The second step for Java is slightly more complicated because it is not pos-
sible to map compiled data types in the native C library. The FFI uses a class
called MemorySegment, which represents a memory address range of a known size
using a MemoryLayout. Consequently, MPI4All defines MPI types as Java classes
that extend a common class containing the MemorySegment that emulate differ-
ent types. The MemoryLayout size of the MemorySegment are determined through
the types section of the blueprint. The variables are defined as instances of those
classes and are assigned to static attributes. In the case of classes representing
primitive types, these are converted to simplify the API.



8 C. Piñeiro et al.

1 ...
2 func MPI_Send(buf unsafe.Pointer /*(const void *)*/, count C_int, datatype

C_MPI_Datatype, dest C_int, tag C_int, comm C_MPI_Comm) error {
3 return mpi_check(C.MPI_Send(buf, count, datatype, dest, tag, comm))
4 }
5 ...

Fig. 5. Example of Go function binding output from the generator script.

Functions. The final task of the generator script is to map the functions as
described in the blueprint to the target language. This involves generating each
function using the syntax and conventions of the considered language, using the
types specified in the previous step. In the function body, we call the corre-
sponding C function, ensuring conversion of arguments and return types, and
taking care of C error codes. Figure 5 presents the Go code for the MPI_Send
function. Parameters are seamlessly passed to the C function without conver-
sion, as we have defined their types as aliases of C types. Additionally, we have
introduced the auxiliary function mpi_check to handle return values, converting
MPI function return codes into error when they are not equal to 0.

The equivalent process in Java involves more steps. First, we need to locate
the function symbol within the auxiliary C library generated previously. Then,
we define the type for each parameter and return value using MemoryLayout.
Finally, we can use the function definition to invoke it from Java. While prim-
itive types are automatically converted into MemorySegment using the function
layout, complex types must have their layout defined manually. Similar to Go,
an auxiliary function mpiCheck is defined in Java. This function will check the
return code of the MPI function and throw a RuntimeException, analogous to
how Go returns an error.

4 Experimental Evaluation

Next we will evaluate the performance of the bindings for Go and Java that
currently can be generated by MPI4All. With that goal in mind, we will com-
pare their performance with respect to other state-of-the-art solutions. Since
MPI4All is agnostic regarding the MPI implementation considered, unlike other
approaches, we will prove that it is capable of generating bindings for OpenMPI
and Intel MPI, for example.

Experiments were conducted using up to 8 computing nodes of the FinisTer-
rae III [2] supercomputer installed at CESGA (Spain). Each node contains two
32-core Intel Xeon Ice Lake 8352Y @2.2GHz processors and 256 GB of mem-
ory interconnected with Infiniband HDR 100. A 100Gb Ethernet network is also
available on all nodes. It is a Linux cluster running Rocky Linux v8.4 (kernel
v4.18.0).

4.1 Java

In this section we present the evaluation results carried out over three different
Java MPI implementations. To provide an estimation of MPI4All performance



MPI4All: Universal Binding Generation for MPI Parallel Programming 9

we ran some of the NAS parallel benchmarks ported to Java described in [12]. We
have introduced a few modifications in the source code in order to adapt them
to the MPI4All Java bindings. The subset of the Java NAS parallel benchmarks
selected for evaluation purposes is the following:

– CG – It uses a Conjugate Gradient method to compute approximations to
the smallest eigenvalues of a sparse unstructured matrix.

– EP – This benchmark, short for Embarrassingly Parallel, is designed to mea-
sure the performance of a parallel application that consists of independent
tasks that can be executed concurrently without any communication or syn-
chronization between them.

– FT – It contains the computational kernel of a 3D Fast Fourier Transform
(FFT).

– SP – It is a simulated Computational Fluid Dynamics (CFD) application. It
solves a Scalar Pentadiagonal system of linear equations.

– MG – It uses a V-cycle Multi Grid method to compute the solution of the
3D scalar Poisson equation.

We use class D benchmarks, which correspond to considerably large prob-
lem sizes. A strong scaling test was conducted for each benchmark using up to
128 cores (in 4 nodes, 32 cores per node) of the Finisterrae III cluster and the
Infiniband HDR 100 interconnection. We measured the performance using JDK
21.0.1, and Java bindings were generated for OpenMPI v4.1. Each measurement
was computed as the median of five executions. Note that each new JDK release
starting from version 19 has required to generate new MPI4All Java bindings.
This is due to the fact that the Java FFI is currently a preview feature of the
Java Platform still subject to changes. This API will be upgraded to permanent
features in the next JDK 22 release, so it is expected to remain stable. Never-
theless, in our case the JDK update barely involved a change in a couple lines
of code in the generation process of MPI4All Java bindings.

Also, for comparison purposes we selected and ran the same subset of the
NAS parallel benchmarks over two representative MPI Java implementations:
the FastMPJ library [15], and the official OpenMPI Java bindings [16]. The for-
mer uses JNI to invoke networking native library primitives (including Infiniband
ones) while the later uses JNI to call MPI C primitives.

We represent in Figure 6 the speedups obtained for both FastMPJ library
and the OpenMPI Java bindings using as reference the execution times measured
in the corresponding MPI4All tests.

Overall, the OpenMPI Java bindings present degraded performance figures
mainly due to the overhead introduced by the JNI calls to the MPI native library.
MPI4All invokes the same MPI C library functions using FFI. Therefore, in this
case, the performance improvement of the MPI4All Java bindings comes from
using FFI instead of JNI to minimize the cost associated with copying data from
Java to C.

On the other hand, FastMPJ presents better performance numbers than the
generated MPI4All Java bindings except for the MG benchmark, where MPI4All



10 C. Piñeiro et al.

CG

4 (N=2) 8 (N=4) 16 (N=4) 32 (N=4) 64 (N=4) 128 (N=4)

Cores

0

0.5

1

1.5

S
pe

ed
up

 w
.r

.t.
 M

P
I4

A
ll

Fast-MPJ
OpenMPI

EP

4 (N=2) 8 (N=4) 16 (N=4) 32 (N=4) 64 (N=4) 128 (N=4)

Cores

0

0.5

1

1.5

S
pe

ed
up

 w
.r

.t.
 M

P
I4

A
ll

Fast-MPJ
OpenMPI

FT

4 (N=2) 8 (N=4) 16 (N=4) 32 (N=4) 64 (N=4) 128 (N=4)

Cores

0

0.5

1

1.5

S
pe

ed
up

 w
.r

.t.
 M

P
I4

A
ll

Fast-MPJ
OpenMPI

SP

4 (N=4) 9 (N=4) 16 (N=4) 36 (N=4) 64 (N=4) 121 (N=4)

Cores

0

0.5

1

1.5

S
pe

ed
up

 w
.r

.t.
 M

P
I4

A
ll

Fast-MPJ
OpenMPI

MG

4 (N=2) 8 (N=4) 16 (N=4) 32 (N=4) 64 (N=4) 128 (N=4)

Cores

0

0.5

1

1.5

S
pe

ed
up

 w
.r

.t.
 M

P
I4

A
ll

Fast-MPJ
OpenMPI

Fig. 6. Speedup of the different Java MPI implementations when executing the NAS
Parallel Benchmarks (class D) using as reference the bindings for OpenMPI generated
by MPI4All. N is the number of computing nodes.

is competitive with FastMPJ. FastMPJ relies on a highly efficient Java imple-
mentation of MPI-like functions aiming to provide a similar performance as
native MPI implementations. However, current version only provides support
for MPI-2, and upgrading or incorporating new functionalities requires a huge
code programming effort.

4.2 Go

In this section, we will evaluate the performance obtained by the MPI Go bind-
ings generated by MPI4All. In particular, we have generated bindings for Intel
MPI version 2021.10.0. Go version 1.20.4 was used for compiling and deploy-
ing purposes. In the experiments we have considered Ember [14], which is a



MPI4All: Universal Binding Generation for MPI Parallel Programming 11

64 128 192 256 320 384 448 512
0.9

0.95

1

P
er

fo
rm

an
ce

 r
at

io

Halo3D

64 128 192 256 320 384 448 512

Cores

0.9

0.95

1

P
er

fo
rm

an
ce

 r
at

io

Halo3D-26

64 128 192 256 320 384 448 512

Cores

0.9

0.95

1

P
er

fo
rm

an
ce

 r
at

io

Incast

64 128 192 256 320 384 448 512

Cores

0.9

0.95

1

P
er

fo
rm

an
ce

 r
at

io

Sweep3D
Cores

Fig. 7. Performance ratio between the original MPI C implementation and the Go
one that uses the language bindings generated by MPI4All when running the Ember
benchmarks.

communication pattern library developed at Sandia National Labs (USA). It is
part of the Exascale Computing Project (ECP) proxy applications suite6. The
Ember code was originally implemented in C using MPI and represents simpli-
fied communication patterns that are relevant to extreme scaled supercomputing
systems. Four communication patterns were studied:

– Halo3D: It performs a structured nearest neighbor communication. In this
pattern, each MPI rank communicates with ranks that are adjacent to it in
each cartesian dimension. The halo exchanged is the data on each face.

– Halo3D-26: In this pattern, each MPI rank communicates with ranks along
each cartesian face, as well as each edge of the local grid and each vertex. It
represents a typical unstructured nearest neighbor communication.

– Incast: The purpose of this benchmark is to represent small collections of
nodes which attempt to simultaneously send messages to the same remote
node, similar to some parallel I/O systems.

– Sweep3: There are many scientific applications that have a strong level of
dependencies, which affect their communication patterns. This benchmark
attempts to mimic that behavior by decomposing a 3D data domain over a
2D array of MPI ranks.

6 http://proxyapps.exascaleproject.org/ecp-proxy-apps-suite



12 C. Piñeiro et al.

Our experimentation focuses on comparing the performance of the original
C Ember benchmark with our Go port implementation, which utilizes MPI4All
bindings (see Figure 7). Through this comparison, we aim to evaluate the efficacy
of our ported solution against the established C implementation. The experiment
was conducted using up to 8 nodes of the Finisterrae III cluster (comprising a
total of 512 cores, 64 per node). The benchmarking process involved running
each of the four communication patterns, both in C and Go, a total of five
times. Subsequently, the median of the values obtained in each run for each
pattern and language was taken.

Figure 7 shows that the MPI4All-generated Go bindings achieve similar per-
formance comparable to the native Intel C MPI library for all four communica-
tion patterns since the ratio remained very close to 1 regardless of the number
of nodes used. It also indicates that in terms of performance, Go and C are
highly similar. One notable distinction between both languages is Go’s garbage
collector. However, given the absence of memory creation and destruction during
the communication process, it should not significantly impact the measurements.
The seamless integration of C into Go has enabled MPI4All to produce a binding
library with performance nearly identical to that of a C implementation.

On the other hand, as we pointed out in Section 2, there are some other MPI
Go bindings proposals [1, 3, 4]. However, to the best of our knowledge, none of
them can implement the Ember benchmark in Go. This limitation arises from
both the absence of necessary functionalities such as asynchronous communica-
tions and the lack of support for Intel MPI.

5 Conclusions

In this paper, we introduced MPI4All7, an innovative tool aimed at facilitating
the creation of MPI bindings for any programming language. Adding support for
new languages merely requires the development of an script code that maps MPI
C macros, functions, and data types to the target language. It is noteworthy that
unlike other approaches, MPI4All is not bound to a specific MPI implementa-
tion; it is compatible with all of them. Once the script for some programming
language is available, generating bindings for the complete API of any MPI im-
plementation (and version) takes seconds. This assures completeness and avoids
maintenance problems.

MPI4All includes scripts for generating MPI bindings for Go and Java pro-
gramming languages. We evaluated them in terms of performance compared
to other state-of-the-art solutions. The MPI4All Java bindings for OpenMPI
clearly outperform the official Java OpenMPI bindings when running several
NAS benchmarks. Although their performance is lower compared to FastMPJ,
it is important to note that FastMPJ only supports MPI-2 routines. Regarding
Go, the MPI4All bindings for Intel MPI achieve very similar performance to the
native Intel C MPI library when running the Ember benchmarks.

7 It is publicly available at https://github.com/citiususc/mpi4all



MPI4All: Universal Binding Generation for MPI Parallel Programming 13

Acknowledgments. The authors would like to thank Guillermo López Taboada and
Roberto Expósito for providing access to the FastMPJ library. This work was supported
by Xunta de Galicia [ED431G 2019/04, ED431F 2020/08, ED431C 2022/16]; MICINN
[PLEC2021-007662, PID2022-137061OB-C22, PID2022-141027NB-C22]; and European
Regional Development Fund (ERDF). Authors also wish to thank CESGA (Galicia,
Spain) for providing access to their supercomputing facilities

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. A Golang Wrapper for MPI. https://github.com/yoo/go-mpi [Online; accessed
26 feb 2024]

2. CESGA (Galician Supercomputing Center) - Computing Infrastructures. https:
//www.cesga.es/en/infrastructures/computing/ [Online; accessed 26 feb 2024]

3. GoMPI: Message Passing Interface for Parallel Computing. https://github.com/
sbromberger/gompi [Online; accessed 26 feb 2024]

4. MPI-binding package for Golang. https://github.com/marcusthierfelder/mpi
[Online; accessed 26 feb 2024]

5. MPICH. https://www.mpich.org, [Online; accessed 26 feb 2024]
6. Open MPI. https://www.open-mpi.org/, [Online; accessed 26 feb 2024]
7. Al-Attar, K., Shafi, A., Subramoni, H., Panda, D.K.: Towards Java-based HPC

using the MVAPICH2 Library: Early Experiences. In: IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW). pp. 510–519 (2022)

8. Baker, M., Carpenter, B., Shafi, A.: MPJ Express: Towards Thread Safe Java HPC.
In: 2006 IEEE International Conference on Cluster Computing. pp. 1–10 (2006)

9. Byrne, S., Wilcox, L.C., Churavy, V.: MPI. jl: Julia bindings for the Message
Passing Interface. Proceedings of the JuliaCon Conferences 1(1), 68 (2021)

10. Carpenter, B., Getov, V., Judd, G., Skjellum, A., Fox, G.: MPJ: MPI-like message
passing for Java. Concurrency: Practice and Experience 12(11), 1019–1038 (09
2000)

11. Dalcin, L., Fang, Y.L.L.: mpi4py: Status update after 12 years of development.
Computing in Science & Engineering 23(4), 47–54 (2021)

12. Mallón, D.A., Taboada, G.L., Touriño, J., Doallo, R.: NPB-MPJ: NAS Parallel
Benchmarks Implementation for Message-Passing in Java. In: 2009 17th Euromicro
International Conference on Parallel, Distributed and Network-based Processing.
pp. 181–190 (2009)

13. Message Passing Interface Forum: MPI: A message-passing interface standard ver-
sion 4.1. https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf [Online;
accessed 26 feb 2024] (2023)

14. Sandia National Laboratories: Ember Communication Pattern Library (2018),
https://github.com/sstsimulator/ember [Online; accessed 26 feb 2024]

15. Taboada, G.L., Touriño, J., Doallo, R.: F-MPJ: scalable Java message-passing
communications on parallel systems. The Journal of Supercomputing 60, 117–140
(2012)

16. Vega-Gisbert, O., Roman, J.E., Squyres, J.M.: Design and implementation of Java
bindings in Open MPI. Parallel Computing 59, 1–20 (2016)


