
GigaScience , 2024, 13 , 1–12

DOI: 10.1093/gigascience/giae055

Technical Note

Efficient phylogenetic tree inference for massi v e

taxonomic datasets: harnessing the power of a server to

analyze 1 million taxa

César Piñeiro 1 , * and Juan C. Pichel 2 , *

1 Information Retrie v al Lab, CITIC, Universidade da Coruña, A Coruña 15008, Spain
2 CiTIUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
∗Corr espondence addr ess. César Piñeir o, Information Retrie v al Lab, CITIC, Universidade da Coruña, A Coruña 15008, Spain. E-mail: cesar alfr edo.pineir o@usc.es ;
Juan C. Pichel, CiTIUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain. E-mail: juancarlos.pichel@usc.es

Abstract

Bac kgr ound: Ph ylogenies pla y a crucial r ole in biological r esear c h. Unfortunately, the sear c h for the optimal phylogenetic tree incurs
significant computational costs, and most of the existing state-of-the-art tools cannot deal with extr emel y large datasets in r easona b le
times.

Results: In this w ork, w e introduce the new VeryFastTree code (version 4.0), which is able to construct a tree on 1 server using single-
pr ecision arithmetic fr om a massi v e 1 million alignment dataset in only 36 hours, which is 3 times and 3.2 times faster than its previous
v ersion and FastTr ee-2, r especti v el y. This new v ersion further boosts performance by parallelizing all tr ee trav ersal operations during
the tree construction process, including subtree pruning and re gr afting moves. Additionally, it introduces significant new features
such as support for new and compressed file formats, enhanced compatibility across a broader range of operating systems, and

the inte gr ation of disk computing functionality. The latter feature is particularl y adv anta geous for users without access to high-end

servers, as it allows them to manage very large datasets, albeit with an increase in computing time.

Conclusions: Experimental r esults esta b lish Ver yFastTr ee as the fastest tool in the state-of-the-art for maximum likelihood ph ylogen y
estimation. It is pub licl y av aila b le at https://github.com/citiususc/veryfasttr ee . In addition, Ver yFastTr ee is included as a package in

Bioconda, MacPorts, and all Debian-based Linux distributions.

Ke yw ords: phylogenetics, v er y large datasets, performance, parallelism

b

l
g

w

f

H

m

4

p

a
t
c

F

f

a
t

w
m

f

d

c

f

s

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giae055/7730000 by guest on 13 August 2024
Introduction

Inferring e volutionary r elationships or phylogenies is a
formidable challenge in computational biology. The growth

of datasets from next-generation sequencing has made large-
scale phylogeny estimation crucial. Ho w ever, the computational
complexity of inferring phylogenies and performing multiple
sequence alignment (MSA) presents a significant obstacle. Es-
tablished methods like maximum parsimony (MP), maximum

likelihood (ML), and Bayesian a ppr oac hes ar e computationall y in-
tensive due to the NP-hard optimization problems they tackle [1].
As the number of taxa increases, these methods face a common

hurdle: an exponential increase in the number of possible trees
to explore.

The leading heuristics for ML tr ee estimation, suc h as
RAxML [2] and IQ-TREE [3], employ diverse strategies to search

for the tree that maximizes the likelihood score. Although they
hav e made consider able performance impr ov ements to handle
larger datasets, RAxML, for example, was unable to r eac h conv er-
gence on a 10,000-sequence dataset e v en after a week [4]. Note
that these tools ar e primaril y optimized for datasets with a lim-
ited number of sequences but a significant number of sites (i.e.,
phylogenomics). Ther efor e, when working with datasets compris-
ing a large number of sequences, users must opt for tools such as
FastTree-2 [5] and VeryFastTree [6], which are very fast heuristics,
Recei v ed: October 23, 2023. Revised: April 17, 2024. Accepted: July 11, 2024
© The Author(s) 2024. Published by Oxford Uni v ersity Pr ess GigaScience. This is an
Attribution License (https://cr eati v ecommons.org/licenses/by/4.0/), which permits
the original work is pr operl y cited.
ut they do not make very substantial attempts to optimize the
ikelihood score, or they may explore divide-and-conquer strate-
ies [7–9]. In particular, our tool VeryFastTree was a big step for-
 ar d in terms of performance, building a tree on a standard server

rom a large 330k alignment, 3.5 times faster than FastTree-2.
o w e v er, ther e was still room to impr ov e its speed, scalability, and
emory consumption and also to add new functionalities.
In this w ork, w e introduce the latest VeryFastTree code, version

.0, showcasing its potential adv anta ges and ne w featur es com-
ared to both its previous version and FastTree-2. The earlier iter-
tion of VeryFastTree achieved high performance by parallelizing
he most time-consuming phase of constructing the tree, specifi-
all y the near est-neighbor interc hanges (NNIs), in comparison to
astTree-2. Ho w ever, the new VeryFastTree further enhances per-
ormance by parallelizing all tree traversal operations, including,
mong others, the subtree pruning and regrafting (SPR) opera-
ions, whic h ar e especiall y r ele v ant in terms of computing time
hen dealing with massive datasets. After a thorough experi-
ental e v aluation, the ne w v ersion pr ov es to be se v er al times

aster than the pr e vious one and FastTree-2 on a variety of large
atasets. At the same time, VeryFastTr ee-4 incor por ates signifi-
ant ne w featur es, including support for ne w and compr essed file
ormats , impro ved compatibility with a wider range of operating
ystems, and the addition of disk computing functionality. The lat-
 Open Access article distributed under the terms of the Cr eati v e Commons
unrestricted reuse, distribution, and reproduction in any medium, provided

http://orcid.org/0000-0001-6490-7128
http://orcid.org/0000-0001-9505-6493
mailto:cesaralfredo.pineiro@usc.es
mailto:juancarlos.pichel@usc.es
https://github.com/citiususc/veryfasttree
https://creativecommons.org/licenses/by/4.0/

2 | GigaScience , 2024, Vol. 13

t

e

w

N
V

v

a

B

h

e

b

e

B

t

P
V

c

F

c

t

f

t

p

T
O

p

t

t

m

f

a

p

t

c

u

h

t

t

t

a

q

b

t

s

i

h

n

a

m

s
a

t

a

w

t

n

n

Root

Root
Subtree

1

P

C N

Root
Subtree

2

A B
Thread t2

Thread t1

Figure 1: Example of tree partitioning and data dependencies with a
penalty of 2. The gr a ph r epr esents onl y internal nodes (no leav es). Blue
and green nodes are processed in parallel by threads t 1 and t 2 ,
r espectiv el y. Red nodes (labeled as not assigned) are processed
sequentially after processing all subtrees.

l

c

d

p

t

t

d

F

o

t

e

c

i

s

i

t

c

e

l

b

t

a

l

t

c

n

s

t

a

o

o

t

a

g

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giae055/7730000 by guest on 13 August 2024
er is especially valuable for users who do not have access to high-
nd servers, as it allows them to process massive datasets, albeit
ith an increase in computing time.

e w Fea tures and Optimiza tions

eryFastTree-4 (VFT4) is a big step forw ar d with respect to our first
 ersion intr oduced in [6], fr om now on VFT3, designed to further
ccelerate the inference of phylogenies for massive alignments.
uilding upon the strengths of its pr edecessor, VFT4 intr oduces a
ost of innov ativ e featur es and optimizations aimed at ac hie ving
 v en gr eater speed and efficiency. While the cor e principles used
y VFT4 remain consistent with its pr e vious v ersions, significant
nhancements have been made to push the boundaries of speed.
elow are some of the most noticeable impr ov ements, optimiza-
ions, and features incorporated into VFT4.

ar alleliza tion str a tegy

FT3 ac hie v ed high performance by parallelizing the most time-
onsuming phase in the construction of the tree with respect to
astTree-2 (FT2) [5], the NNIs. Building upon this progress, VFT4
ontinues this a ppr oac h by parallelizing all operations involving
r ee tr av ersal, including the SPR mov es, further enhancing per-
ormance . T hese computations ar e par allelized using 2 strategies:
ree partitioning , which divides the tree into multiple nonoverlap-
ing subtrees, and parallel tra verse , a parallel breadth-first traversal .

ree partitioning

nce an initial phylogenetic tree is constructed or passed as in-
ut argument, it is necessary to split the tree into disjoint sub-
rees in order to perform computations in parallel using different
hreads. Note that VFT4 uses rooted trees . T he tree partitioning

ethod is an algorithm that, given an initial tree, prunes nodes
rom the root to generate several independent subtrees, which
re then assigned to different threads to work with them inde-
endently. Once all threads have finished their work, those nodes
hat wer e r emov ed in the pruning pr ocess ar e subsequentl y pr o-
essed using just 1 thread. In this way, all nodes in the tree are
pdated. In the ideal scenario, the computation of a node does not
ave dependencies on other nodes or these dependencies are con-
ained within the subtree assigned to the same thread. Ho w ever,
his is not the case fr equentl y, so dependencies m ust be contr olled
o pr e v ent computation err ors . For instance , NNIs and SPR oper-
tions perform topology-modifying actions on the tree . T hey re-
uir e tr ee partitioning to ensur e that node exc hanges performed
y different threads do not overlap. Tree partitioning must ensure
hat these operations can be executed in parallel within separate
ubtrees, allowing them to work independently without interfer-
ng with each other.

Before getting into the details, it is necessary to understand
ow the tree is tr av ersed and how data dependencies between
odes are taken into account. We will use the tree of Fig. 1 as ex-
mple. Each node in the tree is visited before its parents, which
eans that a depth-first postorder tr av ersal is used [5]. Let’s as-

ume that the tree is split into 2 subtrees assigned to threads t 1
nd t 2 , r espectiv el y. Since the r oot node of the tr ee is not assigned
o a thread, it will be labeled as not assigned . Blue and green nodes
r e pr ocessed in par allel by thr eads t 1 and t 2 , while red nodes,
hic h hav e dependencies on other thr eads, ar e pr ocessed sequen-

ially after all subtrees have been processed. This ensures that all
odes in the tr ee ar e updated effectiv el y. The dependencies of a
ode are determined by its relationships with its parents and sib-
ings. If these are not located within the same subtree, the node
annot be computed. This dependency can be quantified as the
istance between a node and the farthest one r equir ed for com-
utation. We refer to this distance as the penalty value . T his means
hat nodes located at le v els lo w er than the penalty v alue fr om
he subtr ee’s r oot cannot be pr ocessed in par allel, as they hav e
ependencies on nodes outside the subtree. In the example of
ig. 1 , the penalty is 2, so P cannot be computed since it depends
n the root (its grandparent), which lies outside the subtree. On
he other hand, C, N, and all their c hildr en hav e their gr andpar-
nts within the subtree, allowing them to be computed without
onflicts.

NNIs and SPR oper ations, whic h ar e the most time-consuming
n tree construction, are parallelized using the tree partitioning
trategy. In particular, NNIs perform a node exchange with either
ts parent or its uncle, follo w ed b y a recalculation of the w eights of
he involved nodes and their respective parents . T his process in-
urs a penalty of 2, as the parent or uncle will be 1 le v el abov e the
xchanged node, while the new parent will be located at the next
e v el. In the case of SPRs, the penalty is dynamic and constrained
y the par ameter maxSPRLength , whic h limits the maximum dis-
ance a node can move during the regrafting process. Other oper-
tions such as computing SH-like supports, updating all br anc h
engths, and optimizing all br anc h lengths will also make use of
ree partitioning.

VFT4 implements an advanced partitioning algorithm when
ompared to its predecessor, VFT3. This upgraded algorithm sig-
ificantl y impr ov es both speed and adaptability across various
cenarios. Unlike the pr e vious v ersion, whic h limited partitioning
o NNIs, the new algorithm introduces a more versatile approach,
llowing its application to other operations, such as those previ-
usl y mentioned. This ne w algorithm considers the minimization
f the penalty parameter as an e v aluation criterion. Subsequentl y,
he r esulting subtr ees gener ated by this pr ocess, also r eferr ed to
s solutions , are assigned to threads with the aim of achieving a
ood load balance.

Efficient phylogenetic tree inference for massive taxonomic datasets | 3

A

T

s

t

a

p

w

t

S

a

h

b

l

s

g

i

T

r

c

v

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giae055/7730000 by guest on 13 August 2024
Partitioning method

Our partitioning method is guided by an objective function, whose
goal is 2-fold. First, it should balance the workload assigned to
eac h thr ead (i.e., the number of internal nodes to be processed

by each thread). To model the w orkload, w e define the weight of a
node as the number of internal nodes beneath it plus itself. This
way, the workload associated to process a subtree is the weight of
its root node . T he second goal of the objective function should be
to reduce to the minimum the amount of sequential work, which

corresponds to processing the not assigned nodes. Note that ac-
cording to the Amdahl’s law [10], a small percentage of sequential
work harms noticeably the performance and scalability of a par-
allel application.

Let T be the input tree to be partitioned, whic h onl y contains
internal nodes. A partition P(T) is a set of disjoint binary subtrees
s i included in T . We must highlight that not all nodes in the tree
should be included in a partition. Let | P(T) | denote the number
of subtrees in the partition and n the number of threads. Each

subtree s i ∈ P(T) is assigned to a particular thread in such a way
that P j (T) contains all subtrees in the partition P(T) assigned to
thread j. This w ay, w e can calculate the workload of the subtrees
assigned to a particular thread j as

wo rklo ad(P j (T)) =

{ ∑

wo rklo ad(s i) | s i ∈ P j (T)
}

(1)

We e v aluate a partition P(T) using the following objectiv e func-
tion:

sequent ial _ workl oad
max { wo rklo ad(P j (T)) | 1 ≤ j ≤ n } (2)

Note that sequent ial _ workl oad refers to the workload of T when

it is processed sequentially. The goal of our partitioning method

will be to find a partition P(T) that maximizes the value of the ob-
jective function. The pseudocode of the algorithm to find the best
tree partitioning is detailed in Algorithm 1. The objective func-
tion aligns with the concept of Speedup , defined as the ratio of the
execution time of a task when using multiple threads compared

to the execution time when using a single thread. In this way, a
value of 1 indicates equivalent speed to sequential processing,
while a value of n signifies optimal workload distribution among
n threads.

The tree partitioning process in VFT4 includes an initializa-
tion phase where the weight values for each node in the tr ee ar e
computed. As pr e viousl y mentioned, these weights r epr esent the
number of descendant nodes for each node, adjusted according
to the penalty value . T hen, the initial solution is constructed us-
ing the direct child nodes of the tree’s root. In other w or ds, the
initial solution has as many subtrees as the root node has chil-
dren. Nodes in the solution are always sorted by weight for ef-
ficiency. Next, an iteration process begins. During each iteration,
the current solution is evaluated using Equation 2 . To achieve this,
it is necessary to assign subtrees to the different threads using a
heuristic method, which will be explained later. Once the solution

is e v aluated, a ne w one is cr eated in suc h a way that the subtr ee
root node with the highest weight is replaced by its child nodes.
The e v aluation r esults of the last W iter ations ar e stor ed to use
them as stopping criterion. We refer to W as the tendency window

size . Note that the algorithm continues as long as the current solu-
tion has nodes to split, there are threads without at least 1 subtree
assigned, or the stopping criterion is not r eac hed.
ssignment of subtrees to threads

he e v aluation of the quality of a solution r equir es ma pping the
ubtrees of a partition to the considered threads in such a way that
he workload is balanced among them. This is a challenge itself
nd resembles the k-partitioning problem [11]. The k-partitioning
roblem is defined as follows: given a set of items { I 1 , I 2 , ..., I n }
here item I j is of weight w j > 0 , find a partition S 1 , S 2 , ..., S m

of
his set with | S i | = k such that the maximum weight of all subsets
 i is minimal. Ther efor e, considering our case, items are subtrees
nd k is the number of threads . T he k-partitioning problem is NP-
ard, so algorithms/heuristics to a ppr oximate the solution should
e used.

Since our pr ocedur e r equir es solving the k-partitioning pr ob-
em e v ery time a new partition is e v aluated, we hav e opted for a
imple gr eedy a ppr oximation based on the first-fit decreasing al-
orithm whose computational cost is low. The method starts sort-
ng the subtrees in descending order according to their weight.
hen, the k first subtrees are distributed among the threads . T he
 emaining subtr ees ar e iter ated and assigned to the thread that
urr entl y has the minimum workload assigned, that is, the lo w est
alue of wo rklo ad(P j (T)) .

4 | GigaScience , 2024, Vol. 13

Figure 2: Comparison of iterations required for achieving near-optimal
tree partitioning using our method versus evaluating all possible tree
partitionings without a stopping criterion. The bottom figure provides a
zoomed-in view of the top one. Experiments were conducted with 30
threads and a dataset consisting of 274,000 unique sequences.

S

T

w

i

a

c

s

w

p

u

i

t

o

w

l

e

n

n

p

t

I

t

b

s

o

t

q

c

v

t

i

t

P
T

a

p

o

c

r

t

t

w

i

l

p

i

c

I

n

q

f

fi

i

t

N
T

i

T

t

p

F

f

t

i

N

S

d

h

o

o

a

i

t

m

t

s

D
A

s

w

(

R

p

m

l

c

t

m

t

m

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giae055/7730000 by guest on 13 August 2024
topping criterion

he stopping criterion in the tree partitioning process determines
hen the algorithm should terminate its execution. This criterion

s r equir ed because completing all iter ations, until no mor e nodes
re left to split, can sometimes result in a higher computational
ost than working on the tree without partitions . T her efor e, the
topping criterion ensures that the algorithm halts its execution
hen a near-optimal solution has been found. To verify if the stop-
ing criterion is met, we assess the quality of the last W partitions
sing Equation 2 to determine whether the ov er all tr end in r ecent

terations indicates an improvement or deterioration in the solu-
ions (see the StoppingCriterion function in Algorithm 1). In
rder to ac hie v e this, a counter compar es eac h pair of elements
ithin the tendency list, incrementing it if the earlier element is

ess than or equal to the later element and decrementing it oth-
rwise. Consequently, the function returns true if the balance is
egative, indicating a worsening trend, and false otherwise, sig-
aling that the stopping criterion has not yet been met due to im-
ro ving solutions . By default, W is set to 50, but users can modify
his value through the interface parameter (see the Commands
nterface section for details).

To demonstrate the advantages of our proposal, Fig. 2 illus-
rates the comparison between the number of iterations required
y our method to ac hie v e a near-optimal tree partitioning and the
cenario where all possible tree partitionings are evaluated with-
ut any stopping criterion. These results were obtained using 30
hreads and the Large dataset that contains 274,000 unique se-
uences (refer to Table 1 for dataset details). Since 30 threads were
onsidered, according to Equation 2 , the ideal (maximum) quality
alue of a partitioning is 30. Our method only requires 512 itera-
ions to r eac h a v alue of 29.4, while without the stopping criterion,
t is necessary to e v aluate mor e than 200,000 partitionings (itera-
ions).

arallel breadth-first tra ver sal
ree partitioning enables parallel processing of a single tree by
ssigning disjoint subtrees to each thread, allowing them to com-
ute independently and without interference. Ho w ever, when an
peration has no dependencies and solely modifies the node being
omputed, cr eating subtr ees is inefficient, as eac h node can be di-
 ectl y assigned to a thread. So, starting from the deepest nodes of
he tr ee, eac h thr ead handles a portion of the nodes and computes
hem sim ultaneousl y, following a br eadth-first tr av ersal pattern,
hic h involv es visiting all nodes at a gi ven de pth le v el befor e mov-

ng on to the next le v el. Once finished with that le v el, the upper
e v els ar e distributed until the r oot of the tr ee is r eac hed. This a p-
r oac h is specificall y utilized in the following operations: comput-

ng initial pr ofiles, r ecomputing pr ofiles, r ecomputing ML pr ofiles,
omputing tree length, and computing the likelihood for each site.
t is worth noting that FT2 and VFT4 store profiles for the internal
odes in the tree instead of storing a distance matrix, which re-
uires far less memory. Each profile includes a frequency vector
or each position and the weighted av er a ge of its c hildr en’s pr o-
les . T hese profiles are used to compute the distances between

nternal nodes in the tree and also the total distance from a node
o all other nodes (see [5 , 12] for a detailed description).

ew thread levels

o provide users control over parallelism and adaptability to var-
ous usage scenarios, VFT4 introduces 5 distinct thread levels.
hese le v els, including the original le v els fr om VFT3 (now r eferr ed
o as le v els 0, 1, and 2), allow users to finely adjust the degree of
arallelization based on their specific requirements.

At le v el 0, VFT4 employs the same par allelization str ategy as
T2, but with the addition of new parallel blocks to enhance per-
ormance. Le v el 1 intr oduces par allel bloc ks that r equir e addi-
ional memory for computations, enabling more efficient process-
ng. Le v el 2 utilizes the tree partitioning method to accelerate ML
NI r ounds. Le v el 3 performs in parallel all the computations but
PRs. Last, le v el 4 le v er a ges the tr ee partitioning method to expe-
ite also SPR steps, but it only pays off with datasets containing a
igh number of alignments. For this r eason, le v el 3 is the default
ption.

Eac h le v el in VFT4 is incr emental with r espect to the pr e vious
nes. Ho w e v er, it is important to note that computation at le v el 2
nd above follows a different tree traverse order, which may result
n differ ent tr ees with r espect to the sequential execution. Ne v er-
heless, these results remain strictly correct. By incorporating this
 ultile v el a ppr oac h, VFT4 offers users the flexibility to optimize

heir parallelization strategy according to factors such as dataset
ize , performance needs , and desired trade-offs.

isk computing

s pr e viousl y mentioned, phylogenetic tr ee infer ence r equir es a
ignificant amount of memory, which can become problematic
hen dealing with numerous sequences and limited resources

e.g., when considering a low-end server with reduced available
AM memory). To tackle this challenge, VFT4 introduces disk com-
uting , a technique that utilizes the hard drive to supplement the
emory r equir ements. While disk computing aids in handling

arge datasets, it does impact performance due to the slo w er ac-
ess speed of hard disks compared to RAM. Ho w e v er, the adv an-
ages of being able to process larger datasets outweigh the perfor-

ance trade-off.
We classified the dynamically allocated memory used in the

r ee construction pr ocess into 3 types: fixed memory, v ariable
emory, and computation memory. In particular:

� Fixed memory is allocated at the beginning of the pr ogr am ex-
ecution once the properties of the input dataset (such as the
number of sequences, length, etc.) ar e established and r e-
mains r eserv ed until the pr ogr am’s completion. For instance,
fixed memory is used to store sequences and weights in each
profile.

Efficient phylogenetic tree inference for massive taxonomic datasets | 5

Table 1: Characteristics of the datasets used in the experimental evaluation. Information obtained using BigSeqKit [15]

Dataset label File name Format Type Sequences Unique sequences Length

Large sel03n.masked FASTA AA 331,550 274,401 1,287
Very Large gg_12_10_aligned FASTA DNA 1,075,170 858,234 7,682
Ultra-Large 1-million-taxon-run1 NEXUS DNA 1,000,000 989,109 21,946

m

c

e

c
o

t

t

a
t

c

O
V

t
F

i

T

t

a

u
o

e

t

V

t

h

p

O

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giae055/7730000 by guest on 13 August 2024
� Variable memory , on the other hand, is allocated to store values
during specific stages of the computation. For instance, it is
the memory used to store the fr equency v ector (conditional
probabilities) whose size changes dynamically and cannot be
pr ecisel y pr edicted. Note that due to significant v ariations in

data sizes , o v er allocation of v ariable memory is often impr ac-
tical.

� Computation memory refers to private memory required by
threads to perform their tasks . T his includes stack memory,
which handles function calls; local variables; and temporary
data while the pr ogr am is running. Additionally, computa-
tion memory includes some temporary variables, which store
intermediate results and facilitate complex calculations, as
well as data structur es, whic h or ganize and mana ge data
for efficient processing. For example, computation memory
is used to tempor aril y stor e the ne w computed conditional
probabilities for possible exchanges within an NNI iteration.
It is important to emphasize that once the temporary values
are utilized, they are subsequently released.

While fixed and variable memory can be offloaded to the disk,
computation memory must be always maintained in RAM. This
is because the performance of the computation process is criti-
cal. In addition, e v en for huge datasets, computation memory re-
mains significantly smaller in comparison to fixed and variable
memories.

On the other hand, using swap space as an alternative when

a process exceeds RAM capacity has important limitations and

dr awbac ks. First, the swa p partition has a fixed size, potentially
leading to out-of-memory errors if exceeded. This is especially
r ele v ant when dealing with very large datasets, as is our case.
Ther efor e, if the dataset exceeds the size of the swa p, onl y an

administr ator would hav e the authority to expand the swap par-
tition to pr e v ent the job fr om being aborted. In addition, since
all pr ogr ams/a pplications shar e the same swa p space, excessiv e
sw apping b y 1 pr ogr am can adv ersel y affect others, leading to
contention for disk input/output (I/O) resources and reduced re-
sponsiv eness. In contr ast, the mec hanism used by VFT4 in disk
computing is based on memory-mapped files, which offers better
I/O performance due to the optimized kernel-le v el cac hing mec h-
anisms and efficient block-based access. Note that when using
memory ma pping, an y av ailable disk can be used to stor e data,
avoiding the swap partition size limitation. Additionally, memory-
ma pped files ar e also contr olled by the oper ating system, similar
to swap space, and are not manually managed. This ensures effi-
cient handling of data movement between memory and the disk,
with the operating system making decisions based on system re-
sources and r equir ements.

VFT4 introduces the use of disk computing with 2 parameters:

� -disk-computing : it facilitates the transfer of fixed memory
to disk.

� -disk-dynamic-computing : it facilitates the transfer of
variable memory to disk.
Employing both parameters allows VFT4 to move data from

emory to disk in such a way that very large datasets can be pro-
essed e v en on low-end serv ers with limited RAM. Ho w e v er, it is
ssential to consider that this feature may come at the cost of de-
reased computational performance. In this way, the performance
f VFT4 is dir ectl y influenced by the amount of memory sent to
he disk. Hence, it is advisable, whene v er possible, to compute by
r ansferring onl y fixed memory to the disk. This a ppr oac h strikes
 delicate balance between memory consumption and computa-
ional efficiency, optimizing the ov er all performance of the appli-
ation.

ptimized memory consumption

FT3 has been implemented using C ++ , whic h intr oduces addi-
ional memory overhead compared to the C implementation of
T2. Mor eov er, its mor e efficient utilization of thr eads leads to an
ncrease in memory consumption as the number of threads grows.
his increase is primarily caused by the replication of data struc-
ur es, sync hr onization mec hanisms, stac k space for each thread,
nd caching effects, among other factors.

VFT4, on the other hand, has been redesigned to minimize the
se of objects in memory-intensive sections and to release mem-
ry as soon as it is no longer needed. Consequently, in sequential
xecution, the memory r equir ements of VFT4 ar e e v en lo w er than
hose of FT2.

Additionall y, to r educe the ov erhead intr oduced by eac h thr ead,
FT4 optimizes the stor a ge of common temporary data, ensuring

hat it is stored only once . T his significantly minimizes the over-
ead associated with m ultithr eading, r esulting in mor e efficient
arallel execution compared to VFT3.

ther optimizations and functionalities

� Support for new and compressed formats : VFT3 and FT2 are lim-
ited to supporting the FASTA and Phylip formats, both stored
as plain text. In contrast, VFT4 has extended its support to in-
clude the widely used Nexus and FASTQ formats . T he Nexus
format allows for storing sequences and the initial tree within
a single file. Additionally, it is common for datasets down-
loaded from internet repositories to be compressed in formats
such as .gz or .bz . Previously, it was required to manually de-
compress these files before using them. Ho w ever, VFT4 can
dir ectl y r ead compr essed sequences in compatible formats,
thanks to the integration of the Zlib and libBZ2 libraries . T his
a ppr oac h sav es time by removing the need for manual file de-
compr ession, r esulting in impr ov ed performance and avoid-
ing the additional effort of reading larger uncompressed files
from the disk.

� Broader compatibility : VFT4 is a versatile tool that supports
Linux, Windows, and macOS, including Windows executa-
bles. It is also conv enientl y av ailable in the Bioconda pack-
a ge r epository [13], making it easil y accessible to the bioinfor-
matics comm unity. Furthermor e , for macOS users , it is also
available as a MacPorts pac ka ge [14]. Finall y, for Linux users,
VFT4 is included as a pac ka ge in all Debian Linux distribu-

6 | GigaScience , 2024, Vol. 13

P
N

t

c

r

a

i

f

t

t

m

d

I

T

c

v

l

(

R
F

u

s

s

t

f

a

3

d

q

t

(

c

V

c

f

F

t

d

h

s

t

d

a

c

c

N

c

o

r

t

R

e

p

t

i

a

b

u

c

w

t

t

c

d

V

e

d

c

M
I

o

o

s

o

i

e

a

d

l

i

o

V

t

t

a

(

o

A

t

i

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giae055/7730000 by guest on 13 August 2024
tions, simplifying its installation and integration into various
computing en vironments .

� Better compilation support : The compilation process has been
enhanced by adding support for new compilers, such as
clang , and incor por ating ne w featur es like AVX512 in Win-
dows builds . T he code has been optimized to comply with the
latest compiler standards . Furthermore , parallel compilation
has been implemented to accelerate the overall compilation
time.

erformance Ev alua tion

ext, we present experimental results that clearly demonstrate
he superior performance of our tool, VFT4, compared to its prede-
essors, VFT3 and FT2. We have evaluated the following aspects:
unning time, memory consumption, CPU usage, and topological
ccuracy.

For the e v aluation, we selected 3 v ery lar ge datasets with v ary-
ng number of taxa and alignment lengths. Please refer to Table 1
or specific details about these datasets. It is important to note
hat only unique sequences were considered when constructing
he trees. To ensure test reproducibility, we have included infor-

ation about the parameters used to build the trees for each
ataset:

� Large : -spr 4 -gamma
� Very Large : -nt -gamma -gtr
� Ultra-Large : -nt -gamma -gtr

The arguments have the following meanings:

� -nt : nucleotide alignment used as input.
� -spr : sets the number of rounds of SPR moves (default value

is 2).
� -gtr : utilizes the generalized time-reversible (GTR) model of

nucleotide substitution.
� -gamma : after optimizing the tree with a fixed rate for each

site (the CAT model), VFT (and FT2) will rescale the tree to
optimize the Gamma20 likelihood [5].

Experiments were conducted using 1 server with two 32-core
ntel Xeon Ice Lake 8352Y @2.2 GHz processors and 512 GB of RAM.
his server is part of a cluster installed at CESGA (Galicia Super-
omputing Center, Spain) [16] running Rocky Linux v8.4 (kernel
4.18.0). We have used in the performance comparison the fol-
owing tools and v ersions: Fast-Tr ee v.2.1.11 [17], VeryFastTr ee v3.0
our pr e vious v ersion), and VeryFastTr ee v4.0.3.

unning times

irst, w e sho w in Fig. 3 the running times when building the trees
sing single precision. We must highlight that, even if single preci-
ion is selected in VFT4 and FT2, many intermediate calculations
uch as vector reductions are performed with double precision
o minimize errors. In the case of the Large dataset, VFT4 outper-
orms FT2 and VFT3, ac hie ving speed impr ov ements of 2.6 times
nd 1.6 times r espectiv el y, r esulting in an execution time of just
.5 hours. When inferring the phylogenetic tr ee fr om the Very Large
ataset, VFT4 completes the task in 17.2 hours, whereas FT2 re-
uires 57.7 hours and VFT3 takes 35.4 hours. Finally, dealing with
he Ultra-Large dataset, VFT4 is able to build the tree in 35.8 hours
i.e ., 1.5 da ys). Note that the time r equir ed by FT2 and VFT3 in-
r eases noticeabl y to 4.8 and 4.5 da ys , r espectiv el y. In other w or ds,
FT4 is 3.2 times and 3 times faster than FT2 and VFT3.
On the other hand, Fig. 4 presents the running times for tree
onstruction but using double-precision arithmetic. In this case,
or the Large dataset, VFT4 is 6.9 times and 2.4 times faster than
T2 and VFT3, r espectiv el y, r educing the execution time to less
han 3 hours. Note that VFT4 builds the tree faster when using
ouble precision than considering single precision (2.8 versus 3.5
ours). This is caused by the good behavior of the vectorization
trategies used by VFT4 when considering protein alignments. On
he other hand, inferring the phylogenetic tree from the Very Large
ataset using VFT4 takes 18 hours, while FT2 r equir es 61.7 hours
nd VFT3 41.3 hours. As a result, VFT4 is again the fastest tool. In
onclusion, when dealing with the Ultra-Large dataset, VFT4 can
omplete the tree-building process within 41.2 hours, or 1.7 da ys .
otably, the time required by FT2 and VFT3 increases signifi-
antly to 5.3 and 4.6 da ys , r espectiv el y. To put it simply, VFT
utperforms FT2 and VFT3 in speed by 3.1 times and 2.7 times,
 espectiv el y.

As mentioned in the Introduction, in addition to FT2 and VFT,
her e ar e other state-of-the-art tools for ML tree estimation, with
AxML and IQ-TREE being the most commonly used by the sci-
ntific community. Ho w ever, they are limited in their ability to
rocess datasets containing a large number of sequences due to
heir extensive running times. To validate the observations made
n pr e vious w orks [4], w e assessed both tools, RAxML-NG v.1.2.0
nd IQ-TREE v.2.1.3, using our Large dataset. Since RAxML-NG can
e executed on a cluster, we conducted experiments with this tool
sing 4 computing nodes instead of just 1 server. We manually
onstrained the experiments to a maximum running time of 1
eek. Both tools were unable to construct the tree within that

ime frame. It is worth noting that VFT4 can estimate the tree for
he Large dataset in a ppr oximatel y 3 hours (see Figs. 3 and 4). This
onfirms that both RAxML and IQ-TREE are not well suited for
atasets containing a very large number of sequences.

Ther efor e, to the best of our knowledge, these results establish
FT4 as the fastest tool in the state-of-the-art for ML phylogeny
stimation. But mor eov er, VFT4 allows the pr ocessing of massiv e
atasets that would otherwise be intractable or would r equir e ex-
essiv el y high computing times.

emory consumption and CPU usage

n the pr e vious section, w e pointed out ho w the mor e effectiv e use
f thr eads r esults in higher memory consumption as the number
f threads increases. VFT4 addresses this issue by optimizing the
tor a ge of commonly used temporary data, ensuring it is stored
nly once. As a result, the overhead associated with multithread-
ng is significantly reduced, leading to a more efficient parallel ex-
cution compared to VFT3.

Figure 5 displays the CPU usage and memory consumption for
ll the considered tools when building the tree from the Ultra-Large
ataset using single-precision arithmetic. The purpose of this il-

ustration is to showcase the memory optimizations implemented
n VFT4. Each time step in the gr a phs corr esponds to 3,600 sec-
nds. It can be observed that the maximum memory consumed by
FT4 is a bit higher with respect to FT2, 272 GB and 228 GB, respec-

iv el y. This incr ease is attributed to a mor e efficient utilization of
hreads. It is important to note that VFT4 extensiv el y utilizes par-
llelism, employing the maximum available number of threads
64) for most of the time. In contrast, FT2 is constrained to using
nly a few threads, as indicated by the blue lines in the figures.
s a consequence, VFT4 r equir es some extra memory for multi-

hreading, but it comes with the benefit of a remarkable decrease
n the running time. On the other hand, VFT4 significantly reduces

Efficient phylogenetic tree inference for massive taxonomic datasets | 7

Large Very-Large Ultra-Large
1

5

10

50

100

500

T
im

e
(h

o
u

rs
)

-
lo

g
 s

ca
le

 FastTree-2
 VeryFastTree-3
 VeryFastTree-4

Figure 3: Running times of FT 2 , VFT 3 , and VFT 4 for building the trees using single-precision arithmetic and different datasets.

Large Very-Large Ultra-Large
1

5

10

50

100

500

T
im

e
(h

o
u

rs
)

-
lo

g
 s

ca
le

 FastTree-2
 VeryFastTree-3
 VeryFastTree-4

Figure 4: Running times of FT 2 , VFT 3 , and VFT 4 for building the trees using double-precision arithmetic and different datasets.

C
PU

M
em

or
y

(G
B

)

A

M
em

or
y

(G
B

)

B

M
em

or
y

(G
B

)

C

Figure 5: CPU usage (# of cores) and memory consumption when building the single-precision trees using as input the Ultra-Large dataset. Time step =

3,600 seconds.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giae055/7730000 by guest on 13 August 2024

8 | GigaScience , 2024, Vol. 13

m

q

i

fi

i

d

a

e

i

s

p

r

a

t

q

f

D
I

s

a

m

f

d

s

F

I

o

L

6

c

t

p

t

m

a

b

b

a

l

w

t

o

a

t

5

i

t

q

s

o

h

i

t

T
I

o

a

e

s

e

i

r

I

M

c

f

w

s

M

h

s

V

p

l

t

o

p

F

p

b

c

0

t

T

s

e

f

o

c

m

p

u

t

r

e

l

l

S

w

m

n

o

m

a

i

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giae055/7730000 by guest on 13 August 2024
emory consumption compared to VFT3. In particular, VFT3 re-
uires twice the maximum memory used by VFT4. Furthermore,

t also demonstrates greater efficiency in terms of parallelism.
As we pointed out pr e viousl y, VFT4, like FT2, uses sequence pro-

les of internal nodes of the tree to implement neighbor joining
nstead of storing a distance matrix. Typically, as stated in [12], a
istance matrix for an alignment with N sequences, L sites, and
 differ ent c har acters in the alphabet r equir es O (N

2) space. How-
 v er, the upper bound of memory space r equir ed by VFT and FT2
s O (NLa) . Eac h pr ofile comprises a fr equency v ector for eac h po-
ition and the weighted av er a ge of its c hildr en’s pr ofiles.

If we take a look in detail, VFT4 r equir es 272 GB of memory to
rocess the Ultra-Large dataset (see Fig. 5 C). Its corresponding pa-
 ameters ar e N = 989 , 109 , L = 21 , 946 , and a = 4 (nucleotides). As
 consequence, taking into account that the r esulting tr ee con-
ains 2 N nodes and single precision uses 4 bytes, the memory re-
uired by the profiles is the sum of the weights and frequencies
or each node in the tree:

� Weights r equir e exactl y 2 N × L × 4 bytes = (2 × 989 , 109) ×
21 , 946 × 4 bytes = 173 . 65 GB.

� The memory of frequencies can be estimated as 2 N × a × g ×
4 bytes, with “g” being the number of gaps in the sequence.
Since “g” is not a constant value and changes in each node as
the topology of the tree evolves, an exact value for the mem-
ory space used cannot be pr ovided. In an y case, most of the
difference between the total memory used by VFT4 (272 GB)
and the memory r equir ed onl y b y the w eights of the profiles
(173.65 GB) is due to the frequencies.

isk computing

n man y cases, r esearc hers ar e faced with limited computing re-
ources , often ha ving access onl y to low-end serv ers that possess
 limited amount of memory. To deal with this issue, as was com-
ented pr e viousl y, we intr oduced disk computing in VFT4, a ne w

eature that allows to offload static and dynamic memory to the
isk with the aim of handling very large datasets even on small
ervers . T he obvious drawback is an increase in the running times.

An example of the effects of disk computing can be found in
ig. 6 . Each time step in the gr a phs corr esponds to 300 seconds.
n particular, Figs. 6 A and 6 B show the CPU usage and the mem-
ry footprint in a normal execution of VFT4 when processing the
arge dataset considering double-precision arithmetic and 1 and
4 thr eads, r espectiv el y. In these cases, the maximum memory
onsumed was 58.5 GB (1 thread) and 84.42 GB (64 threads). Note
hat the spike in the memory consumption is caused by the com-
utation and stor a ge of the profiles at each node of the tree. On
he other hand, Figs. 6 C and 6 D also display the CPU usage and the

emory footprint but using disk computing with 1 and 64 threads,
s well as limiting the memory of the server to just 16 GB. It can
e observed that thanks to this new feature, we can successfully
uild the tree on a small server. Considering 64 threads, for ex-
mple, the maximum memory used is approximately 5.3 times
ess compared to a normal execution. It may seem a ppar ent, but
ithout disk computing, the processing of datasets that surpass

he available memory would be impossible. It would result in an
ut of memory err or, whic h would be the case of using both FT2
nd VFT3.

On the other hand, the VFT4 running time increases, using 1
hr ead fr om 16.8 to 27.5 hours while using 64 thr eads fr om 2.8 to
3.4 hours. In other w or ds, using disk computing on a 16 GB server
s from 1.6 times (1 thread) to 19 times (64 threads) slo w er than
he standard execution. An interesting observation is that the se-
uential execution with disk computing is faster than the corre-
ponding execution with 64 threads . T his is due to the limitations
f disk and I/O bandwidth, which struggle to handle the extr emel y
igh number of requests generated when using 64 threads, lead-

ng to contention on the bus . T her efor e, we r ecommend r educing
he number of threads when utilizing the disk computing feature.

opological accuracy

n the liter atur e, se v er al studies hav e examined the performance
f leading ML tools, such as RaxML, IQ-TREE, and FT2, regarding
ccuracy and computational efficiency with large datasets. Liu
t al. [18] compared RAxML and FT2 using simulated datasets for
ingle genes containing 1,000 or more sequences across various
stimated alignments . T hey concluded that both methods exhib-
ted similar topological accuracy. Lees et al. [19], in their explo-
ation of ML heuristics through simulations, found RAxML and
Q-TREE to be comparable in accuracy, both outperforming FT2.

or eov er, 2 studies [20 , 21] e v aluated FT2 and RAxML on datasets
ontaining fr a gmentary sequences . T hey observed that FT2 per-
ormed less accur atel y than RAxML when handling alignments
ith a high proportion of fragmentary sequences. Overall, these

tudies have shown that IQ-TREE and RAxML are both very good
L heuristics with respect to ML scores, while all of the studies
ave shown that FT2 is indeed very fast, but it is so good at ML
core optimization.

On the other hand, as we explained in our pr e vious study [6],
FT is a highly tuned implementation of FT2 that k ee ps the
hases , methods , and heuristics used by FT2 to estimate the phy-

ogenetic tree. For this reason, it is only necessary to compare
he topological accuracies with respect to FT2 (and our pr e vi-
us version of VFT), since the works commented above already
erformed a thorough comparison between RAxML, IQ-TREE, and
T2.

Similar to [5], we defined the topological accuracy as the pro-
ortion of splits in the true trees that are successfully recovered
y eac h r espectiv e tool. T his metric is the in verse of the topologi-
al Robinson–Foulds distance [22], normalized to a range between
 and 1.

Our findings demonstrate that both VFT3 and VFT4 exhibit de-
erminism while maintaining the same le v el of accuracy as FT2.
o validate this, we assessed topological accuracy using 5,000-
equences sim ulated pr otein alignments [17], whic h wer e also
mplo y ed in the original FT2 study for the same purpose . T here-
ore, the true phylogeny is a vailable . All simulations are based
n trees from profile alignments of biological sequences and in-
lude variable rates across sites . T he simulations are described in
ore detail in [23]. Trees were computed using 64 threads, double-

recision arithmetic, and -gamma -spr 4 parameters. All tools
sed the same seed for initializing the random number genera-
or. The experimentation script, treecmp.py , is accessible in our
epository. We show results for VFT4 considering 2 different lev-
ls of parallelism (i.e., thread levels). As we explained pr e viousl y,
e v el 3 performs in parallel all the computations but SPRs, while
e v el 4 le v er a ges the tr ee partitioning method to accelerate also
PR mo vements . For VFT3 and VFT4, topological accuracy values
ere computed by av er a ging 7 measurements (1 for each align-
ent in the dataset). Conv ersel y, par allel executions of FT2 did

ot yield deterministic r esults. Consequentl y, we pr esent a r ange
f accuracy values . T his range was derived by averaging the mini-
um and maximum values obtained from 10 executions for each

lignment. Accur acy r esults expr essed in percenta ges ar e shown
n Table 2 .

Efficient phylogenetic tree inference for massive taxonomic datasets | 9

Time Step

A
Time Step

B

Time Step

C
Time Step

D

Figure 6: Effects of using disk computing when building the double-precision trees using as input the Large dataset. Time step = 300 seconds.

Table 2: Topological accuracies (in %) obtained by FT 2 , VFT 3 and VFT 4 using 5,000-sequences simulated protein alignments. Note that
the parallel version of FT2 is nondeterministic, so minimum and maximum values are displayed between br ac kets

Tool COG438 COG583 COG596 COG642 COG1028 COG1309 COG2814 Average

VFT4 (level 3) 85.35 79.11 88.14 82.66 86.19 86.55 79.59 83.94
VFT4 (level 4) 85.43 79.13 87.72 82.19 86.37 87.29 79.92 84.01
VFT3 85.51 79.57 87.82 81.89 86.29 87.09 80.18 84.05
FT2 [85, 85.83] [79.21, 79.91] [88.04, 88.78] [82.11, 82.95] [86.30, 87.03] [86.19, 87.59] [79.06, 80.66] [83.70, 84.68]

b

t
d
c
w

i

p

i

u

t

t

t

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giae055/7730000 by guest on 13 August 2024
Based on the results obtained, we conclude that VFT4 produces
trees with an accuracy level within the same range as FT2. Ad-
ditionall y, minor differ ences wer e observ ed when using differ ent
thr ead le v els. In particular, the most a ggr essiv e one in terms of
par allelism, le v el 4, shows a slightly better behavior than level
3.

Commands Interface

The new VeryFastTree version 4.0 was designed with extensive
cross-platform compatibility, offering support for a variety of
operating systems, including Linux, Windows, and macOS. This
road compatibility ensures that users can access and utilize the
ool seamlessly across different computing en vironments . Win-
ows users, in particular, benefit from the availability of exe-
utable versions of VFT4, simplifying the installation process and

idening its user base. Additionally, for those in the bioinformat-
cs field, VFT4 can be effortlessly located within the Bioconda
ac ka ge r epository, str eamlining both installation and integr ation

nto bioinformatics w orkflo ws . VFT4 is also a vailable for macOS
sers as a MacPorts pac ka ge. Finall y, Linux users will a ppr eciate
hat VFT4 is included as a pac ka ge in all Debian Linux distribu-
ions, making installation straightforw ar d and facilitating its in-
egration into diverse computing setups.

10 | GigaScience , 2024, Vol. 13

s

b

t

f

e

o

h

a

v

w

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giae055/7730000 by guest on 13 August 2024
Just like the pr e vious v ersion of VeryFastTr ee, it implements the
ame command interface as FT2. This means that the arguments
ehav e exactl y the same as in FT2. To c hec k all these ar guments,
he “-h” or “-expert” option can be used. Consequently, to benefit
rom the performance advantages provided by VFT4, it is only nec-
ssary to replace the call to FT2 with a call to VFT4, using the same
ptions.

On the other hand, VFT4 has its own extra arguments, which
ave been grouped in the Optimizations section. These arguments
r e r elated to the par ametrization of the differ ent par allelization,
 ectorization, and optimization str ategies included in VFT4. Next
e list and explain the new arguments available:

� -threads [n]

It allows specifying the number of threads (n) used in the
parallel execution. If this option is not set, the correspond-
ing value will be obtained from the environment variable
OMP_NUM_THREADS . This is the same a ppr oac h follo w ed b y
FT2. If n = 1 , VeryFastTr ee behav es in the same way as FT2
compiled without the -DOPENMP flag.

� -threads-level [level]

It allows changing the degree of parallelization.

– If le v el is 0, VeryFastTr ee uses the same parallelization
strategy as FT2 with some new parallel blocks.

– If le v el is 1, VeryFastTr ee uses par allel bloc ks that r equir e
additional memory for computation.

– If le v el is 2, VeryFastTr ee acceler ates the r ounds of ML
NNIs using its tree partitioning method.

– If le v el is 3 (default), VeryFastTr ee performs mor e compu-
tations without preserving sequential order.

– If le v el is 4, VeryFastTr ee also acceler ates the r ounds of SPR
steps using its tree partitioning method (it can only be
used with datasets larger than 2 maxSPRl engt h +2).

Note: Eac h le v el includes the pr e vious ones, and computation
at le v el 2 and abov e is performed in a differ ent tr ee tr av erse
order, so the result may change.

� -threads-mode [mode]

Changes the mode of parallelization.

– If mode is 0, VeryFastTree uses nondeterministic parts,
some inspired by FT2 but improved.

– If mode is 1, VeryFastTree only uses deterministic paral-
lelization.

Since version 4.0, deterministic algorithms are at least faster
than nondeterministic ones, making deterministic the pre-
ferr ed c hoice.

� -threads-ptw [n] (Partitioning Tendency Window)
It sets the size of the partitioning tendency window used by
the tree partitioning algorithm to determine when to stop
sear ching. The windo w stores the last solutions and c hec ks
if a better solution can be found. Increasing the value allows
the algorithm to explore the tree deeper and potentially find
better solutions . T he default value is 50.

� -threads-verbose

It shows subtrees assigned to the threads and theoretical
speedup, only with verbose > 0 .

� -double-precision

It uses double-precision arithmetic. T herefore , it is equivalent
to compile FT2 with -DUSE_DOUBLE .

� -ext [type]

It enables the vector extensions:
– AUTO : (default) selects AVX2 when -double-precision

is used and SSE3 otherwise. If 1 extension is not avail-
able, the pr e vious le v el is used.

– NONE : Oper ations ar e performed with the nativ e pr ogr am-
ming langua ge oper ators. In addition, loops ar e un-
rolled with the aim of providing hints to the compiler
for a ppl ying some optimization (including vectoriza-
tion).

– SSE3 : Arithmetic operations are performed using SSE3 vec-
tor intrinsics. Each instruction operates on 128-bit reg-
isters, which could contain four 32-bit floats or two 64-
bit doubles.

– AVX : Arithmetic operations are performed using AVX vec-
tor intrinsics. Each instruction operates on 256-bit reg-
isters, which could contain eight 32-bit floats or four
64-bits doubles.

– AVX2 : Similar to AVX, but some arithmetic oper ations ar e
performed using additional AVX2 vector intrinsics not
included in the AVX instruction set. Each instruction
operates on 256-bit registers, which could contain eight
32-bit floats or four 64-bit doubles.

– AVX512 : Arithmetic operations are performed using
AVX512 vector intrinsics. Each instruction operates on
512-bit r egisters, whic h could contain sixteen 32-bit
floats or eight 64-bits doubles.

� -disk-computing

If there is not enough available RAM to perform the compu-
tation, disk will be used to store extra data when it was not
needed. Using disk to perform the computation will substan-
tiall y incr ease the execution time.

� -disk-computing-path [path]

Like -disk-computing but using a custom path folder to store
data.

� -disk-dynamic-computing

By default, disk computing only creates files associated with
static data in RAM, which means that there is no significant
impact on performance as long as there is available RAM. This
option further reduces memory usage by storing dynamic
data on disk. Ho w e v er, e v en if there is enough RAM, it will
hav e a negativ e impact on performance due to the creation
and deletion of files.

� -seed [seed]

Set the seed for the random number generator. Default value
is 1,253.

� -fastexp [implementation]

This option is used to select an alternative implementation
for the exponential function (e x), which has a significant im-
pact on performance:

– 0: (default) Use the exp function included in the built-in
math library with double precision.

– 1: Use the exp function included in the built-in
math library with simple precision (not rec-
ommended together with the -double-precision
option).

– 2: Use a very efficient and fast implementation to com-
pute an accurate approximation of e x using double-
precision arithmetic.

– 3: Use a very efficient and fast implementation to com-
pute an accurate approximation of e x using simple pre-
cision arithmetic (not recommended together with the
-double-precision option).

Efficient phylogenetic tree inference for massive taxonomic datasets | 11

2
m

D
T

a

v

C
T

R
1

2

3

4

5

6

7

8

9

1

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giae055/7730000 by guest on 13 August 2024
Conclusions

In the field of bioinformatics r esearc h, phylogenies ar e of utmost
importance. Regr ettabl y, the searc h for the optimal phylogenetic
tree imposes significant computational r equir ements, and most
modern cutting-edge tools struggle to handle exceptionally large
datasets in a timely manner.

In this w ork, w e introduce the latest version of VeryFastTree,
whic h incor por ates numer ous performance optimizations and

ne w featur es. Experimental r esults establish VeryFastTr ee as the
fastest tool in the state-of-the-art for ML phylogeny estimation.
For instance, it is capable of processing massive datasets contain-
ing 1 million taxa in just 36 hours, which is se v er al times faster
than other tools. In this way, VeryFastTree enables the processing
of datasets that would otherwise be intractable or r equir e exces-
siv el y high computing times. Despite its exceptional speed, it pro-
duces trees with an accuracy level comparable to that of FastTree-
2. On the other hand, a note worthy ne w c har acteristic of VeryFast-
Tree is what we call disk computing , which allows the processing of
extr emel y lar ge datasets on low-end serv ers with limited memory
resources.

Finally, w e w ould like to emphasize that VeryFastTree can also
serve as the foundation for building an initial tr ee, whic h can sub-
sequently be optimized using the latest developments in online
phylogenetics [24 , 25] or be used as a first step of disjoint tree
mergers [4 , 8 , 9 , 26].

Availability of Source Code and

Requirements

� Project name: VeryFastTree
� Pr oject homepa ge: https:// github.com/ citiususc/ v eryfasttr ee
� BiotoolsID: biotools:veryfasttree
� RRID:SCR _ 023594
� Operating system(s): Linux, Windows, and macOS
� Pr ogr amming langua ge: C/C ++

� License: GNU GPL-3.0

Abbreviations

FT2: FastTr ee-2; ML: maxim um likelihood; MP: maximum parsi-
mon y; MSA: m ultiple sequence alignment; NNI: near est-neighbor
interc hange; SPR: subtr ee pruning and r egr afting; VFT3: first v er-
sion of VeryFastTree; VFT4: latest version of VeryFastTree intro-
duced in this work.

Ac kno wledgments

The authors thank CESGA (Galicia, Spain) for providing access to
their supercomputing facilities.

Author Contributions

César Piñeiro (Methodology [Equal], Software [Lead], Validation

[Lead], Writing—original draft [Equal])
Juan C. Pichel (Conceptualization [Lead], Methodology [Equal], Re-
vision[Lead], Supervision [Lead], Writing—original draft [Equal])

Funding

This w ork w as supported b y MICINN (PLEC2021-007662, PID2022-
137061OB-C22), Xunta de Galicia (ED431G 2019/04, ED431F
020/08, ED431C 2022/16), and the European Regional Develop-
ent Fund.

a ta Av ailability

he datasets supporting the results of this article were obtained
s follows:

� Large dataset was obtained from the FastTree-2 tool web-
site [17].

� Very Large dataset was obtained from the Greengenes
database [27].

� Ultra-Large dataset was obtained from the Kim Lab for Com-
putational Evolutionary Biology (University of Pennsylvania)
repository [28].

� 5,000-sequences simulated protein alignments dataset was
obtained from the FastTree-2 tool website [17].

Supporting data and an arc hiv al copy of the code are available
ia the GigaScience repository, GigaDB [29].

ompeting Interests

he authors declare that they have no competing interests.

eferences

. Warnow T. Computational Phylogenetics: An Introduction to
Designing Methods for Phylogeny Estimation. Cambridge, UK:
Cambridge University Press; 2017.

. K ozlo v AM, Darriba D, Flouri T, et al. RAxML-NG: a fast, scalable
and user-friendly tool for maximum likelihood phylogenetic in-
ference. Bioinformatics 2019;35(21):4453–55. https:// doi.org/ 10
.1093/bioinformatics/btz305 .

. Minh BQ, Schmidt HA, Chernomor O, et al. IQ-TREE 2: new mod-
els and efficient methods for phylogenetic inference in the ge-
nomic era. Mol Biol Evol 2020;37(5):1530–34. https:// doi.org/ 10
.1093/molbev/msaa015 .

. Park M, Zaharias P, Warnow T. Disjoint tr ee mer gers for
lar ge-scale maxim um likelihood tr ee estimation. Algorithms
2021;14(5):148. https:// doi.org/ 10.3390/ a14050148 .

. Price MN, Dehal PS, Arkin AP. FastTr ee 2—a ppr oximatel y
maxim um-likelihood tr ees for lar ge alignments. PLoS
One 2010;5(3):1–10. https:// doi.org/ 10.1371/ journal.pone.0
009490 .

. Piñeiro C, Abuín JM, Pichel JC. VeryFastTree: speeding up
the estimation of phylogenies for large alignments through

par allelization and v ectorization str ategies. Bioinformatics
2020;36(17):4658–59. https:// doi.org/ 10.1093/ bioinformatics/bta
a582 .

. Nelesen S, Liu K, Wang LS, et al. DACTAL: divide-and-
conquer trees (almost) without alignments. Bioinformatics
2012;28(12):i274–82. https:// doi.org/ 10.1093/ bioinformatics/bts
218 .

. Mollo y EK, Warno w T. Tr eeMer ge: a ne w method for impr oving
the scalability of species tree estimation methods. Bioinformat-
ics 2019;35(14):i417–26. https:// doi.org/ 10.1093/ bioinformatics
/btz344 .

. Smirnov V, Warnow T. Unblended disjoint tree merging us-
ing GTM impr ov es species tr ee estimation. BMC Genomics
2020;21:1–17. https:// doi.org/ 10.1186/ s12864- 020- 6605- 1 .

0. Heath MT. A tale of two laws. Int J High Perform Comput Appl
2015;29(3):320–30. https:// doi.org/ 10.1177/ 1094342015572031 .

https://github.com/citiususc/veryfasttree
https://scicrunch.org/resolver/RRID:SCR_023594
https://doi.org/10.1093/bioinformatics/btz305
https://doi.org/10.1093/molbev/msaa015
https://doi.org/10.3390/a14050148
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1093/bioinformatics/btaa582
https://doi.org/10.1093/bioinformatics/bts218
https://doi.org/10.1093/bioinformatics/btz344
https://doi.org/10.1186/s12864-020-6605-1
https://doi.org/10.1177/1094342015572031

12 | GigaScience , 2024, Vol. 13

11. Babel L, K eller er H, K oto v V. T he k-partitioning problem. Math

1

1

1

1

1

1

1

1

2

2

Mol Biol Evol 2017;34(12):3279–91. https:// doi.org/ 10.1093/ molb

2

2

2

2

2

2

2

2

R
©
(

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/giga
Method Oper Res 1998;47(1):59–82. https:// doi.org/ 10.1007/ BF01
193837 .

2. Price MN, Dehal PS, Arkin AP. FastTree: computing large mini-
m um e volution tr ees with pr ofiles instead of a distance matrix.
Mol Biol Evol 2009;26(7):1641–50. https:// doi.org/ 10.1093/ molb
ev/msp077 .

3. Piñeir o C. Veryfasttr e. Bioconda pac ka ge. 2023. https://anaconda
.or g/bioconda/v eryfasttree . Accessed 16 October 2023.

4. Piñeir o C. Veryfasttr ee . MacP orts pac ka ge. 2023. https:
//ports.macpor ts.org/por t/veryfasttr ee/. Accessed 16 October
2023.

5. Piñeir o C, Pic hel JC. BigSeqKit: a par allel big data toolkit to
process FASTA and FASTQ files at scale. GigaScience 2023;12:
giad062. https:// doi.org/ 10.1093/ gigascience/ giad062 .

6. CESGA (Galician Supercomputing Center). Computing in-
fr astructur es. https:// www.cesga.es/en/ infr astr uctures/comput
ing/. Accessed 16 October 2023.

7. Price MN. FastTree. http://www.microbesonline.or g/fasttr ee/.
Accessed 16 October 2023.

8. Liu K, Linder CR, Warnow T. RAxML and FastTree: comparing
two methods for lar ge-scale maxim um likelihood phylogeny es-
timation. PLoS One 2011;6(11):1–11. https:// doi.org/ 10.1371/ jour
nal.pone.0027731 .

9. Lees JA, Kendall M, Parkhill J, et al. Evaluation of phylogenetic
reconstruction methods using bacterial whole genomes: a sim-
ulation based study. Wellcome Open Res 2018;3:1–37. https://do
i.or g/10.12688/wellcomeopenr es.14265.2 .

0. Smirnov V, Warnow T. Phylogeny estimation given sequence
length heterogeneity. Syst Biol 2021;70(2):268–82. https://doi.or
g/ 10.1093/ sysbio/syaa058 .

1. Sayyari E, Whitfield JB, Mir ar ab S. Fr a gmentary gene sequences
negativ el y impact gene tree and species tree reconstruction.
ecei v ed: October 23, 2023. Revised: April 17, 2024. Accepted: July 11, 2024
The Author(s) 2024. Published by Oxford Uni v ersity Pr ess GigaScience. This is an Open Access a

 https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, an
ev/msx261 .
2. Huerta-Cepas J, Serra F, Bork P. ETE 3: reconstruction,

analysis, and visualization of phylogenomic data. Mol
Biol Evol 2016;33(6):1635–38. https:// doi.org/ 10.1093/ molb
ev/msw046 .

3. Tatusov RL, Natale DA, Garkavtsev IV, et al. The COG database:
ne w de v elopments in phylogenetic classification of pr oteins
from complete genomes. Nucleic Acids Res 2001;29(1):22–28.
https:// doi.org/ 10.1093/ nar/ 29.1.22 .

4. Ye C, Thornlow B, Hinrichs A, et al. matOptimize: a par allel tr ee
optimization method enables online phylogenetics for SARS-
CoV-2. Bioinformatics 2022;38(15):3734–40. https:// doi.org/ 10.1
093/bioinformatics/btac401 .

5. Turakhia Y, Thornlow B, Hinrichs A, et al. Pandemic-scale phy-
logenomics r e v eals the SARS-CoV-2 r ecombination landsca pe.
Nature 2022;609(7929):994–97. https:// doi.org/ 10.1038/ s41586-0
22- 05189- 9 .

6. Zhang QR, Rao S, Warnow T. New absolute fast converging phy-
logeny estimation methods with improved scalability and accu-
racy. In: 18th International Workshop on Algorithms in Bioin-
formatics (WABI). Parida L, Ukkonen E, eds. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik; 2018.

7. Second Genomes Inc. The StrainSelect and Greengenes
Databases. https://greengenes.secondgenome.com . Accessed
16 October 2023.

8. University of Pennsylvania. Kim Lab for Computational Evolu-
tionary Biology. https:// kim.bio.upenn.edu/ software/index.sht
ml . Accessed 16 October 2023.

9. Piñeir o C, Pic hel JC. Supporting data for “Efficient Phylogenetic
Tr ee Infer ence for Massiv e Taxonomic Datasets: Harnessing
the Po w er of a Serv er to Anal yze 1 Million Taxa.” GigaScience
Database. 2024. http://dx.doi.org/10.5524/102551.
rticle distributed under the terms of the Cr eati v e Commons Attribution License
d reproduction in any medium, provided the original work is properly cited.

science/giae055/7730000 by guest on 13 August 2024

https://doi.org/10.1007/BF01193837
https://doi.org/10.1093/molbev/msp077
https://anaconda.org/bioconda/veryfasttree
https://ports.macports.org/port/veryfasttree/
https://doi.org/10.1093/gigascience/giad062
https://www.cesga.es/en/infrastructures/computing/
http://www.microbesonline.org/fasttree/
https://doi.org/10.1371/journal.pone.0027731
https://doi.org/10.12688/wellcomeopenres.14265.2
https://doi.org/10.1093/sysbio/syaa058
https://doi.org/10.1093/molbev/msx261
https://doi.org/10.1093/molbev/msw046
https://doi.org/10.1093/nar/29.1.22
https://doi.org/10.1093/bioinformatics/btac401
https://doi.org/10.1038/s41586-022-05189-9
https://greengenes.secondgenome.com
https://kim.bio.upenn.edu/software/index.shtml
http://dx.doi.org/10.5524/102551
https://creativecommons.org/licenses/by/4.0/

	Introduction
	New Features and Optimizations
	Performance Evaluation
	Commands Interface
	Conclusions
	Availability of Source Code and Requirements
	Abbreviations
	Acknowledgments
	Author Contributions
	Funding
	Data Availability
	Competing Interests
	References

