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Abstract

Background: Phylogenies play a crucial role in biological research. Unfortunately, the search for the optimal phylogenetic tree incurs
significant computational costs, and most of the existing state-of-the-art tools cannot deal with extremely large datasets in reasonable
times.

Results: In this work, we introduce the new VeryFastTree code (version 4.0), which is able to construct a tree on 1 server using single-
precision arithmetic from a massive 1 million alignment dataset in only 36 hours, which is 3 times and 3.2 times faster than its previous
version and FastTree-2, respectively. This new version further boosts performance by parallelizing all tree traversal operations during
the tree construction process, including subtree pruning and regrafting moves. Additionally, it introduces significant new features
such as support for new and compressed file formats, enhanced compatibility across a broader range of operating systems, and
the integration of disk computing functionality. The latter feature is particularly advantageous for users without access to high-end
servers, as it allows them to manage very large datasets, albeit with an increase in computing time.

Conclusions: Experimental results establish VeryFastTree as the fastest tool in the state-of-the-art for maximum likelihood phylogeny
estimation. It is publicly available at https://github.com/citiususc/veryfasttree. In addition, VeryFastTree is included as a package in

Bioconda, MacPorts, and all Debian-based Linux distributions.
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Introduction

Inferring evolutionary relationships or phylogenies is a
formidable challenge in computational biology. The growth
of datasets from next-generation sequencing has made large-
scale phylogeny estimation crucial. However, the computational
complexity of inferring phylogenies and performing multiple
sequence alignment (MSA) presents a significant obstacle. Es-
tablished methods like maximum parsimony (MP), maximum
likelihood (ML), and Bayesian approaches are computationally in-
tensive due to the NP-hard optimization problems they tackle [1].
As the number of taxa increases, these methods face a common
hurdle: an exponential increase in the number of possible trees
to explore.

The leading heuristics for ML tree estimation, such as
RAXML [2] and IQ-TREE [3], employ diverse strategies to search
for the tree that maximizes the likelihood score. Although they
have made considerable performance improvements to handle
larger datasets, RAXML, for example, was unable to reach conver-
gence on a 10,000-sequence dataset even after a week [4]. Note
that these tools are primarily optimized for datasets with a lim-
ited number of sequences but a significant number of sites (i.e.,
phylogenomics). Therefore, when working with datasets compris-
ing a large number of sequences, users must opt for tools such as
FastTree-2 [5] and VeryFastTree [6], which are very fast heuristics,

but they do not make very substantial attempts to optimize the
likelihood score, or they may explore divide-and-conquer strate-
gles [7-9]. In particular, our tool VeryFastTree was a big step for-
ward in terms of performance, building a tree on a standard server
from a large 330k alignment, 3.5 times faster than FastTree-2.
However, there was still room to improve its speed, scalability, and
memory consumption and also to add new functionalities.

In this work, we introduce the latest VeryFastTree code, version
4.0, showcasing its potential advantages and new features com-
pared to both its previous version and FastTree-2. The earlier iter-
ation of VeryFastTree achieved high performance by parallelizing
the most time-consuming phase of constructing the tree, specifi-
cally the nearest-neighbor interchanges (NNIs), in comparison to
FastTree-2. However, the new VeryFastTree further enhances per-
formance by parallelizing all tree traversal operations, including,
among others, the subtree pruning and regrafting (SPR) opera-
tions, which are especially relevant in terms of computing time
when dealing with massive datasets. After a thorough experi-
mental evaluation, the new version proves to be several times
faster than the previous one and FastTree-2 on a variety of large
datasets. At the same time, VeryFastTree-4 incorporates signifi-
cant new features, including support for new and compressed file
formats, improved compatibility with a wider range of operating
systems, and the addition of disk computing functionality. The lat-

Received: October 23, 2023. Revised: April 17, 2024. Accepted: July 11, 2024

$20z 1snbny ¢ uo 1senb Aq 0000£///SS0aeIB/e0usI0seBIB/SE0 L 01 /I0p/3]o1e/e0ousioselib/woo dnoolwepeose//:sdiy wolj papeojumoq

© The Author(s) 2024. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided
the original work is properly cited.


http://orcid.org/0000-0001-6490-7128
http://orcid.org/0000-0001-9505-6493
mailto:cesaralfredo.pineiro@usc.es
mailto:juancarlos.pichel@usc.es
https://github.com/citiususc/veryfasttree
https://creativecommons.org/licenses/by/4.0/

2 | GigaScience, 2024, Vol. 13

ter is especially valuable for users who do not have access to high-
end servers, as it allows them to process massive datasets, albeit
with an increase in computing time.

New Features and Optimizations

VeryFastTree-4 (VFT4) is a big step forward with respect to our first
version introduced in [6], from now on VFT3, designed to further
accelerate the inference of phylogenies for massive alignments.
Building upon the strengths of its predecessor, VFT4 introduces a
host of innovative features and optimizations aimed at achieving
even greater speed and efficiency. While the core principles used
by VFT4 remain consistent with its previous versions, significant
enhancements have been made to push the boundaries of speed.
Below are some of the most noticeable improvements, optimiza-
tions, and features incorporated into VFT4.

Parallelization strategy

VFT3 achieved high performance by parallelizing the most time-
consuming phase in the construction of the tree with respect to
FastTree-2 (FT2) [5], the NNIs. Building upon this progress, VFT4
continues this approach by parallelizing all operations involving
tree traversal, including the SPR moves, further enhancing per-
formance. These computations are parallelized using 2 strategies:
tree partitioning, which divides the tree into multiple nonoverlap-
ping subtrees, and parallel traverse, a parallel breadth-first traversal.

Tree partitioning

Once an initial phylogenetic tree is constructed or passed as in-
put argument, it is necessary to split the tree into disjoint sub-
trees in order to perform computations in parallel using different
threads. Note that VFT4 uses rooted trees. The tree partitioning
method is an algorithm that, given an initial tree, prunes nodes
from the root to generate several independent subtrees, which
are then assigned to different threads to work with them inde-
pendently. Once all threads have finished their work, those nodes
that were removed in the pruning process are subsequently pro-
cessed using just 1 thread. In this way, all nodes in the tree are
updated. In the ideal scenario, the computation of a node does not
have dependencies on other nodes or these dependencies are con-
tained within the subtree assigned to the same thread. However,
thisis not the case frequently, so dependencies must be controlled
to prevent computation errors. For instance, NNIs and SPR oper-
ations perform topology-modifying actions on the tree. They re-
quire tree partitioning to ensure that node exchanges performed
by different threads do not overlap. Tree partitioning must ensure
that these operations can be executed in parallel within separate
subtrees, allowing them to work independently without interfer-
ing with each other.

Before getting into the details, it is necessary to understand
how the tree is traversed and how data dependencies between
nodes are taken into account. We will use the tree of Fig. 1 as ex-
ample. Each node in the tree is visited before its parents, which
means that a depth-first postorder traversal is used [5]. Let’s as-
sume that the tree is split into 2 subtrees assigned to threads t;
and ty, respectively. Since the root node of the tree is not assigned
to a thread, it will be labeled as not assigned. Blue and green nodes
are processed in parallel by threads t; and t,, while red nodes,
which have dependencies on other threads, are processed sequen-
tially after all subtrees have been processed. This ensures that all
nodes in the tree are updated effectively. The dependencies of a
node are determined by its relationships with its parents and sib-

Thread t;

Thread t;

Figure 1: Example of tree partitioning and data dependencies with a
penalty of 2. The graph represents only internal nodes (no leaves). Blue
and green nodes are processed in parallel by threads t; and t,,
respectively. Red nodes (labeled as not assigned) are processed
sequentially after processing all subtrees.

lings. If these are not located within the same subtree, the node
cannot be computed. This dependency can be quantified as the
distance between a node and the farthest one required for com-
putation. We refer to this distance as the penalty value. This means
that nodes located at levels lower than the penalty value from
the subtree’s root cannot be processed in parallel, as they have
dependencies on nodes outside the subtree. In the example of
Fig. 1, the penalty is 2, so P cannot be computed since it depends
on the root (its grandparent), which lies outside the subtree. On
the other hand, C, N, and all their children have their grandpar-
ents within the subtree, allowing them to be computed without
conflicts.

NNIs and SPR operations, which are the most time-consuming
in tree construction, are parallelized using the tree partitioning
strategy. In particular, NNIs perform a node exchange with either
its parent or its uncle, followed by a recalculation of the weights of
the involved nodes and their respective parents. This process in-
curs a penalty of 2, as the parent or uncle will be 1 level above the
exchanged node, while the new parent will be located at the next
level. In the case of SPRs, the penalty is dynamic and constrained
by the parameter maxSPRLength, which limits the maximum dis-
tance a node can move during the regrafting process. Other oper-
ations such as computing SH-like supports, updating all branch
lengths, and optimizing all branch lengths will also make use of
tree partitioning.

VFT4 implements an advanced partitioning algorithm when
compared to its predecessor, VFT3. This upgraded algorithm sig-
nificantly improves both speed and adaptability across various
scenarios. Unlike the previous version, which limited partitioning
to NNIs, the new algorithm introduces a more versatile approach,
allowing its application to other operations, such as those previ-
ously mentioned. This new algorithm considers the minimization
of the penalty parameter as an evaluation criterion. Subsequently,
the resulting subtrees generated by this process, also referred to
as solutions, are assigned to threads with the aim of achieving a
good load balance.
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Partitioning method

Our partitioning method is guided by an objective function, whose
goal is 2-fold. First, it should balance the workload assigned to
each thread (i.e., the number of internal nodes to be processed
by each thread). To model the workload, we define the weight of a
node as the number of internal nodes beneath it plus itself. This
way, the workload associated to process a subtree is the weight of
its root node. The second goal of the objective function should be
to reduce to the minimum the amount of sequential work, which
corresponds to processing the not assigned nodes. Note that ac-
cording to the Amdahl’s law [10], a small percentage of sequential
work harms noticeably the performance and scalability of a par-
allel application.

Let T be the input tree to be partitioned, which only contains
internal nodes. A partition P(T) is a set of disjoint binary subtrees
s; included in T. We must highlight that not all nodes in the tree
should be included in a partition. Let |P(T)| denote the number
of subtrees in the partition and n the number of threads. Each
subtree s; € P(T) is assigned to a particular thread in such a way
that P;(T) contains all subtrees in the partition P(T) assigned to
thread j. This way, we can calculate the workload of the subtrees
assigned to a particular thread j as

workload (P;(T)) = {Zworkload(si) |'si € P, (T)} (1)

We evaluate a partition P(T) using the following objective func-
tion:

sequential_workload
max{workload (P;(T)) | 1 < j <n}

(2

Note that sequential_workload refers to the workload of T when
it is processed sequentially. The goal of our partitioning method
will be to find a partition P(T) that maximizes the value of the ob-
jective function. The pseudocode of the algorithm to find the best
tree partitioning is detailed in Algorithm 1. The objective func-
tion aligns with the concept of Speedup, defined as the ratio of the
execution time of a task when using multiple threads compared
to the execution time when using a single thread. In this way, a
value of 1 indicates equivalent speed to sequential processing,
while a value of n signifies optimal workload distribution among
n threads.

The tree partitioning process in VFT4 includes an initializa-
tion phase where the weight values for each node in the tree are
computed. As previously mentioned, these weights represent the
number of descendant nodes for each node, adjusted according
to the penalty value. Then, the initial solution is constructed us-
ing the direct child nodes of the tree’s root. In other words, the
initial solution has as many subtrees as the root node has chil-
dren. Nodes in the solution are always sorted by weight for ef-
ficiency. Next, an iteration process begins. During each iteration,
the current solution is evaluated using Equation 2. To achieve this,
it is necessary to assign subtrees to the different threads using a
heuristic method, which will be explained later. Once the solution
is evaluated, a new one is created in such a way that the subtree
root node with the highest weight is replaced by its child nodes.
The evaluation results of the last W iterations are stored to use
them as stopping criterion. We refer to W as the tendency window
size. Note that the algorithm continues as long as the current solu-
tion has nodes to split, there are threads without at least 1 subtree
assigned, or the stopping criterion is not reached.

senetic tree inference for massive taxonomic datasets | 3

function TreePartition
Input :tree, threads_num, penalty, tendency_size
Output :best_solution

// Initialization: initial solution and weights computation
weights « ComputeWeights (tree, penalty)
solution « Children (RootNode (tree))
best_solution «+ solution
solution_speedup «+ Evaluate (solution)
best_solution_speedup « solution_speedup
tendency « []
// Iterations to find the best solution
while Len (solution) > 0 /A (Len (solution) < threads_num \/
IStoppingCriterion (tendency, tendency_size)) do
node « GetAndRemoveNodeWithMaxWeight (solution)
if node has children then
| Insert (Children (node)) into solution
solution_speedup « Evaluate (solution)
Insert (solution_speedup) into tendency
if solution_speedup > best_solution_speedup then
best_solution « solution
best_solution_speedup « solution_speedup

return best_solution

function StoppingCriterion
Input :tendency, tendency_size
Output :must_stop
if Len(tendency) = tendency_size then
balance «— o
for i « 1totendency_size do
for j « itotendency_size do
if tendency; <= tendency]- then
| balance « balance +1
else
|  balance « balance -1

RemoveFirst (tendency)
return balance < 0
return false

function ComputeWeights
Output :Weight of each node in the tree taking into account the penalty

function Children
Output :Childrens of the node

function GetAndRemoveNodeWithMaxWeight
Output :Gets and removes the node with the highest weight

function Evaluate
Output :Quality of the solution calculated considering Equation 2

Assignment of subtrees to threads

The evaluation of the quality of a solution requires mapping the
subtrees of a partition to the considered threads in such a way that
the workload is balanced among them. This is a challenge itself
and resembles the k-partitioning problem [11]. The k-partitioning
problem is defined as follows: given a set of items {1, I, ..., I}
where item I; is of weight w; > 0, find a partition Sy, Sy, ..., Sy of
this set with |S;| = k such that the maximum weight of all subsets
S; is minimal. Therefore, considering our case, items are subtrees
and k is the number of threads. The k-partitioning problem is NP-
hard, so algorithms/heuristics to approximate the solution should
be used.

Since our procedure requires solving the k-partitioning prob-
lem every time a new partition is evaluated, we have opted for a
simple greedy approximation based on the first-fit decreasing al-
gorithm whose computational cost is low. The method starts sort-
ing the subtrees in descending order according to their weight.
Then, the k first subtrees are distributed among the threads. The
remaining subtrees are iterated and assigned to the thread that
currently has the minimum workload assigned, that is, the lowest
value of workload (P;(T)).
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Figure 2: Comparison of iterations required for achieving near-optimal
tree partitioning using our method versus evaluating all possible tree
partitionings without a stopping criterion. The bottom figure provides a
zoomed-in view of the top one. Experiments were conducted with 30
threads and a dataset consisting of 274,000 unique sequences.

Stopping criterion

The stopping criterion in the tree partitioning process determines
when the algorithm should terminate its execution. This criterion
is required because completing all iterations, until no more nodes
are left to split, can sometimes result in a higher computational
cost than working on the tree without partitions. Therefore, the
stopping criterion ensures that the algorithm halts its execution
when a near-optimal solution has been found. To verify if the stop-
ping criterion is met, we assess the quality of the last W partitions
using Equation 2 to determine whether the overall trend in recent
iterations indicates an improvement or deterioration in the solu-
tions (see the StoppingCriterion function in Algorithm 1). In
order to achieve this, a counter compares each pair of elements
within the tendency list, incrementing it if the earlier element is
less than or equal to the later element and decrementing it oth-
erwise. Consequently, the function returns true if the balance is
negative, indicating a worsening trend, and false otherwise, sig-
naling that the stopping criterion has not yet been met due to im-
proving solutions. By default, W is set to 50, but users can modify
this value through the interface parameter (see the Commands
Interface section for details).

To demonstrate the advantages of our proposal, Fig. 2 illus-
trates the comparison between the number of iterations required
by our method to achieve a near-optimal tree partitioning and the
scenario where all possible tree partitionings are evaluated with-
out any stopping criterion. These results were obtained using 30
threads and the Large dataset that contains 274,000 unique se-
quences (refer to Table 1 for dataset details). Since 30 threads were
considered, according to Equation 2, the ideal (maximum) quality
value of a partitioning is 30. Our method only requires 512 itera-
tions to reach a value of 29.4, while without the stopping criterion,
it is necessary to evaluate more than 200,000 partitionings (itera-
tions).

Parallel breadth-first traversal

Tree partitioning enables parallel processing of a single tree by
assigning disjoint subtrees to each thread, allowing them to com-
pute independently and without interference. However, when an
operation has no dependencies and solely modifies the node being
computed, creating subtrees is inefficient, as each node can be di-
rectly assigned to a thread. So, starting from the deepest nodes of

the tree, each thread handles a portion of the nodes and computes
them simultaneously, following a breadth-first traversal pattern,
which involves visiting all nodes at a given depth level before mov-
ing on to the next level. Once finished with that level, the upper
levels are distributed until the root of the tree is reached. This ap-
proach is specifically utilized in the following operations: comput-
ing initial profiles, recomputing profiles, recomputing ML profiles,
computing tree length, and computing the likelihood for each site.
Itis worth noting that FT2 and VFT4 store profiles for the internal
nodes in the tree instead of storing a distance matrix, which re-
quires far less memory. Each profile includes a frequency vector
for each position and the weighted average of its children’s pro-
files. These profiles are used to compute the distances between
internal nodes in the tree and also the total distance from a node
to all other nodes (see [5, 12] for a detailed description).

New thread levels

To provide users control over parallelism and adaptability to var-
ious usage scenarios, VFT4 introduces 5 distinct thread levels.
These levels, including the original levels from VFT3 (now referred
to as levels 0, 1, and 2), allow users to finely adjust the degree of
parallelization based on their specific requirements.

At level 0, VFT4 employs the same parallelization strategy as
FT2, but with the addition of new parallel blocks to enhance per-
formance. Level 1 introduces parallel blocks that require addi-
tional memory for computations, enabling more efficient process-
ing. Level 2 utilizes the tree partitioning method to accelerate ML
NNI rounds. Level 3 performs in parallel all the computations but
SPRs. Last, level 4 leverages the tree partitioning method to expe-
dite also SPR steps, but it only pays off with datasets containing a
high number of alignments. For this reason, level 3 is the default
option.

Each level in VFT4 is incremental with respect to the previous
ones. However, it is important to note that computation at level 2
and above follows a different tree traverse order, which may result
in different trees with respect to the sequential execution. Never-
theless, these results remain strictly correct. By incorporating this
multilevel approach, VFT4 offers users the flexibility to optimize
their parallelization strategy according to factors such as dataset
size, performance needs, and desired trade-offs.

Disk computing
As previously mentioned, phylogenetic tree inference requires a
significant amount of memory, which can become problematic
when dealing with numerous sequences and limited resources
(e.g., when considering a low-end server with reduced available
RAM memory). To tackle this challenge, VFT4 introduces disk com-
puting, a technique that utilizes the hard drive to supplement the
memory requirements. While disk computing aids in handling
large datasets, it does impact performance due to the slower ac-
cess speed of hard disks compared to RAM. However, the advan-
tages of being able to process larger datasets outweigh the perfor-
mance trade-off.

We classified the dynamically allocated memory used in the
tree construction process into 3 types: fixed memory, variable
memory, and computation memory. In particular:

® Fixed memory is allocated at the beginning of the program ex-
ecution once the properties of the input dataset (such as the
number of sequences, length, etc.) are established and re-
mains reserved until the program’s completion. For instance,
fixed memory is used to store sequences and weights in each
profile.
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Table 1: Characteristics of the datasets used in the experimental evaluation. Information obtained using BigSeqKit [15]

Dataset label File name Format Type Sequences Unique sequences Length
Large sel03n.masked FASTA AA 331,550 274,401 1,287
Very Large gg_12_10_aligned FASTA DNA 1,075,170 858,234 7,682
Ultra-Large 1-million-taxon-runl NEXUS DNA 1,000,000 989,109 21,946

® Variable memory, on the other hand, is allocated to store values
during specific stages of the computation. For instance, it is
the memory used to store the frequency vector (conditional
probabilities) whose size changes dynamically and cannot be
precisely predicted. Note that due to significant variations in
data sizes, overallocation of variable memory is often imprac-
tical.

® Computation memory refers to private memory required by
threads to perform their tasks. This includes stack memory,
which handles function calls; local variables; and temporary
data while the program is running. Additionally, computa-
tion memory includes some temporary variables, which store
intermediate results and facilitate complex calculations, as
well as data structures, which organize and manage data
for efficient processing. For example, computation memory
is used to temporarily store the new computed conditional
probabilities for possible exchanges within an NNI iteration.
It is important to emphasize that once the temporary values
are utilized, they are subsequently released.

While fixed and variable memory can be offloaded to the disk,
computation memory must be always maintained in RAM. This
is because the performance of the computation process is criti-
cal. In addition, even for huge datasets, computation memory re-
mains significantly smaller in comparison to fixed and variable
memories.

On the other hand, using swap space as an alternative when
a process exceeds RAM capacity has important limitations and
drawbacks. First, the swap partition has a fixed size, potentially
leading to out-of-memory errors if exceeded. This is especially
relevant when dealing with very large datasets, as is our case.
Therefore, if the dataset exceeds the size of the swap, only an
administrator would have the authority to expand the swap par-
tition to prevent the job from being aborted. In addition, since
all programs/applications share the same swap space, excessive
swapping by 1 program can adversely affect others, leading to
contention for disk input/output (I/O) resources and reduced re-
sponsiveness. In contrast, the mechanism used by VFT4 in disk
computing is based on memory-mapped files, which offers better
I/0 performance due to the optimized kernel-level caching mech-
anisms and efficient block-based access. Note that when using
memory mapping, any available disk can be used to store data,
avoiding the swap partition size limitation. Additionally, memory-
mapped files are also controlled by the operating system, similar
to swap space, and are not manually managed. This ensures effi-
cient handling of data movement between memory and the disk,
with the operating system making decisions based on system re-
sources and requirements.

VFT4 introduces the use of disk computing with 2 parameters:

® -disk-computing: it facilitates the transfer of fixed memory
to disk.

® _disk-dynamic-computing: it facilitates the transfer of
variable memory to disk.

Employing both parameters allows VFT4 to move data from
memory to disk in such a way that very large datasets can be pro-
cessed even on low-end servers with limited RAM. However, it is
essential to consider that this feature may come at the cost of de-
creased computational performance. In this way, the performance
of VFT4 is directly influenced by the amount of memory sent to
the disk. Hence, it is advisable, whenever possible, to compute by
transferring only fixed memory to the disk. This approach strikes
a delicate balance between memory consumption and computa-
tional efficiency, optimizing the overall performance of the appli-
cation.

Optimized memory consumption

VFT3 has been implemented using C++, which introduces addi-
tional memory overhead compared to the C implementation of
FT2. Moreover, its more efficient utilization of threads leads to an
increase in memory consumption as the number of threads grows.
This increase is primarily caused by the replication of data struc-
tures, synchronization mechanisms, stack space for each thread,
and caching effects, among other factors.

VFT4, on the other hand, has been redesigned to minimize the
use of objects in memory-intensive sections and to release mem-
ory as soon as it is no longer needed. Consequently, in sequential
execution, the memory requirements of VFT4 are even lower than
those of FT2.

Additionally, to reduce the overhead introduced by each thread,
VFT4 optimizes the storage of common temporary data, ensuring
that it is stored only once. This significantly minimizes the over-
head associated with multithreading, resulting in more efficient
parallel execution compared to VFT3.

Other optimizations and functionalities

® Support for new and compressed formats: VFT3 and FT2 are lim-
ited to supporting the FASTA and Phylip formats, both stored
as plain text. In contrast, VFT4 has extended its support to in-
clude the widely used Nexus and FASTQ formats. The Nexus
format allows for storing sequences and the initial tree within
a single file. Additionally, it is common for datasets down-
loaded from internet repositories to be compressed in formats
such as .gz or .bz. Previously, it was required to manually de-
compress these files before using them. However, VFT4 can
directly read compressed sequences in compatible formats,
thanks to the integration of the Zlib and libBZ2 libraries. This
approach saves time by removing the need for manual file de-
compression, resulting in improved performance and avoid-
ing the additional effort of reading larger uncompressed files
from the disk.

® Broader compatibility: VFT4 is a versatile tool that supports
Linux, Windows, and macOS, including Windows executa-
bles. It is also conveniently available in the Bioconda pack-
age repository [13], making it easily accessible to the bioinfor-
matics community. Furthermore, for macOS users, it is also
available as a MacPorts package [14]. Finally, for Linux users,
VFT4 is included as a package in all Debian Linux distribu-
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tions, simplifying its installation and integration into various
computing environments.

® Better compilation support: The compilation process has been
enhanced by adding support for new compilers, such as
clang, and incorporating new features like AVX512 in Win-
dows builds. The code has been optimized to comply with the
latest compiler standards. Furthermore, parallel compilation
has been implemented to accelerate the overall compilation
time.

Performance Evaluation

Next, we present experimental results that clearly demonstrate
the superior performance of our tool, VFT4, compared to its prede-
cessors, VFT3 and FT2. We have evaluated the following aspects:
running time, memory consumption, CPU usage, and topological
accuracy.

For the evaluation, we selected 3 very large datasets with vary-
ing number of taxa and alignment lengths. Please refer to Table 1
for specific details about these datasets. It is important to note
that only unique sequences were considered when constructing
the trees. To ensure test reproducibility, we have included infor-
mation about the parameters used to build the trees for each
dataset:

® Large: -spr 4 -gamma
® Very Large: -nt -gamma -gtr
® Ultra-Large: -nt -gamma -gtr

The arguments have the following meanings:

® -nt:nucleotide alignment used as input.

® -spr: sets the number of rounds of SPR moves (default value
is 2).

® -gtr: utilizes the generalized time-reversible (GTR) model of
nucleotide substitution.

® -gamma: after optimizing the tree with a fixed rate for each
site (the CAT model), VFT (and FT2) will rescale the tree to
optimize the Gamma?20 likelihood [5].

Experiments were conducted using 1 server with two 32-core
Intel Xeon Ice Lake 8352Y @2.2 GHz processors and 512 GB of RAM.
This server is part of a cluster installed at CESGA (Galicia Super-
computing Center, Spain) [16] running Rocky Linux v8.4 (kernel
v4.18.0). We have used in the performance comparison the fol-
lowing tools and versions: Fast-Tree v.2.1.11 [17], VeryFastTree v3.0
(our previous version), and VeryFastTree v4.0.3.

Running times

First, we show in Fig. 3 the running times when building the trees
using single precision. We must highlight that, even if single preci-
sion is selected in VFT4 and FT2, many intermediate calculations
such as vector reductions are performed with double precision
to minimize errors. In the case of the Large dataset, VFT4 outper-
forms FT2 and VFT3, achieving speed improvements of 2.6 times
and 1.6 times respectively, resulting in an execution time of just
3.5 hours. When inferring the phylogenetic tree from the Very Large
dataset, VFT4 completes the task in 17.2 hours, whereas FT2 re-
quires 57.7 hours and VFT3 takes 35.4 hours. Finally, dealing with
the Ultra-Large dataset, VFT4 is able to build the tree in 35.8 hours
(i.e., 1.5 days). Note that the time required by FT2 and VFT3 in-
creases noticeably to 4.8 and 4.5 days, respectively. In other words,
VFT4 is 3.2 times and 3 times faster than FT2 and VFT3.

On the other hand, Fig. 4 presents the running times for tree
construction but using double-precision arithmetic. In this case,
for the Large dataset, VFT4 is 6.9 times and 2.4 times faster than
FT2 and VFT3, respectively, reducing the execution time to less
than 3 hours. Note that VFT4 builds the tree faster when using
double precision than considering single precision (2.8 versus 3.5
hours). This is caused by the good behavior of the vectorization
strategies used by VFT4 when considering protein alignments. On
the other hand, inferring the phylogenetic tree from the Very Large
dataset using VFT4 takes 18 hours, while FT2 requires 61.7 hours
and VFT3 41.3 hours. As a result, VFT4 is again the fastest tool. In
conclusion, when dealing with the Ultra-Large dataset, VFT4 can
complete the tree-building process within 41.2 hours, or 1.7 days.
Notably, the time required by FT2 and VFT3 increases signifi-
cantly to 5.3 and 4.6 days, respectively. To put it simply, VFT
outperforms FT2 and VFT3 in speed by 3.1 times and 2.7 times,
respectively.

As mentioned in the Introduction, in addition to FT2 and VFT,
there are other state-of-the-art tools for ML tree estimation, with
RAxXML and IQ-TREE being the most commonly used by the sci-
entific community. However, they are limited in their ability to
process datasets containing a large number of sequences due to
their extensive running times. To validate the observations made
in previous works [4], we assessed both tools, RAXML-NG v.1.2.0
and IQ-TREE v.2.1.3, using our Large dataset. Since RAXML-NG can
be executed on a cluster, we conducted experiments with this tool
using 4 computing nodes instead of just 1 server. We manually
constrained the experiments to a maximum running time of 1
week. Both tools were unable to construct the tree within that
time frame. It is worth noting that VFT4 can estimate the tree for
the Large dataset in approximately 3 hours (see Figs. 3 and 4). This
confirms that both RAXML and IQ-TREE are not well suited for
datasets containing a very large number of sequences.

Therefore, to the best of our knowledge, these results establish
VET4 as the fastest tool in the state-of-the-art for ML phylogeny
estimation. But moreover, VFT4 allows the processing of massive
datasets that would otherwise be intractable or would require ex-
cessively high computing times.

Memory consumption and CPU usage

In the previous section, we pointed out how the more effective use
of threads results in higher memory consumption as the number
of threads increases. VFT4 addresses this issue by optimizing the
storage of commonly used temporary data, ensuring it is stored
only once. As a result, the overhead associated with multithread-
ing s significantly reduced, leading to a more efficient parallel ex-
ecution compared to VFT3.

Figure 5 displays the CPU usage and memory consumption for
all the considered tools when building the tree from the Ultra-Large
dataset using single-precision arithmetic. The purpose of this il-
lustration is to showcase the memory optimizations implemented
in VFT4. Each time step in the graphs corresponds to 3,600 sec-
onds. It can be observed that the maximum memory consumed by
VFT41is a bit higher with respect to FT2, 272 GB and 228 GB, respec-
tively. This increase is attributed to a more efficient utilization of
threads. It is important to note that VFT4 extensively utilizes par-
allelism, employing the maximum available number of threads
(64) for most of the time. In contrast, FT2 is constrained to using
only a few threads, as indicated by the blue lines in the figures.
As a consequence, VFT4 requires some extra memory for multi-
threading, but it comes with the benefit of a remarkable decrease
in the running time. On the other hand, VFT4 significantly reduces
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Figure 3: Running times of FT,, VFT3, and VFT, for building the trees using single-precision arithmetic and different datasets.

500

T
B FastTree-2 1
[ VeryFastTree-3 1

100 | [ VeryFastTree-4
50 -
10
1

Large Very-Large Ultra-Large

o

Time (hours) - log scale

Figure 4: Running times of FT,, VFT3, and VFT, for building the trees using double-precision arithmetic and different datasets.

60 60
500
200
50 50
400
150
40 . 40 .
o )
2 o 2 300 O
[3) 2 [3) 2
30 100 © 30 s
£ £
Q Q
= 200 =
20 20
50
100
10 10
0 0
0 0
0 20 40 60 80 100 120 0 20 40 60 80 100
Time Step Time Step
A FT2 B VFT3
60
250
50
200
40
5 150 &
z A
O 30 2
o
5
100 2
20
50
10
0 0
0 5 T 15 20 25 30 35
Time Step
C VFT4

Figure 5: CPU usage (# of cores) and memory consumption when building the single-precision trees using as input the Ultra-Large dataset. Time step =
3,600 seconds.

20z 1snbny g1 uo 1senb Ag 0000E/Z/SS0eI6/a0usI10seBIB/SE0 L "0 L/10p/2onle/aousloselif/woo dno olwapese)/:sdyy Woly papeojumod



8 | GigaScience, 2024, Vol. 13

memory consumption compared to VFT3. In particular, VFT3 re-
quires twice the maximum memory used by VFT4. Furthermore,
it also demonstrates greater efficiency in terms of parallelism.

As we pointed out previously, VFT4, like FT2, uses sequence pro-
files of internal nodes of the tree to implement neighbor joining
instead of storing a distance matrix. Typically, as stated in [12], a
distance matrix for an alignment with N sequences, L sites, and
a different characters in the alphabet requires O(N?) space. How-
ever, the upper bound of memory space required by VFT and FT2
is O(NLa). Each profile comprises a frequency vector for each po-
sition and the weighted average of its children’s profiles.

If we take a look in detail, VFT4 requires 272 GB of memory to
process the Ultra-Large dataset (see Fig. 5C). Its corresponding pa-
rameters are N = 989, 109, L = 21, 946, and a = 4 (nucleotides). As
a consequence, taking into account that the resulting tree con-
tains 2N nodes and single precision uses 4 bytes, the memory re-
quired by the profiles is the sum of the weights and frequencies
for each node in the tree:

® Weights require exactly 2N x L x 4 bytes = (2 x 989, 109) x
21,946 x 4 bytes = 173.65 GB.

® The memory of frequencies can be estimated as 2N x a x g x
4 bytes, with “g” being the number of gaps in the sequence.
Since “g”is not a constant value and changes in each node as
the topology of the tree evolves, an exact value for the mem-
ory space used cannot be provided. In any case, most of the
difference between the total memory used by VFT4 (272 GB)
and the memory required only by the weights of the profiles
(173.65 GB) is due to the frequencies.

Disk computing

In many cases, researchers are faced with limited computing re-
sources, often having access only to low-end servers that possess
a limited amount of memory. To deal with this issue, as was com-
mented previously, we introduced disk computing in VFT4, a new
feature that allows to offload static and dynamic memory to the
disk with the aim of handling very large datasets even on small
servers. The obvious drawback is an increase in the running times.

An example of the effects of disk computing can be found in
Fig. 6. Each time step in the graphs corresponds to 300 seconds.
In particular, Figs. 6A and 6B show the CPU usage and the mem-
ory footprint in a normal execution of VFT4 when processing the
Large dataset considering double-precision arithmetic and 1 and
64 threads, respectively. In these cases, the maximum memory
consumed was 58.5 GB (1 thread) and 84.42 GB (64 threads). Note
that the spike in the memory consumption is caused by the com-
putation and storage of the profiles at each node of the tree. On
the other hand, Figs. 6C and 6D also display the CPU usage and the
memory footprint but using disk computing with 1 and 64 threads,
as well as limiting the memory of the server to just 16 GB. It can
be observed that thanks to this new feature, we can successfully
build the tree on a small server. Considering 64 threads, for ex-
ample, the maximum memory used is approximately 5.3 times
less compared to a normal execution. It may seem apparent, but
without disk computing, the processing of datasets that surpass
the available memory would be impossible. It would result in an
out of memory error, which would be the case of using both FT2
and VFT3.

On the other hand, the VFT4 running time increases, using 1
thread from 16.8 to 27.5 hours while using 64 threads from 2.8 to
53.4 hours. In other words, using disk computing on a 16 GB server
is from 1.6 times (1 thread) to 19 times (64 threads) slower than
the standard execution. An interesting observation is that the se-

quential execution with disk computing is faster than the corre-
sponding execution with 64 threads. This is due to the limitations
of disk and I/O bandwidth, which struggle to handle the extremely
high number of requests generated when using 64 threads, lead-
ing to contention on the bus. Therefore, we recommend reducing
the number of threads when utilizing the disk computing feature.

Topological accuracy

In the literature, several studies have examined the performance
of leading ML tools, such as RaxML, IQ-TREE, and FT2, regarding
accuracy and computational efficiency with large datasets. Liu
et al. [18] compared RAXML and FT2 using simulated datasets for
single genes containing 1,000 or more sequences across various
estimated alignments. They concluded that both methods exhib-
ited similar topological accuracy. Lees et al. [19], in their explo-
ration of ML heuristics through simulations, found RAXML and
IQ-TREE to be comparable in accuracy, both outperforming FT2.
Moreover, 2 studies [20, 21] evaluated FT2 and RAXML on datasets
containing fragmentary sequences. They observed that FT2 per-
formed less accurately than RAXML when handling alignments
with a high proportion of fragmentary sequences. Overall, these
studies have shown that IQ-TREE and RAXML are both very good
ML heuristics with respect to ML scores, while all of the studies
have shown that FT2 is indeed very fast, but it is so good at ML
score optimization.

On the other hand, as we explained in our previous study [6],
VFT is a highly tuned implementation of FT2 that keeps the
phases, methods, and heuristics used by FT2 to estimate the phy-
logenetic tree. For this reason, it is only necessary to compare
the topological accuracies with respect to FT2 (and our previ-
ous version of VFT), since the works commented above already
performed a thorough comparison between RAxML, IQ-TREE, and
FT2.

Similar to [5], we defined the topological accuracy as the pro-
portion of splits in the true trees that are successfully recovered
by each respective tool. This metric is the inverse of the topologi-
cal Robinson-Foulds distance [22], normalized to a range between
0and 1.

Our findings demonstrate that both VFT3 and VFT4 exhibit de-
terminism while maintaining the same level of accuracy as FT2.
To validate this, we assessed topological accuracy using 5,000-
sequences simulated protein alignments [17], which were also
employed in the original FT2 study for the same purpose. There-
fore, the true phylogeny is available. All simulations are based
on trees from profile alignments of biological sequences and in-
clude variable rates across sites. The simulations are described in
more detail in [23]. Trees were computed using 64 threads, double-
precision arithmetic, and -gamma -spr 4 parameters. All tools
used the same seed for initializing the random number genera-
tor. The experimentation script, treecmp. py, is accessible in our
repository. We show results for VFT4 considering 2 different lev-
els of parallelism (i.e., thread levels). As we explained previously,
level 3 performs in parallel all the computations but SPRs, while
level 4 leverages the tree partitioning method to accelerate also
SPR movements. For VFT3 and VFT4, topological accuracy values
were computed by averaging 7 measurements (1 for each align-
ment in the dataset). Conversely, parallel executions of FT2 did
not yield deterministic results. Consequently, we present a range
of accuracy values. This range was derived by averaging the mini-
mum and maximum values obtained from 10 executions for each
alignment. Accuracy results expressed in percentages are shown
in Table 2.
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Figure 6: Effects of using disk computing when building the double-precision trees using as input the Large dataset. Time step = 300 seconds.

Table 2: Topological accuracies (in %) obtained by FT,, VFT3 and VFT, using 5,000-sequences simulated protein alignments. Note that

the parallel version of FT2 is nondeterministic, so minimum and maximum values are displayed between brackets

Tool COG438 COG583 COG596 COG642 COG1028 COG1309 COG2814 Average
VET4 (level 3) 85.35 79.11 88.14 82.66 86.19 86.55 79.59 83.94
VFT4 (level 4) 85.43 79.13 87.72 82.19 86.37 87.29 79.92 84.01
VFT3 85.51 79.57 87.82 81.89 86.29 87.09 80.18 84.05
FT2 [85,85.83]  [79.21,79.91] [88.04,88.78] [82.11,82.95] [86.30,87.03]  [86.19,87.59]  [79.06,80.66]  [83.70, 84.68]

Based on the results obtained, we conclude that VFT4 produces
trees with an accuracy level within the same range as FT2. Ad-
ditionally, minor differences were observed when using different
thread levels. In particular, the most aggressive one in terms of
parallelism, level 4, shows a slightly better behavior than level
3.

Commands Interface

The new VeryFastTree version 4.0 was designed with extensive
cross-platform compatibility, offering support for a variety of
operating systems, including Linux, Windows, and macOS. This

broad compatibility ensures that users can access and utilize the
tool seamlessly across different computing environments. Win-
dows users, in particular, benefit from the availability of exe-
cutable versions of VFT4, simplifying the installation process and
widening its user base. Additionally, for those in the bioinformat-
ics field, VFT4 can be effortlessly located within the Bioconda
package repository, streamlining both installation and integration
into bioinformatics workflows. VFT4 is also available for macOS
users as a MacPorts package. Finally, Linux users will appreciate
that VFT4 is included as a package in all Debian Linux distribu-
tions, making installation straightforward and facilitating its in-
tegration into diverse computing setups.
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Just like the previous version of VeryFastTree, it implements the
same command interface as FT2. This means that the arguments
behave exactly the same as in FT2. To check all these arguments,
the “-h” or “-expert” option can be used. Consequently, to benefit
from the performance advantages provided by VFT4, it is only nec-
essary to replace the call to FT2 with a call to VFT4, using the same
options.

On the other hand, VFT4 has its own extra arguments, which
have been grouped in the Optimizations section. These arguments
are related to the parametrization of the different parallelization,
vectorization, and optimization strategies included in VFT4. Next
we list and explain the new arguments available:

® -threads [n]
It allows specifying the number of threads (n) used in the
parallel execution. If this option is not set, the correspond-
ing value will be obtained from the environment variable
OMP_NUM_THREADS. This is the same approach followed by
FT2. If n =1, VeryFastTree behaves in the same way as FT2
compiled without the -DOPENMP flag.

® -threads-level [level]
It allows changing the degree of parallelization.

— If level is O, VeryFastTree uses the same parallelization
strategy as FT2 with some new parallel blocks.
- Iflevel is 1, VeryFastTree uses parallel blocks that require
additional memory for computation.
— If level is 2, VeryFastTree accelerates the rounds of ML
NNIs using its tree partitioning method.
If level is 3 (default), VeryFastTree performs more compu-
tations without preserving sequential order.
- Iflevelis 4, VeryFastTree also accelerates the rounds of SPR
steps using its tree partitioning method (it can only be
used with datasets larger than 2maxSPRlength+2),

Note: Each level includes the previous ones, and computation
at level 2 and above is performed in a different tree traverse
order, so the result may change.

® -threads-mode [mode]
Changes the mode of parallelization.

— If mode is 0, VeryFastTree uses nondeterministic parts,
some inspired by FT2 but improved.

- If mode is 1, VeryFastTree only uses deterministic paral-
lelization.

Since version 4.0, deterministic algorithms are at least faster
than nondeterministic ones, making deterministic the pre-
ferred choice.

® -threads-ptw [n] (Partitioning Tendency Window)
It sets the size of the partitioning tendency window used by
the tree partitioning algorithm to determine when to stop
searching. The window stores the last solutions and checks
if a better solution can be found. Increasing the value allows
the algorithm to explore the tree deeper and potentially find
better solutions. The default value is 50.

® -threads-verbose
It shows subtrees assigned to the threads and theoretical
speedup, only with verbose > 0.

® -double-precision
It uses double-precision arithmetic. Therefore, it is equivalent
to compile FT2 with -DUSE_DOUBLE.

® -ext [type]
It enables the vector extensions:

- AUTO: (default) selects AVX2 when -double-precision
is used and SSE3 otherwise. If 1 extension is not avail-
able, the previous level is used.

— NONE: Operations are performed with the native program-
ming language operators. In addition, loops are un-
rolled with the aim of providing hints to the compiler
for applying some optimization (including vectoriza-
tion).

— SSE3: Arithmetic operations are performed using SSE3 vec-
tor intrinsics. Each instruction operates on 128-bit reg-
isters, which could contain four 32-bit floats or two 64-
bit doubles.

- AVX: Arithmetic operations are performed using AVX vec-
tor intrinsics. Each instruction operates on 256-bit reg-
isters, which could contain eight 32-bit floats or four
64-bits doubles.

— AVX2: Similar to AVX, but some arithmetic operations are
performed using additional AVX?2 vector intrinsics not
included in the AVX instruction set. Each instruction
operates on 256-bit registers, which could contain eight
32-bit floats or four 64-bit doubles.

- AVX512: Arithmetic operations are performed using
AVX512 vector intrinsics. Each instruction operates on
512-bit registers, which could contain sixteen 32-bit
floats or eight 64-bits doubles.

-disk-computing

If there is not enough available RAM to perform the compu-
tation, disk will be used to store extra data when it was not
needed. Using disk to perform the computation will substan-
tially increase the execution time.

-disk-computing-path [path]

Like -disk-computing but using a custom path folder to store
data.

-disk-dynamic-computing

By default, disk computing only creates files associated with
static data in RAM, which means that there is no significant
impact on performance as long as there is available RAM. This
option further reduces memory usage by storing dynamic
data on disk. However, even if there is enough RAM, it will
have a negative impact on performance due to the creation
and deletion of files.

-seed [seed]

Set the seed for the random number generator. Default value
is 1,253.

-fastexp [implementation]

This option is used to select an alternative implementation
for the exponential function (e¥), which has a significant im-
pact on performance:

— 0: (default) Use the exp function included in the built-in
math library with double precision.

- 1. Use the exp function included in the built-in
math library with simple precision (not rec-
ommended together with the -double-precision
option).

— 2: Use a very efficient and fast implementation to com-
pute an accurate approximation of e* using double-
precision arithmetic.

- 3: Use a very efficient and fast implementation to com-
pute an accurate approximation of e* using simple pre-
cision arithmetic (not recommended together with the
-double-precision option).
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Conclusions

In the field of bioinformatics research, phylogenies are of utmost
importance. Regrettably, the search for the optimal phylogenetic
tree imposes significant computational requirements, and most
modern cutting-edge tools struggle to handle exceptionally large
datasets in a timely manner.

In this work, we introduce the latest version of VeryFastTree,
which incorporates numerous performance optimizations and
new features. Experimental results establish VeryFastTree as the
fastest tool in the state-of-the-art for ML phylogeny estimation.
For instance, it is capable of processing massive datasets contain-
ing 1 million taxa in just 36 hours, which is several times faster
than other tools. In this way, VeryFastTree enables the processing
of datasets that would otherwise be intractable or require exces-
sively high computing times. Despite its exceptional speed, it pro-
duces trees with an accuracy level comparable to that of FastTree-
2.0n the other hand, a noteworthy new characteristic of VeryFast-
Tree is what we call disk computing, which allows the processing of
extremely large datasets on low-end servers with limited memory
resources.

Finally, we would like to emphasize that VeryFastTree can also
serve as the foundation for building an initial tree, which can sub-
sequently be optimized using the latest developments in online
phylogenetics [24, 25] or be used as a first step of disjoint tree
mergers [4, 8, 9, 26].

Availability of Source Code and
Requirements

® Project name: VeryFastTree

® Project homepage: https://github.com/citiususc/veryfasttree
® BiotoolsID: biotools:veryfasttree

® RRID:SCR_023594

® Operating system(s): Linux, Windows, and macOS

® Programming language: C/C++

® License: GNU GPL-3.0

Abbreviations

FT2: FastTree-2; ML: maximum likelihood; MP: maximum parsi-
mony; MSA: multiple sequence alignment; NNI: nearest-neighbor
interchange; SPR: subtree pruning and regrafting; VFT3: first ver-
sion of VeryFastTree; VFT4: latest version of VeryFastTree intro-
duced in this work.
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