
A unified framework to improve the interoperability between HPC and Big Data
languages and programming models?

César Piñeiroa,∗, Juan C. Pichela

aCentro Singular de Investigación en Tecnoloxı́as Intelixentes (CiTIUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain

Abstract

One of the most important issues in the path to the convergence of HPC and Big Data is caused by the differences in their software
stacks. Despite some research efforts, the interoperability between their programming models and languages is still limited. To deal
with this problem we introduce a new computing framework called IgnisHPC, whose main objective is to unify the execution of
Big Data and HPC workloads in the same framework. IgnisHPC has native support for multi-language applications using JVM and
non-JVM-based languages. Since MPI was used as its backbone technology, IgnisHPC takes advantage of many communication
models and network architectures. Moreover, MPI applications can be directly executed in an efficient way in the framework.
The main consequence is that users could combine in the same multi-language code HPC tasks (using MPI) with Big Data tasks
(using MapReduce operations). The experimental evaluation demonstrates the benefits of our proposal in terms of performance and
productivity with respect to other frameworks. IgnisHPC is publicly available for the Big Data and HPC research community.

Keywords: Big Data, HPC, MPI, Multi-language, Programming models

1. Introduction

The unification of High Performance Computing (HPC) and
Big Data has received increasing attention in the last years. It
is a common belief that exascale computing and Big Data are
closely associated since HPC requires processing large-scale
data from scientific instruments and simulations. But, at the
same time, it was observed that tools and cultures of HPC and
Big Data communities differ significantly [1]. One of the most
important sources of divergence comes from the differences be-
tween their software ecosystems. In this way, HPC applica-
tions have traditionally been based on MPI (Message Passing
Interface) to support inter-node parallel execution, and based
on OpenMP or other alternatives to exploit intra-node paral-
lelism. However, Big Data programming models are based on
interfaces like Hadoop [2] or Spark [3]. In addition to different
programming models, programming languages also differ be-
tween both communities: being Fortran and C/C++ the most
common languages in HPC applications, and Java, Scala, or
Python being the most common languages in Big Data applica-
tions.

This divergence between programming models and languages
sets out a convergence problem, not only related to the interop-
erability of the applications but also to the interoperability be-
tween data formats from different programming languages [4].

?This work has been supported by MICINN (RTI2018-093336-B-C21,
PLEC2021-007662), Xunta de Galicia (ED431G/08, ED431G-2019/04 and
ED431C-2018/19) and the European Regional Development Fund (ERDF).
∗Corresponding author
Email addresses: cesaralfredo.pineiro@usc.es (César Piñeiro),

juancarlos.pichel@usc.es (Juan C. Pichel)

In this scenario, we need to consider how to build end-to-end
workflows where, for example, simulations can be MPI appli-
cations written in Fortran or C/C++, and the analytics codes
can be written in Java or Python (maybe parallelized by a Big
Data framework).

In this work we introduce a new computing framework called
IgnisHPC1 to deal with that issue. The main goal of IgnisHPC is
to unify in the same framework the development, combination
and execution of HPC and Big Data applications using differ-
ent languages and programming models. With this objective in
mind, we can summarize the main contributions of IgnisHPC
as follows:

– Unlike other frameworks such as Hadoop and Spark, Ig-
nisHPC supports natively both JVM and non-JVM-based
languages. Applications can be implemented using one
or several programming languages following an API in-
spired by Spark’s one.

– IgnisHPC uses MPI as backbone technology, which al-
lows the framework to support many communication mod-
els and network architectures. In addition, MPI applica-
tions and libraries can be directly executed in an efficient
way in IgnisHPC. In this way, most of the HPC scien-
tific applications, which in many cases contain tens of
thousands of lines of code, do not have to be ported to a
new API or programming model. Nowadays, to the best
of our knowledge, there is no other Big Data framework
with that feature.

– In IgnisHPC, MPI codes can be easily combined with
typical MapReduce operations to create hybrid applica-

1It is publicly available at https://github.com/ignishpc

Preprint submitted to Future Generation Computer Systems March 9, 2022

tions. Therefore, users can use the programming mod-
els that best fit their data-intensive and compute-intensive
tasks in the same application.

– A thorough experimental evaluation has been carried out
to demonstrate the benefits of IgnisHPC in terms of per-
formance and productivity. The study showed that Ig-
nisHPC clearly outperforms Spark when considering dif-
ferent types of Big Data application patterns. Moreover,
we proved that running MPI (and hybrid MPI+OpenMP)
applications from IgnisHPC is easy and as efficient as ex-
ecuting them natively.

– To avoid dependencies, IgnisHPC is fully containerized
and supports some of the most well-known resource and
scheduler managers.

The remainder of this paper is organized as follows. Section
2 provides some context about Big Data and HPC technologies.
Section 3 explains in detail the architecture and modules of Ig-
nisHPC. Section 4 describes how to implement applications us-
ing the IgnisHPC API. Section 5 focuses on the integration of
MPI in IgnisHPC, and how MPI applications can be executed
within the framework. The experimental evaluation is shown
in Section 6. Section 7 discusses the related work. Finally, the
main conclusions derived from this work are explained.

2. Background

2.1. Big Data frameworks
MapReduce is a programming model introduced by Google

for processing and generating large data sets on a huge number
of computing nodes [5]. Apache Hadoop [2] was the first open-
source implementation of the MapReduce programming model.
It was widely adopted by both industry and academia, thanks
to that simple yet powerful programming model that hides the
complexity of parallel task execution and fault-tolerance from
the users. However, most applications do not fit this model and
require a more general data orchestration.

Apache Spark [3] was designed to overcome some of the
Hadoop limitations, especially when considering iterative jobs.
Nowadays Spark is considered the de-facto standard for Big
Data processing. Unlike Hadoop, Spark uses Resilient Dis-
tributed Datasets (RDDs) which implement in-memory data struc-
tures used to cache intermediate data across a set of nodes.
Since RDDs can be kept in memory, algorithms can iterate over
RDD data many times very efficiently. In addition, Spark pro-
vides many attractive features such as fault-tolerance, as RDDs
can be regenerated through lineage when compute nodes are
lost. Spark uses a thread-based worker model for executing the
tasks. In this way, a Spark job is controlled by a driver program,
which usually runs in a separate master node. On the other
hand, the parallel regions in the driver program are shipped to
the cluster to be executed.

Spark is implemented in Scala and also has interfaces to ex-
ecute Java, Python and R applications. Both Hadoop and Spark
are capable of running codes written in other programming lan-
guages, but they suffer performance issues since they require
sharing data outside the Java Virtual Machine (JVM) through

system pipes [6]. Contrary to the common belief, this behavior
also applies to Python in Spark because, while the Python driver
code can be executed within the JVM thanks to Jython [7], ex-
ecutors are directly executed with the available Python inter-
preter. As a consequence, the performance of Python codes is
affected like any non-JVM language such as C++ .

In our previous work [8], we introduced Ignis, a first at-
tempt to build an efficient and scalable multi-language Big Data
framework. Despite being a prototype, Ignis has two signif-
icant contributions with respect to Spark. First, it allows to
execute natively applications implemented using non-JVM lan-
guages such as Python and C/C++. Second, it supports multi-
language applications, so different computing tasks could be
implemented in the programming language that best suits them.
However, there are also some important limitations as the fol-
lowing. For instance, Ignis is restricted to use TCP sockets
for inter-node communication, so it is not possible to take ad-
vantage of typical HPC networks such as Infiniband, Aries [9],
Slingshot [10], TofuD [11], etc. Another issue is that Ignis only
supports one data partition per worker (executor). As a conse-
quence, in order to work with big datasets, it is necessary to
create new workers, which causes a degradation in the I/O per-
formance. Ignis is completely containerized, but it uses a very
limited ad-hoc solution for containers orchestration (named An-
coris). And finally, there was no submitter in Ignis, so jobs are
manually launched using several configuration scripts.

2.2. MPI

Message Passing Interface (MPI) is the most widely used
and dominant programming model in HPC. In MPI, processes
make explicit calls to library routines defined by the MPI stan-
dard to communicate data between two or more processes. These
routines include both point-to-point (two party) and collective
(many party) communication. Note that from MPI-3 new fea-
tures were introduced to enable MPI processes within an SMP
node to collectively allocate shared memory for direct load and
store operations, which enables the shared-memory-processes
to more efficiently share data.

Among the different MPI implementations, the most suc-
cessful ones are MPICH [12] and Open-MPI [13]. In particu-
lar, IgnisHPC uses MPICH as backbone technology to perform
all the communications between processes, which allows the
framework to support many communication models and net-
work architectures (e.g. Infiniband, Slingshot, etc.). As we will
explain later, one of the most important consequences of this
design decision is that IgnisHPC can efficiently execute native
MPI applications. Therefore, it is not necessary to port MPI ap-
plications using a different API. In this way, IgnisHPC is able
to bring together the benefits of HPC and Big Data worlds into
the same framework.

We have considered MPICH instead of other MPI imple-
mentations because it is a mature project and provides several
important features that are critical in a Big Data environment.
For example, it is possible to join processes dynamically. It
means that MPICH allows to connect independent instances of
an MPI process at runtime, which is essential for increasing the

2

Driver

Backend Executor1

Executorn

...

Resource ManagerSubmitter

Driver Container Executor Containers

Submitter Container

Driver

Backend

Executor 1

Executor n

...

Resource Manager

Driver Container Executors Containers

Manager

2 0
3 3 3

1

4

4

5

2 5 5 5

1

6 3 6

4

Figure 1: Scheme of the architecture of IgnisHPC.

number of processes when more parallelism is needed or for
replacing lost processes when a computing node fails.

2.3. Resource managers and schedulers

In a Big Data environment, it is necessary to manage and
balance the cluster resources to allow multiple applications and
frameworks to be efficiently executed together on the same sys-
tem. That is the goal of resource managers such as Apache
Mesos [14] and Nomad [15].

In particular, Apache Mesos groups all the physical resources
of each node of the cluster and make them available for the ap-
plications as a single pool of resources. Among the features
of Mesos we can highlight that it provides resource isolation
thanks to its support to Docker containers [16]. So, it allows the
execution of jobs in a custom independent environment both in
terms of resources and installed software.

Users cannot interact directly with Mesos because it is only
a resource planner, so an orchestration framework is required to
run and schedule tasks. We can find many orchestration frame-
works depending on the type of tasks to be executed. In this
work we have considered two of the most relevant, Apache
Marathon [17] and Apache Singularity [18], which both sup-
port Docker containers orchestration.

Finally, Nomad is a simple workload orchestrator created
by HashiCorp. Its flexible and consolidated workflow provides
users the functionality of both a resource and a scheduler man-
ager, combined into a single system. Nomad is a modern al-
ternative to Mesos and also supports containerized and non-
containerized applications with different life cycle. Unlike old
legacy platforms, it is prepared for running heterogeneous ap-
plications and using accelerators such as GPUs in a simple way.

3. IgnisHPC

3.1. Architecture of the framework

We can divide the IgnisHPC architecture into four indepen-
dent modules which run inside Docker containers: Submitter,
Backend, Driver and Executor. A scheme is shown in Fig-
ure 1. Modules were implemented in different languages, using
Apache Thrift2 for the inter-module communications. In the

2https://thrift.apache.org

figure, thin arrows represent those RPC communications, bold
arrows data transfers, and numbers indicate the call order.

The Submitter module is in charge of launching the Ig-
nisHPC jobs (1) making a request to the resource manager (and
scheduler), which is an external dependency that is responsible
of the containers orchestration and the management of their re-
sources. Afterwards, the driver container is started (2), where
the Driver module is the container entrypoint. That module
exposes all the available features of IgnisHPC through a user
API created as interface to the Backend, where the API logic is
implemented as a service (3). The Backend module is started
inside the driver container after the driver code initializes the
framework. Since Driver and Backend are in the same con-
tainer, they share the same resources. The Backend is respon-
sible of making the requests to the resource manager following
the instructions specified in the driver code (4). As a conse-
quence, the resource manager will create the executor contain-
ers (5). The Executor module contains the low-level imple-
mentation of a set of operations required by the Backend for
each supported programming language. Note that IgnisHPC
uses an SSH tunnel to connect driver and executor containers
to encrypt and protect the communications. Finally, the Back-
end is connected to the executors in order to perform the low-
level API operations (6). It is important to highlight that the
Driver is also considered an executor by the Backend to handle
data transfers. Note that only large data transfers are performed
using MPI, otherwise RPC is used.

There are important architectural differences between Ig-
nisHPC and Ignis [8], our first prototype of a multi-language
Big Data framework. Changes performed to IgnisHPC focused
on removing some important limitations and performance is-
sues shown by Ignis (see Section 2.1). Among them we can
highlight the following:

– One of the main goals of IgnisHPC is to unify the execu-
tion of Big Data and HPC workloads in the same frame-
work. For this reason data transfers in IgnisHPC (bold
arrows in Figure 1) are performed using MPI. It has enor-
mous advantages over the inter-node communications with
TCP sockets used by Ignis. First, IgnisHPC supports
many different communication models and network ar-
chitectures (e.g. Infiniband, Slingshot, etc.). In this way,
it covers the characteristics of the vast majority of Big
Data and/or HPC clusters. Moreover, MPI applications
and libraries can be directly executed in IgnisHPC. It means
that HPC scientific applications, which in many cases
contain tens of thousands of lines of code, do not have
to be ported to the IgnisHPC API. And finally, it is pos-
sible to combine in the same multi-language code HPC
tasks (using MPI) with Big Data tasks (using MapReduce
operations).

– IgnisHPC has a new Submitter module that handles jobs
using an external resource manager. This module in-
cludes a submit script, similar to Spark’s spark-submit,
that allows users to easily launch IgnisHPC jobs. On
the contrary, jobs in Ignis are manually configured and
launched using several scripts. There is no Submitter

3

 IgnisHPC job

 Cluster1

 Worker1

...

...
 Workerw

 Clusterc

...

 Taskt

 Task1

...

DOCKER CONTAINER

 Node1

DOCKER CONTAINER

 Node2

DOCKER CONTAINER

 Noden

Figure 2: Job hierarchy in the IgnisHPC framework.

module in its architecture.
– Ignis used a Manager module (one per executor con-

tainer) that acted as middleman between the Backendmod-
ule and the executors. To be more efficient, IgnisHPC re-
moved that module and its functionalities were adopted
by the Backend.

– IgnisHPC supports some of the most well-known resource
and scheduler managers. In addition, it was designed to
easily add new managers. However, Ignis is bonded to
work only with an ad-hoc manager, which has limited
functionalities.

3.2. Jobs in the framework
It is important to know the structure of an IgnisHPC job.

It consists of a set of Docker containers distributed in multiple
computing nodes grouped in Clusters (see Figure 2). Workers
are bonded to a single programming language and run inside
a Cluster, so at least one Worker has to be created for each
programming language in order to build multi-language appli-
cations. A Worker instantiates at least one process (executor)
on each Docker container with the aim of executing its tasks in
parallel, processing them as a pipeline.

Clusters are independent, each one has its own assigned re-
sources, so they can execute different tasks at the same time.
Using multiple Clusters could be useful if stages or phases of
the job have some compatibility issues. In this way, incompat-
ible phases would be executed by differently configured Clus-
ters. However, Workers can be executed in shared mode (dis-
abled by default). It means that executors of two or more Work-
ers, which are located in the same container, would share the
available resources. Normally users configure each Worker to
use a part of the Cluster resources (e.g. cores, memory, etc.).

3.3. Resource manager
Since IgnisHPC must be executed inside Docker contain-

ers, a resource and scheduler manager is required to handle the
cluster resources and launch these containers. Note that any
framework that meets these requirements could be used in Ig-
nisHPC by implementing a basic interface. Currently IgnisHPC
supports the following managers:

– Docker: It is the easiest way to run IgnisHPC locally on
a single machine. It uses the Docker client to directly
launch containers.

– Ancoris [8]: This is the only one supported by Ignis and
it was designed as a simple and light resource manager. It
executes itself inside Docker containers and is composed
of two types of instances: master and slaves. The master
manages the available resources in the cluster, and it is
responsible of launching the containers. Slaves expose
the resources of their host to the master when they are
deployed.

– Mesos+Marathon: Since Spark supports Mesos, using it
as resource manager together with Marathon as container
orchestrator allows users to execute in a single environ-
ment Spark and IgnisHPC jobs. In addition, since Ig-
nisHPC is able to execute efficiently Big Data and MPI-
based applications, we are merging both Big Data and
HPC software ecosystems in just one execution environ-
ment.

– Mesos+Singularity: The same benefits commented above
apply to the combination of Mesos and Singularity.

– Nomad: It combines in the same framework a resource
and a scheduler manager. Due to its lack of dependencies,
it is the best option to install in a cluster from scratch.
Moreover, it has better support for devices like GPUs
than Mesos, which allows to create heterogeneous exe-
cution environments.

It is important to highlight that the cost of deploying Docker
containers is very low. For instance, considering Nomad, it is
possible to deploy thousands of Docker containers in just a few
seconds3.

3.4. Driver module
The Drivermodule is a user API that allows access to all Ig-

nisHPC functionalities. The driver program describes the high-
level control flow of the application, and it can be programmed
in any of the supported languages (currently, Java, Python and
C/C++). The Driver was designed as a Thrift RPC interface to
the Backend so the logic has not to be re-implemented for every
programming language. More details about the driver API and
how to implement an application in IgnisHPC are provided in
Section 4.

3.5. Backend module
The Backend module contains the services that define the

Driver’s logic. For instance, the reduceByKey function re-
quires searching and grouping the keys. These operations are
defined in the Backend, but they are implemented in the Execu-
tor module for a specific programming language.

The Backendmodule is also responsible of sending requests
to the resource manager in accordance with the instructions
specified in the driver code. These instructions are lazily ex-
ecuted, so the Backend registers the function calls as a task de-
pendency graph. When a task that represents an action in the
driver code is created (e.g., a call to count), all the tasks in its
dependency graph are executed. An example is shown in Figure

3https://www.hashicorp.com/c1m

4

Container
Task

Executor
Task Task 1

Task 3Action
Task

Task 2

isCached

isNotCached

Figure 3: Example of a task dependency graph.

3, where the Action Task depends on Task 3, and Task 3 depends
on Task 1 and 2. Note that a task dependency is only computed
if the task was never executed or if its result was not explicitly
cached. The Executor and Container tasks are always executed
as final dependencies. These tasks check that executors and
containers are running and ready to be used.

Finally, IgnisHPC is able to recover after a failure of a clus-
ter node or some of the executors. Affected tasks are traced by
the Backend in such a way that only their executors are real-
located and recomputed. If the affected tasks are cached, the
recovery process will be faster since it is not necessary to recal-
culate their dependencies. Note that this process is automatic,
but users can tune the recovery process using the persistence
functions in the driver code (see Section 4).

3.6. Executor module
The Executor module implements the operations defined

by the Backend, where each supported programming language
has its own implementation. In order to add support for a new
language in IgnisHPC, a minimum implementation only requires
programming the context class. The executor context allows the
API functions to interact with the rest of the IgnisHPC system.
In this way, among the functionalities of the context we find
the exchange of user variables between driver and executors or
providing the executors access to the MPI communicators.

As we explained previously, IgnisHPC uses MPI (that is,
MPI communicators) to perform all the communications related
to the Executor module. IgnisHPC constructs three types of
communicators for data transfers (see Figure 4):

– Base communicator: for each worker there is a commu-
nicator that includes all its executors. This communicator
always exists. If one executor is lost, the communicator is
destroyed and a new communicator is created including
a new executor. To that end, the capability of linking dy-
namically a single process to a communicator introduced
in MPI-3 was of special importance. Without this fea-
ture all processes would have to be launched at the same
time, and in case a process died, it could not be replaced
causing the job to fail.

– Driver communicator: it joins a base communicator to
the driver process. It is created when the driver and a
worker exchange data.

– Inter-worker communicator: it is created joining the base
communicators of two workers. It is used to send data
from one worker to another and it will be destroyed as

Base
Communicator

Executor11

Executor1n

Executorm1
...

Worker with m Executors
Containers

Driver
Communicator

Worker

Driver

Driver Container

Inter-worker
Communicator

Worker1

Worker2

...

Executormn
...

Figure 4: MPI communicators in IgnisHPC.

soon as one of the two workers stops its execution. This
communicator is only created between workers that exe-
cute the operation ImportData.

The base communicator for each worker is accessible to
programmers by the executor context. It means that IgnisHPC
functions can be implemented using that communicator and
MPI primitives (e.g. gather, scatter, broadcast, reduce, etc.).
As a result, IgnisHPC supports the execution of pure MPI ap-
plications with minimal modifications in the original code. A
detailed explanation is provided in Section 5.

Another benefit of using MPI for data transfers is the per-
formance improvement of iterative applications. When using
Big Data frameworks such as Ignis and Spark, an iterative ap-
plication requires the driver to perform an evaluation task per
iteration to obtain the final result. Each evaluation has three
steps: stopping the executors, analysis of the partial results by
the driver and restarting the executors. Note that starting and
stopping the executors is very costly in terms of performance.
IgnisHPC avoids the driver evaluations because executors share
the partial results of each iteration using their MPI base com-
municator. Therefore, it is not necessary to stop them because
they do not need to wait for the driver. This has even a bigger
impact on performance for those applications with many short
iterations.

3.7. Submitter module
The Submitter is an IgnisHPC module consisting of a set

of scripts and utilities for configuring and launching jobs. As
we commented previously, Ignis had no module to launch tasks,
and the Driver module was launched manually using Ancoris
(see Section 3.3). The Submitter is a container, which can be
accessed by SSH. There users can set up jobs in a similar envi-
ronment where the IgnisHPC applications will be executed.

The main utility of the Submitter module is the ignis-

-submit script that, like spark-submit, allows users to launch
IgnisHPC jobs in the cluster. The script only requires as manda-
tory arguments a Docker image and the driver program. There
are also the following optional parameters:

– name: a job name can be specified.
– arguments: after the driver program name, all the pa-

rameters will be considered as driver arguments.
– attach mode: by default, jobs are launched in unattached

mode. That is, ignis-submit launches the job and ex-
its. Attach mode allows users to control the job as if the

5

1 # Python driver
2 ignis-submit ignishpc/python python3 mydriver.py
3

4 # C++ driver
5 ignis-submit --name myapp --properties

ignis.driver.memory=2GB ignishpc/cpp ./mydriver 0 -g 2

Figure 5: Job submission examples.

driver runs locally, so output is printed in real time, and
it is possible to manually kill the job.

– properties: users can change the default properties be-
fore launching the Driver module. Executor properties
can be redefined later but Driver properties are set only
by ignis-submit.

Figure 5 shows two job submission examples. The first one
is a Python basic submission with only its base image and the
driver application. The second one deals with a C++ driver and
optional parameters. In particular, --name sets the job name,
--properties changes the driver default memory to 2 GB,
and 0 -g 2 are considered arguments of mydriver. Note that
ignishpc/cpp is the C++ base image.

3.8. Data storage
IgnisHPC provides multiple options for data storage. Users

can choose a type of storage according to their particular execu-
tion environment. Storage must be defined as a property before
the worker creation. IgnisHPC supports the following storage
options:

– In-Memory: it is the best performer since all data is stored
in memory. Memory consumption could be an issue, so
it is not suitable for all kinds of jobs.

– Raw memory: data is stored in a memory buffer using a
serialized binary format. Extra memory consumption is
minimal and the buffer is compressed by Zlib [19], which
has nine compression levels. Level six is applied by de-
fault, but it can be changed when the worker properties
are defined.

– Disk: similar to raw memory but the buffer is stored as
a POSIX file. Performance is much lower but it allows
to work with large amounts of data that cannot be com-
pletely stored in memory.

IgnisHPC behaves very similar to Spark in terms of data lo-
cality. Data is split into several partitions which are assigned
to executors. Each partition is assigned to a single executor.
In case another executor needs that partition, it will be sent us-
ing MPI. By default, IgnisHPC stores all partitions in memory
to achieve the best possible performance. If there is not avail-
able memory, Docker sends some data to the container swap
automatically. The user can modify this policy by changing
the swap size or removing it. In case the data size exceeds the
swap or the swap performance is insufficient, IgnisHPC allows
users to set disk as primary storage, so partitions will always be
stored on disk. In this case partitions will only be loaded into
memory at processing time.

On the other hand, there is an important difference in how
memory is handled by Ignis and IgnisHPC. Since Ignis was just

Type Functions

Conversion
map, filter, flatmap, keyBy,

mapPartitions, keys, values,

mapValues, etc.
Group groupBy, groupByKey

Sort sort, sortBy, sortByKey

Reduce
reduce, treeReduce, aggregate,

treeAggregate, fold, reduceByKey,

aggregateByKey, etc.

I/O
collect, top, take,

saveAsObjectFile, saveAsTextFile,

saveAsJsonFile, etc
SQL union, join, distinct

Math
sample, sampleByKey, takeSample,

count, max, min, countByKey,

countByValue

Balancing repartition, partitionBy

Persistence persist, cache, unpersist, uncache

Table 1: Example of some IDataFrame functions supported by IgnisHPC.

a prototype, for simplicity in the implementation, it assigns one
data partition to each executor. In this way, if it is necessary to
increase the partition size, a realloc operation is performed in
such a way that the complete partition is copied to a different
memory location. The consequence is a noticeable increment
in the memory consumption. This restricts Ignis to work with
smaller input datasets. IgnisHPC overcomes that limitation sup-
porting several data partitions per executor. Note that an execu-
tor can spawn several threads to process the data partitions in
parallel.

4. Programming applications for IgnisHPC

IgnisHPC requires a minimal driver code that implements
the application at high-level. To facilitate the adoption from
the Big Data community, the IgnisHPC API is inspired by the
Spark API in such a way that IgnisHPC codes are easily under-
standable by users who are familiar with Spark. In comparison
to Ignis, we have extended the API to cover the most important
primitives required by Big Data applications. For instance, Ig-
nisHPC includes functions such as join and union for graph
processing. The IgnisHPC driver API is composed by six main
classes:

– Ignis starts and stops the driver environment.
– IProperties defines the execution environment proper-

ties.
– ICluster represents a group of executors containers. It

is possible, for example, to execute remote commands
(execute, executeScript) and send files (sendFile,
sendCompressedFile) to them.

– IWorker represents a group of processes of the same
programming language. This class includes functions to
read files (textFile, partitionJsonFile, etc.), im-
port data partitions from another worker (importData),
send data from the driver (parallelize) and execute
external codes (loadLibrary, call, voidCall). As we
explain later, the former routines allow IgnisHPC to exe-
cute MPI applications within the framework.

6

1 #!/usr/bin/python
2

3 import ignis
4

5 # Initialization of the framework
6 ignis.Ignis.start()
7 # Resources/Configuration of the cluster
8 prop = ignis.IProperties()
9 prop["ignis.executor.image"] = "ignishpc/full"

10 prop["ignis.executor.instances"] = "2"
11 prop["ignis.executor.cores"] = "4"
12 prop["ignis.executor.memory"] = "2GB"
13 # Construction of the cluster
14 cluster = ignis.ICluster(prop)
15 # Initialization of a Python Worker
16 worker_python = ignis.IWorker(cluster, "python")
17 # Task 1: Tokenize text into pairs (x, y)
18 # The edges are stored in reversed order
19 tc = worker_python.textFile("graph.dat")
20 edges = tc.map(lambda x_y: x_y.split(" ")[::-1])
21 # Initialization of a C++ Worker
22 worker_cpp = ignis.IWorker(cluster, "cpp")
23 # Transfer data from Task 2 - Python
24 tc2 = worker_cpp.importData(tc).cache()
25

26 oldCount = 0
27 nextCount = tc.count()
28 while True:
29 oldCount = nextCount
30 # Task 2: Perform the join,(y, (z, x)) pairs,
31 # to obtain the new (x, z) paths.
32 new_edges = tc2.join(edges).
33 map("libexample.so:Reverse2")
34 tc2 = tc2.union(new_edges).distinct().cache()
35 nextCount = tc2.count()
36 if nextCount == oldCount:
37 break
38 # Show result
39 print("TC has %i edges" % tc2.count())
40 # Stop the framework
41 ignis.Ignis.stop()

Figure 6: Transitive Closure driver code in Python.

– IDataFrame contains all the functions of the MapRe-
duce paradigm, similarly to Spark RDD. A function can
be a transformation that generates another IDataFrame or
an action that generates a final result (see Table 1). With
respect to Ignis, besides the support for new API func-
tions, IgnisHPC has increased the overall performance
for some types of routines (e.g., Group and Sort) thanks
to its complete redesign using MPI.

– ISource is an auxiliary class used by meta-functions such
as map in the driver. This class acts as a wrapper for the
input parameters. It is also used to store variables and
send them to the executors. Those variables can be ob-
tained by the executors using the context.

Note that all the API operations that move data between
executors perform an internal shuffling operation (e.g., paral-
lelize, collect, partitionBy, etc.).

4.1. An example: Transitive Closure
With the goal of illustrating how applications are programmed

in IgnisHPC, Figure 6 shows an example of a driver imple-
mented in Python for computing the Transitive Closure of a
graph. This algorithm finds out if a vertex x is reachable from
another vertex y for all vertex pairs (x, y) in the graph. Note
that an equivalent driver code could be implemented in any of
the IgnisHPC supported languages (C/C++ and Java) using a
similar syntax.

1 #include<ignis/executor/api/function/IFunction.h>
2

3 using namespace ignis::executor::api;
4 typedef std::pair<int64_t, int64_t> ipair;
5 typedef std::pair<int64_t, ipair> ipair2;
6

7 // Reverse pairs (z, (x, y)) to (z, (y, x))
8 class Reverse2 : public function::IFunction<
9 ipair2, ipair2>{

10 ipair2 call(ipair2& x_y, IContext& context){
11 return {x_y.second, x_y.first};
12 };
13

14 ignis_export(Reverse2, Reverse2)

Figure 7: Function in C++ used by a map operation for the Transitive Closure
application.

First, the IgnisHPC framework is initialized (line 6). Prop-
erties are created to configure and build a cluster (lines 8 to 14).
Note that the properties definition is optional, and IgnisHPC
could read them from a default configuration file. Moreover,
IgnisHPC introduce the possibility of overwrite the default val-
ues when a job is submitted like Spark using the new Submitter
module. Therefore, the Docker image, the number of contain-
ers, the number of cores and the memory per container could be
defined out of the driver code. Computing the Transitive Clo-
sure has two phases. To illustrate the multi-language support
in IgnisHPC, each phase was implemented in a different pro-
gramming language. The first one uses a Python executor and
the second a C++ executor. The first stage consists of a map

operation that takes as input a text file and creates pair values
that represent edges in the graph (line 20). As a consequence,
it is necessary to previously create a Python worker in the clus-
ter (line 16). It is important to note that creating the worker
is mandatory and is not related to the driver programming lan-
guage. On the other hand, if the worker and the driver code are
in the same language, lambda functions can be used (line 20).

The following phase of the algorithm is iterative: edges are
joined into a path until there are no new paths. Since this phase
is implemented in C++, a C++ worker should be created (line
22). Data is shared between workers using the importData

function (line 24). The driver code ends printing the results.
The framework must be stopped before the driver ends (line
41) to stop the backend. Unlike Ignis, IgnisHPC automatically
detects when the driver process ends and stops it. However, this
is not a good practice.

In IgnisHPC a lazy evaluation is performed when a result is
not required explicitly. In the example, the trigger that causes
the tasks to be launched are the calls to the count function. This
approach is also followed by Spark where RDDs are computed
lazily the first time they are used in an action [20].

Most of the driver functions are meta-functions. That is,
generic functions that require another one to perform an inter-
nal operation. This is the case of map in the example of Figure 6
(lines 20 and 32-33). To implement those functions we should
use the executor API provided by IgnisHPC. Basically, it de-
fines a simple interface based on the number of required input
parameters. Figure 7 shows an example corresponding to the
C++ function used by map in the driver code. Since map takes
one parameter and also returns one parameter, IFunction is

7

1 // Python lambda
2 data.reduce("lambda a, b: a + b")
3

4 // C++ lambda
5 v = 2
6 data.reduce(
7 ISource("[](int a, int b, IContext &c){ \
8 return (a + b) * c.var<int>(\"v\"); \
9 }").addParam("v",v)

10)

Figure 8: Examples of text lambda for a Python and a C++ executor.

used. In case there are two input parameters (e.g., reduce),
IFunction2 would be used, and so on. Note that if the func-
tion does not return any value (e.g. foreach), functions have
the same name but with the Void prefix.

4.2. Text lambda functions

As explained previously, lambda functions need that driver
and executor codes were implemented in the same language be-
cause native code serialization is required. We refer to code
serialization as the process by which a function or set of in-
structions are converted into bytes to be sent and executed in a
different environment. Note that although Python and Java are
able to serialize code both languages face compatibility prob-
lems. On top of that, C++ does not allow any type of code seri-
alization. To overcome these limitations IgnisHPC implements
its own multi-language lambdas without source code serializa-
tion, named text lambdas. In this way, IgnisHPC allows to de-
fine lambdas as text, using the executor language syntax. The
executor will transform the lambda text into source code to be
used as a meta-function parameter. It is important to highlight
that the language of the driver code is indifferent.

Figure 8 shows an example of a text lambda that accumu-
lates all elements (line 2) used by a reduce function. It uses
Python syntax so must be evaluated by a Python executor. An-
other example is shown in line 7. It defines a text lambda that
captures the value of a variable, which is read from the con-
text. This lambda function will be compiled and loaded by a C
++ executor. Performance is not affected by using text lambda
functions but it can add some overhead to the compilation pro-
cess, especially for C++.

In the same way, using the mechanism that allows to ex-
ecute text lambda functions, IgnisHPC can send a complete
job or application to the executors. This is possible thanks to
loadLibrary, which can be used to execute a full source code
as an IgnisHPC library. It has again a small impact on the com-
pilation time. More details about loadLibrary are provided
in Section 5.2 using MPI applications as use case.

5. MPI on IgnisHPC

Our first prototype, Ignis, was limited to perform inter-process
communications using only TCP sockets (different computing
nodes) or shared memory (same node). However, IgnisHPC
was completely redesigned to use MPI as backbone technol-
ogy. As a consequence, all communications are internally im-
plemented by MPI routines. As we explained previously in the

paper, this change makes it possible for IgnisHPC to support
more communication models and network architectures. In ad-
dition, an important advantage of our approach is that, once
IgnisHPC has configured the MPI communications, users can
combine in the same application pure MPI libraries using the Ig-
nisHPC communicators together with standard Big Data func-
tions (map, reduce, collect, etc.).

5.1. Integration of MPI into a Big Data environment

MPI was not designed to run on Docker containers. As
a consequence, there are several problems that should be ad-
dressed. First, by default and to preserve an isolation runtime
environment, Docker creates a private virtual network between
the host and the containers. If two containers are launched on
the same host, we can execute MPI processes in the same way
that they were two real nodes of a cluster. But if we launched
those containers on different hosts, the communication is im-
possible since they belong to different networks. We can find
in the literature several works that deal with this issue (see the
Related Work section). For instance, some approaches opt for
launching the container on the host network or creating a virtual
network between the cluster nodes [21]. However, these con-
figurations are difficult to handle and implement by resource
managers in Big Data environments.

Second, there are important differences in how ports are
handled by a Big Data or an HPC environment. For instance,
ports are considered a resource in a Big Data environment be-
cause there are services that require an exclusive port, which is
not the case in HPC. MPI needs ports to establish connections
between processes but restricted to a range. However, ports
provided by resource managers in a Big Data environment are
usually random and not consecutive.

Finally, IgnisHPC can internally spawn several threads per
MPI process (executor) to increase the performance when pro-
cessing and/or communicating data. All these threads use com-
municators to exchange data in parallel. Every time a commu-
nicator is created, MPI assigns a virtual interface to it. How-
ever, a virtual interface can only be used by one communicator
at the same time, so parallel communications require the use of
multiple virtual interfaces. In the most recent MPICH version,
which is the MPI implementation used by IgnisHPC, virtual in-
terfaces are assigned sequentially. Since IgnisHPC creates and
destroys communicators dynamically, it is not possible to as-
sure that threads can always exchange data in parallel using
communicators with different assigned virtual interfaces. The
consequence is a degradation in the performance.

To overcome the above problems, IgnisHPC applies the fol-
lowing changes to MPICH:

– Containers: MPICH has been designed to work on a local
network. Docker containers can be joined to a network
but only within the same node (internal network). Al-
though resource managers can export a service from the
internal network to the local network, this causes a prob-
lem when MPI is executed containerized. MPICH uses
a service to store the network addresses of the launched

8

1 // mpi.h
2 #ifndef IGNIS_MPI
3 #define IGNIS_MPI
4

5 #include_next <mpi.h>
6

7 extern MPI_Comm IGNIS_COMM_WORLD;
8 #undef MPI_COMM_WORLD
9 #define MPI_COMM_WORLD IGNIS_COMM_WORLD

10

11 #endif

Figure 9: C header that replaces MPI COMM WORLD by IGNIS COMM WORLD

(global variable).

MPI processes, but when using containers, each MPI pro-
cess stores the values corresponding to the internal net-
work which are not valid outside the node. For this rea-
son, it is necessary to modify MPICH in order to store
the correct network values that correspond to the local
network.

– Ports: now MPICH uses a list of ports provided by the
resource manager instead of a range.

– Multithreading: MPICH was modified to assure that all
threads use a different virtual connection. In this way,
communications between threads can always be performed
in parallel.

5.2. Running MPI applications in IgnisHPC

IgnisHPC can execute MPI applications implemented in any
of the supported languages. We must highlight that, to the best
of our knowledge, currently there does not exist another Big
Data framework with this feature. Most of the MPI codes for
HPC are implemented in C/C++, while applications in other
languages such as Java and Python are a minority. So although
IgnisHPC supports Python and Java, we will focus on C/C++

MPI applications.
To explain how to execute an MPI application within Ig-

nisHPC, we have considered LULESH [22] as guiding exam-
ple. LULESH is a proxy HPC application for shock hydrody-
namics with more than 5,000 lines of C++ code.

MPI applications, like other IgnisHPC codes, must be im-
plemented using the executor API to be used from the driver
(see Figure 7). However, some minimal modifications should
be previously applied to the original MPI codes:

– MPI initialization: IgnisHPC controls the MPI environ-
ment, so MPI Init and MPI Finalize must be removed
from the MPI application.

– MPI COMM WORLD: MPI applications use a default com-
municator but IgnisHPC requires its own communicator.
The simplest solution is to create a custom header to over-
write the default communicator. Figure 9 shows an im-
plementation of this functionality.

– I/O data: These modifications are optional. In some sce-
narios, it is interesting to allow IgnisHPC to handle the
operations on input and output data of an MPI applica-
tion. This is the case, for example, when the output file of
the application will be afterwards processed by other Ig-
nisHPC tasks. If IgnisHPC manages the output file, data

1 using ignis::executor::api;
2

3 extern int main(int argc, char *argv[]);
4 MPI_Comm IGNIS_COMM_WORLD;
5 class Lulesh : public function::IVoidFunction0{
6 public:
7 void call(IContext &context) override {
8

9 IGNIS_COMM_WORLD = context.mpiGroup();
10 const char *argv[100];
11 argv[0] = "ignis-cpp";
12 int argc = 1;
13

14 // Start parsing arguments ****************
15 if (context.isVar("i")) {
16 argv[argc++] = "-i";
17 argv[argc++] = const_cast<char *>(
18 context.var<std::string>("i").data());
19 }
20

21 if (context.isVar("s")) {
22 argv[argc++] = "-s";
23 argv[argc++] = const_cast<char *>(
24 context.var<std::string>("s").data());
25 }
26

27 ...
28

29 if (context.isVar("h") && context.var<bool>("h")) {
30 argv[argc++] = "-h";
31 }
32 // End parsing arguments ****************
33

34 main(argc, const_cast<char **>(argv));
35 }
36 };
37

38 ignis_export(lulesh_app, Lulesh)
39

40 create_ignis_library("lulesh_app");

Figure 10: Executor code for LULESH using C++.

is kept in memory. If not, the output file would be written
to disk and read again to continue executing the follow-
ing tasks, causing an important degradation in the perfor-
mance. To do that, read and write functions related to
input/output files will be removed from the MPI source
code. As we explain next, they will be replaced by input
and return parameters of the call function in the corre-
sponding executor code.

Figure 10 shows the executor code for calling LULESH
from the IgnisHPC driver. First, the global variable for the com-
municator of Figure 9 is created (line 4) and initialized with the
IgnisHPC MPI group (line 9). LULESH is a benchmark, so it
does not receive any data from IgnisHPC. As a consequence,
according to the executor API explained in Section 4, it is of
type IVoidFunction0 (line 5). The only mandatory method to
be implemented is call (line 7). Inside that method, the appli-
cation arguments are parsed from the IgnisHPC context. In our
example, each argument is individually parsed to create a user
friendly interface. However, the arguments could be parsed to-
gether as a list, reducing noticeably the necessary lines of code.
The call method ends calling the LULESH main function (line
34). Afterwards, Lulesh class is exported (line 38). This oper-
ation is only necessary in C++. To finalize, an IgnisHPC library
is created (line 40), which will be used to call LULESH from
the driver.

Finally, we show how to use an MPI application from the

9

1 worker.loadLibrary("liblulesh.so")
2 worker.voidCall("lulesh_app", s = "70", i = "2400")

1 worker.loadLibrary("liblulesh.so");
2 worker.voidCall(ISource("lulesh_app").
3 addParam("s","70").
4 addParam("i","2400"));

Figure 11: Lulesh usage from a Python driver (top) and its equivalent C++ code
(bottom).

1 ...
2 # Initialization of a Python Worker
3 worker = ignis.IWorker(cluster, "python")
4 # Load wordcount function implemented in Python with MPI
5 worker.loadLibrary("wordcount.py")
6 # Task 1: Read a text line by line
7 text = worker.textFile("text.txt")
8 # Task 2: Split each line into words
9 words = text.flatmap(lambda line : line.split(" "))

10 # Task 3: Execute wordcount using words as input
11 counts = worker.call("wordcount", words)
12 # Task 4: Result is stored as json
13 counts.saveAsJson("result.json")
14

Figure 12: Wordcount example as MPI hybrid application.

driver. The example of Figure 11 focuses only in the neces-
sary functions to execute LULESH using a Python and a C++

driver. Note that the MPI application should be previously com-
piled as a library (liblulesh.so). The example assumes that
there is a C++ worker in the driver where two functions are
executed: loadLibrary and voidCall. On the one hand,
loadLibrary loads all the classes from the library declared
in create ignis library. In this case, Lulesh is the only
existent class. On the other hand, voidCall is an action that
causes the execution of the library. If the library returns an
output to IgnisHPC, voidCall should be replaced by call

that would return an IDataFrame object. Library arguments
in C++, which were parsed in the executor code, are added to
the function using addParam from the ISource class. This
syntax could be also used in Python. Nevertheless, keyword ar-
guments in Python are a more elegant alternative (see line 2 in
Figure 11).

5.3. Hybrid applications

In IgnisHPC an MPI code can be combined with typical
MapReduce operations to create a hybrid application. In this
way, the different computing tasks could be implemented in the
programming model and language that best suits them.

Figure 12 shows a simple example of a Wordcount applica-
tion where an MPI Python library is combined with IgnisHPC
API functions. Input data is distributed and prepared by Ig-
nisHPC (Tasks 1 and 2), so MPI is only responsible of the
compute-intensive part (Task 3). Observe that for using func-
tions included in a Python library it is only necessary to load
the library (line 5) and invoke the call routine with the name
of the desired function (line 11). Finally, results are converted
and written to disk in json format using the IgnisHPC API (Task
4). Figure 13 shows another example. In this case, API func-
tions are combined with explicit calls to MPI routines (line 9)
with the aim of creating the hybrid application.

1 # Each executor iterates its partitions to compute
2 # the partial sum. An MPI reduction between executors
3 # is performed to calculate the final result
4 def sumNumbers(parts, context):
5 value = 0
6 for part in parts:
7 for n in part:
8 value += int(n)
9

10 value = context.mpiGroup().reduce(value, MPI.SUM)
11 if context.executorId() == 0:
12 return [[value]]
13 return []
14

15 ...
16 # Initialization of a Python Worker
17 worker = ignis.IWorker(cluster, "python")
18 # Task 1: Read a text line by line
19 numbers = worker.textFile("numbers.txt")
20 # Task 2: Find the sum of an array of numbers
21 result = numbers.mapExecutor(sumNumbers)
22 ...

Figure 13: Sum of an array example as MPI hybrid application.

Batch (one pass) Iterative (caching)Operators MB TS KM PR TC
textFile X X X X X
map X X X X X
mapValues – – – X –
flatMap – – – X –
reduceByKey – – X X –
collectAsMap – – X – –
repartition – X – X –
count – – – X X
join – – – X X
union – – – – X
distinct – – – – X
importData (I) X – – – –
sort – X – – –
saveAsTextFile X X X – –

Table 2: Operations used in each Big Data application. Minebench (MB), Tera-
sort (TS), K-means (KM), PageRank (PR) and Transitive Closure (TC). Oper-
ators annotated with I are specific only to IgnisHPC.

6. Experimental evaluation

6.1. Experimental setup

The experiments shown in this section were carried out on
a 12-node cluster, where each node consists of:

– CPU: 2 × Intel Xeon E5-2630v4 (2.2Ghz, 10 cores)
– Memory: 384 GB of RAM
– Storage: 8 × 4TB 7.2k SATA
– Network: 2 × 10GbE

It is a Linux cluster running CentOS 7 (kernel 3.10.0), Docker
20.10.2-ce and Spark 2.2.0 (with YARN [23] as cluster man-
ager). Ignis and IgnisHPC run on an Ubuntu 20.04 image with
MPICH 3.4.1.

6.2. Big Data applications

We have selected five workloads that represent different types
of application patterns for which Spark is considered the best
performing Big Data framework [24]: Minebench, TeraSort, K-
Means, PageRank and Transitive Closure. Table 2 lists the use
of the most important operators by each Big Data application,

10

1 2 4 8 16 32 64 128 160 240
Cores

102

103

104

T
im

e
(s

ec
)

-
lo

g
 s

ca
le Spark

Ignis
IgnisHPC

(a) Times (strong scaling)

1 2 4 8 16 32 64 128 160 240
Cores

0

50

100

150

200

S
p

ee
d

u
p

Spark
Ignis
IgnisHPC

(b) Speedup

1 10 100 240
Cores - log scale

103

104

T
im

e
(s

ec
)

-
lo

g
 s

ca
le

Spark
Ignis
IgnisHPC

(c) Times (weak scaling)

Figure 14: Study of the scalability of IgnisHPC, Ignis and Apache Spark running the Python Minebench application.

1 2 4 8 16 32 64 128 160 240
Cores

101

102

103

104

T
im

e
(s

ec
)

-
lo

g
 s

ca
le Spark

Ignis
IgnisHPC

(a) Times (strong scaling)

1 2 4 8 16 32 64 128 160 240
Cores

0

200

400

600

S
p

ee
d

u
p

Spark
Ignis
IgnisHPC

(b) Speedup

1 10 100 240
Cores - log scale

102

103

104

T
im

e
(s

ec
)

-
lo

g
 s

ca
le

Spark
Ignis
IgnisHPC

(c) Times (weak scaling)

Figure 15: Study of the scalability of IgnisHPC, Ignis and Apache Spark running the Python & C++ Minebench application.

including basic core operators and specific ones implemented
by the IgnisHPC framework.

– Minebench (MB). This application4 performs the calculation
of SHA-256 hashes imitating the Proof-of-Work algorithm
used in the Bitcoin protocol [25]. Do not confuse it with
the data mining benchmark suite NU-MineBench. This al-
gorithm has two phases which are implemented using two
chained map operations. The first map is data-intensive, while
the second is a compute-intensive task. In particular, in the
first stage a set of Bitcoin transactions are grouped together
forming a block proposal. A binary Merkle tree [26] is calcu-
lated for those transactions and its Merkle root hash is added
to a block header. The second stage calculates the hash of the
block header iteratively while the condition is not met. The
strong scaling tests were obtained using an input file contain-
ing 300K blocks (120MB), while the weak scaling experi-
ments fixed the input data per core to 300K blocks.

– TeraSort (TS). It is a sorting algorithm suitable for measuring
the I/O and the communication performance of the consid-
ered frameworks. Elements in IgnisHPC are sorted by means
of the MergeSort algorithm where elements are distributed
by a regular sampling among the executors [27]. Note that
this task requires that executors exchange data. The input
data used in the tests contains 1 TB of text with 1.8B lines.

– K-Means (KM). This is a classic machine learning algorithm
for data clustering, and it is a good example of an iterative
MapReduce application. This pattern covers a large set of
iterative machine learning algorithms such as linear regres-
sion, logistic regression, and support vector machines. The
goal of KM is to classify a given data set through a certain

4Publicly available at: https://github.com/brunneis/minebench

number of clusters (K clusters). In each iteration, a data point
is assigned to its nearest cluster center, using a map func-
tion. Data points are grouped to their center to further ob-
tain a new cluster center at the end of each iteration (reduce).
The experimental evaluation was carried out using the NUS-
WIDE dataset [28], which contains 269,648 images with 500
attributes per image. In the tests the results were obtained af-
ter 10 iterations and K = 81.

– PageRank (PR). It is a graph algorithm which ranks elements
by counting the number and quality of links. To evaluate
the PR algorithm on IgnisHPC and Spark we used the Live-
Journal graph from the SNAP repository [29], which contains
4.8M vertices and about 69M edges.

– Transitive Closure (TC). One of the most basic questions that
arises when analyzing a complex graph G is whether one ver-
tex x can reach another vertex y via a directed path. A way to
store this information is to construct another graph, such that
there is an edge (x, y) in the new graph if and only if there is a
path from x to y in the input graph. This new graph is called
the Transitive Closure of G. Since computing the TC is very
costly, we used a small graph with 75 vertices and 200 edges
in our tests.

6.2.1. Analysis and discussion
We now present the performance results from our evalua-

tion of Spark, Ignis and IgnisHPC considering all the Big Data
applications detailed above. Speedups were calculated using as
reference the Spark sequential time. All experiments have been
executed ten times and their average result is reported. In ad-
dition, the relative standard deviation (RSD), also known as the
coefficient of variation, is calculated as 100×σ/x. Low RSD val-
ues point out that the data is tightly clustered around the mean.

11

1 2 4 8 16 32 64 128 160
Cores

10 2

10 3

10 4

10 5

T
im

e
(s

ec
)

-
lo

g
 s

ca
le Spark

IgnisHPC (Python)
IgnisHPC (C++)

(a) Times (strong scaling)

1 2 4 8 16 32 64 128 160
Cores

0

20

40

60

80

100

120

S
p

ee
d

u
p

Spark
IgnisHPC (Python)
IgnisHPC (C++)

(b) Speedup

Figure 16: Study of the scalability of IgnisHPC and Apache Spark running the TeraSort application.

1 2 4 8 16 32 64 128 160 240
Cores

101

102

103

104

T
im

e
(s

ec
)

-
lo

g
 s

ca
le Spark (MLlib)

Ignis (C++)
Ignis (Python & C++)
IgnisHPC (Python & C++)

(a) Times (strong scaling)

1 2 4 8 16 32 64 128 160 240
Cores

0

20

40

60

80

S
p

ee
d

u
p

Spark (MLlib)
Ignis (C++)
Ignis (Python & C++)
IgnisHPC (Python & C++)

(b) Speedup

Figure 17: Study of the scalability of IgnisHPC, Ignis and Apache Spark running the K-Means application.

Figures 14 and 15 show the scalability study of the Mine-
bench (MB) application using two different implementations.
In the first one, MB was programmed using only Python, while
in the second one, the two chained map operations are imple-
mented using Python (data-intensive task) and C++ (compute-
intensive task), respectively. Results show that IgnisHPC ex-
hibits very good strong-scaling behavior for both implementa-
tions. On the contrary, the Spark scalability is impacted for
the cost of starting JVMs and transferring data through system
pipes to the Python processes, causing an important degrada-
tion in the overall performance [8]. This scenario is even more
clear for the multi-language implementation in Figure 15(a)
since Spark sends data from Python to C++ processes through
the JVM, increasing the number of pipe operations. As a con-
sequence, the Spark strong scalability is really poor. On the
other hand, IgnisHPC weak scales very well for both code ver-
sions (Figures 14(c) and 15(c)), which is not surprising since
there is not much communication in the MB application. As a
consequence, IgnisHPC is able to extract all the existent paral-
lelism. Finally, we must highlight that IgnisHPC clearly out-
performs Ignis both in terms of strong and weak scalability, es-
pecially when considering the multi-language application. The
RSD for the Minebench experiments ranges from 0.3% to 4.9%.
Note that for the Python implementation (Figure 14), the perfor-
mance differences between IgnisHPC and Ignis are only caused
by architectural improvements in the framework since no MPI
operations are carried out. Executors read the input data from
a file and exchange partial results using the shared memory.
However, if we consider the multi-language implementation of
MB (Figure 15), performance improvements are also due to the
use of MPI for the communication between Workers.

Performance results of the TeraSort (TS) application run-

ning on IgnisHPC and Spark frameworks are displayed in Fig-
ure 16. Ignis results are not shown because the memory con-
sumption of sorting 1 TB of data is too high for our cluster.
As we explained in Section 3.8, Ignis assigns one data parti-
tion to each executor. For TS those partitions are very large.
Every time an element is added to a partition, the complete
partition is copied to a different memory location (realloc op-
eration), which causes a boost in the memory requirements.
This restricts Ignis to work with smaller input datasets. We
avoid this limitation since IgnisHPC was designed to allow sev-
eral partitions per worker. Two different TS implementations
in IgnisHPC were analyzed: a pure Python code and a multi-
language Python-C++ code. In the latter case, the sort opera-
tion uses a user-defined C++ function for comparison purposes.
For all the cases IgnisHPC outperforms Spark, especially when
considering the multi-language implementation. In this way, for
instance, IgnisHPC is 116× faster than sequential Spark when
using 160 cores, while Spark reaches a speedup of only 66×
(Figure 16(b)). It allows IgnisHPC to sort 1 TB of data in barely
5 minutes. The RSD for the TS experiments ranges from 1.3%
to 6%.

Strong scaling results of K-Means (KM) are shown in Fig-
ure 17. We used as reference the Spark implementation of this
algorithm included in MLlib (Machine Learning Library) [30].
For Ignis, a pure C++ and a Python-C++ implementations of
KM were analyzed. For IgnisHPC, we only show the results
for the multi-language Python-C++ code because the numbers
obtained by a pure C++ application are very similar. We can
observe that Ignis was able to beat Spark when considering the
C++ code. However, an important degradation in the scalability
was detected for the multi-language implementation as the par-
allelism increases. This problem was explained in Section 3.6

12

1 2 4 8 16 32 64 128 192 240
Cores

102

103

104

T
im

e
(s

ec
)

-
lo

g
 s

ca
le Spark

IgnisHPC

(a) Times (strong scaling)

1 2 4 8 16 32 64 128 192 240
Cores

0

5

10

15

S
p

ee
d

u
p

Spark
IgnisHPC

(b) Speedup

Figure 18: Study of the scalability of IgnisHPC and Apache Spark running the PageRank application.

and is related to the way Ignis handles iterative applications.
Ignis starts and stops the executors each iteration because the
driver must compute the partial results, which has an important
impact on the performance. To deal with this, IgnisHPC takes
advantage of MPI in such a way that executors compute the
partial results and share them without intervention of the driver.
For this reason IgnisHPC exhibits a very good strong scalability
even for multi-language iterative applications, decreasing no-
ticeably the execution times with respect to Spark and Ignis. It
can be observed in Figure 17(b) that IgnisHPC is about two and
four times faster than Spark and Ignis (multi-language code)
when using all the cores in the cluster, respectively. The RSD
for the KM experiments ranges from 1.1% to 4.8%.

In Big Data analytics many problems require processing
graphs. For this reason it is essential for a Big Data framework
as IgnisHPC to include primitives to support this kind of appli-
cations. In addition, since the size of the graphs to be processed
is often very large, a good scalability is essential. With this goal
in mind we have evaluated two well-known graph algorithms in
Spark and IgnisHPC: PageRank (PR) and Transitive Closure
(TC). Performance results are shown in Figures 18 and 19, re-
spectively. The algorithms in Spark were implemented using
GraphX [31]. Note that Ignis does not support several opera-
tions that are basic for this type of applications such as join

and union (see Table 3), so it cannot be evaluated. Despite the
fact that GraphX is a highly tuned API for graph processing,
IgnisHPC is capable of outperforming Spark in both cases. The
RSD for the PR experiments ranges from 0.6% to 2.7%, while
for the TC varies from 0.1% to 1.7%.

6.2.2. Final remarks
Table 3 summarizes the performance gains obtained by Ig-

nisHPC with respect to Spark and Ignis when running all the
considered Big Data applications. Results were obtained us-
ing the maximum number of cores available and taking into
account the best Ignis and Spark implementation (if there is
more than one). In this way, for example, two implementations
are available for Minebench, pure Python and multi-language
Python-C++. In that case we used as reference for Spark the
Python code, while for Ignis the best performing implementa-
tion was the multi-language one (see the values in Figures 14(a)
and 15(a) when using 240 cores).

According to the results, IgnisHPC is from 1.10× to 3.87×
faster than Spark. The good behavior of IgnisHPC is partic-

ularly relevant when considering multi-language applications.
At the same time, IgnisHPC is a step forward with respect to
Ignis in terms of performance. In this case, IgnisHPC is from
1.08× to 1.28× faster than Ignis. However, there are additional
benefits. First, the memory consumption in IgnisHPC was op-
timized allowing multiple partitions per executor, which allows
to work with extremely large datasets. That is the reason why
Ignis is not able to execute TeraSort in our cluster. And sec-
ond, the IgnisHPC API was extended to support, among others,
graph processing algorithms such as PageRank and Transitive
Closure.

6.3. HPC applications

For many years MPI has been the dominant parallel pro-
gramming model in the HPC area. As we explained in Section
5, thanks to its architectural design, one of the most important
features of IgnisHPC is its ability to execute native MPI appli-
cations within the framework just adding a few lines of code.
To evaluate the benefits of our approach we are interested in
two key areas: performance (with respect to the native MPI ex-
ecution) and productivity (additional Source Lines Of Code -
SLOC). In this way, we have selected five HPC applications
coming from different scientific fields that represent a variety
of MPI communication patterns. Table 4 summarizes the most
important MPI calls (point-to-point and collective operations)
used in the applications. Note that during a specific run, an ap-
plication may use only a subset of these communications. All
the codes were implemented using C/C++. For some of them
we have considered hybrid implementations (MPI+OpenMP)
to demonstrate that is also possible to efficiently execute this
type of applications in IgnisHPC without additional effort.

Next we provide some information about the selected HPC
applications used in the experimental evaluation:

– LULESH (Livermore Unstructured Lagrange Explicit Shock
Hydrodynamics). It is a shock hydrodynamics code devel-
oped at Lawrence Livermore National Lab (LLNL) [22]. It
has been ported to a number of programming models: MPI,
OpenMP, MPI+OpenMP, CUDA, etc. In this paper we have
considered the hybrid MPI+OpenMP implementation, which
uses MPI between nodes and OpenMP for cores on a node.
Performance tests were run on 8 nodes with a problem size
of 703 on each node, which corresponds to the most repre-
sentative problem size [32].

13

1 2 4 8 16 32 64 128 192 240
Cores

103

104

T
im

e
(s

ec
)

-
lo

g
 s

ca
le Spark

IgnisHPC

(a) Times (strong scaling)

1 2 4 8 16 32 64 128 192 240
Cores

0

1

2

3

4

5

S
p

ee
d

u
p

Spark
IgnisHPC

(b) Speedup

Figure 19: Study of the scalability of IgnisHPC and Apache Spark running the Transitive Closure application.

Application No. times faster than Spark No. times faster than Ignis

Minebench 3.87× [Python & C++] 1.23× [Python & C++]
1.26× [Python] 1.08× [Python]

TeraSort 1.76× [C++] –1.35× [Python]
K-Means 1.94× [Python & C++] 1.28× [Python & C++]
PageRank 1.10× [Python] –
Transitive Closure 1.12× [Python] –

Table 3: Summary of the IgnisHPC performance results for all the Big Data applications considering the maximum number of cores and the best Ignis and Spark
implementation (in case there is more than one). Between brackets the programming language/s used in the IgnisHPC implementation.

Point-to-point Collective
Application Blocking Non-blocking Blocking Non-

blocking
LULESH – Isend, Irecv Allreduce, Barrier –

AMG Send, Recv Isend, Irecv,
Irsend

Allreduce, Barrier, Bcast,
Reduce, Alltoall, Allgather(v),
Gather(v), Scan, Scatter(v)

–

MiniAMR Send, Recv Isend, Irecv Allreduce, Barrier, Bcast,
Alltoall

–

MiniVite Sendrecv Isend, Irecv Allreduce, Barrier, Bcast,
Reduce, Alltoall(v), Exscan Ialltoall

MSAProbs Send, Recv Isend, Irecv Allreduce, Barrier, Bcast –

Table 4: MPI calls used for communications in the HPC applications.

– AMG. It is a parallel algebraic multigrid solver for linear sys-
tems arising from problems on unstructured grids. It is part
of the Exascale Computing Project (ECP) proxy applications
suite5 and was derived directly from the BoomerAMG [33]
solver. AMG is an SPMD application with about 65,000 lines
of code which uses OpenMP threading within MPI tasks.
Parallelism is achieved by simply subdividing the grid into
logical P × Q × R (in 3D) chunks of equal size. AMG is
a highly synchronous and memory-access bound code. The
scalability tests were obtained with a fixed local problem grid
size per MPI process of 100×100×100 points.

– miniAMR. It is a proxy app for adaptive mesh refinement
(AMR), which is a frequently used technique for efficiently
solving partial differential equations (PDEs) [34]. It applies
a stencil calculation on a unit cube computational domain,
which is divided into blocks. This application also belongs
to the ECP proxy app collection and was implemented using
MPI. We used blocks with dimensions 8×8×8 and a maxi-
mum of 4 refinement levels. The test case we considered is

5http://proxyapps.exascaleproject.org/ecp-proxy-apps-suite

that of an expanding sphere, which closely mimics an explo-
sion. Blocks are refined along the boundary of the expanding
sphere.

– miniVite. It implements a parallel Louvain method for com-
munity detection, which is one of the most important graph
kernels used in scientific and social networking applications
for discovering higher order structures within a graph [35]. It
is also included in ECP proxy app collection. miniVite was
programmed using MPI and OpenMP. As input we used a
graph with 10% of the vertices of the well-known friendster
social network graph [36]. It consists of 6.6M vertices and
24.2M edges.

– MSAProbs. One basic step in many bioinformatics analyses
is the multiple sequence alignment (MSA). MSAProbs [37]
is a state-of-the-art tool to compute protein MSA based on
hidden Markov models. In this work we have considered
its MPI+OpenMP parallel implementation [38]. The input
dataset PF07085 [39] used in the tests consists of 975 se-
quences with an average length of 512.

14

1 2 4 8 16 20
Cores per node

102

103

T
im

e
(s

ec
)

-
lo

g
 s

ca
le IgnisHPC

MPI

(a) Times (strong scaling)

1 2 4 8 16 20
Cores per node

0

1

2

3

4

5

S
p

ee
d

u
p

IgnisHPC
MPI

(b) Speedup

Figure 20: Study of the scalability of LULESH (8 nodes).

1 2 4 8 12
Nodes - log scale

102

103

T
im

e
(s

ec
)

-
lo

g
 s

ca
le IgnisHPC

MPI

(a)

1 10 100 240
Cores - log scale

102

103

T
im

e
(s

ec
)

-
lo

g
 s

ca
le IgnisHPC

MPI

(b)

Figure 21: Study of the weak scalability of AMG (20 threads/cores per node) (a) and miniAMR (b).

6.3.1. Analysis and discussion
Next we carry out the analysis of the execution of the MPI-

based HPC applications within IgnisHPC. As mentioned previ-
ously, we will focus on two aspects. First, the performance dif-
ferences between running the HPC applications on the cluster
as native MPI tasks or using IgnisHPC. It is important to high-
light that is out of the scope of this paper to analyze the partic-
ular behavior of each MPI application in terms of performance
and scalability. This was extensively explained in the references
provided in the description paragraphs of Section 6.3. The sec-
ond key aspect is productivity. In our case we measured the
source lines of code (SLOC) of the applications. This metric
is very important since scientists will only adopt IgnisHPC to
execute MPI applications if porting them requires little effort.

Performance. Figure 20 shows the strong scaling results of
LULESH. Note that this application uses a hybrid MPI+OpenMP
approach. Performance differences between native MPI and
IgnisHPC are really small, always lower than 1.7%. Running
LULESH from IgnisHPC shows the same scalability trend than
the MPI native execution.

Weak scalability tests were run to evaluate AMG (MPI +

OpenMP) and miniAMR (MPI). Results are shown in Figures
21(a) and 21(b). In both cases also, the performance of Ig-
nisHPC comes close to that of its counterpart, the native MPI
implementation. The maximum performance difference is only
about 1.4% for both applications. In this way, for instance, the
execution times of miniAMR using all the cores in the cluster
were 520 and 517 seconds with native MPI and IgnisHPC, re-
spectively.

miniVite scalability results are displayed in Figure 22. The
behavior replicates the observations commented previously for
the other HPC applications. That is, running an MPI applica-

tion within the IgnisHPC framework achieves very similar per-
formance with respect to the native execution. In this particular
case, the maximum difference drops to only 0.2%. The same
scalability analysis applied to MSAProbs (Figure 23) produces
a maximum performance difference of 0.4%.

So we conclude that running MPI (and MPI+OpenMP) ap-
plications from IgnisHPC is as efficient as executing them na-
tively.

Productivity. As we explained in Section 5, running MPI ap-
plications in IgnisHPC requires some minimal modifications to
the original source code and adding a few lines to call the ap-
plication from the driver code. It is important to highlight that
most of these extra lines are devoted to parsing the arguments
of the MPI application. In any case, this is a very simple and
repetitive code as shown in the example of Figure 10, which
can be considered as boilerplate. We measure the SLOC us-
ing SLOCcount [40] of each original MPI application and its
counterpart adapted to IgnisHPC (see Table 5). The number of
extra lines, between brackets in the table, ranges only from 17
to 75. This demonstrates that integrating MPI applications and
libraries in IgnisHPC is a straightforward process, which is very
important for the HPC community since it is not necessary to
port MPI codes to a new API or programming model. There-
fore, IgnisHPC fulfills its design goal of unifying in a single
framework the benefits of HPC and Big Data applications.

7. Related Work

7.1. HPC and Containers
HPC workloads tend to be monolithic in nature so that each

component and its dependencies must be present for running or
compiling the code. In addition, if an update of any component

15

1 2 4 8 12
Nodes

103

104

T
im

e
(s

ec
)

-
lo

g
 s

ca
le IgnisHPC

MPI

(a) Times (strong scaling)

1 2 4 8 12
Nodes

0

2

4

6

8

10

S
p

ee
d

u
p

IgnisHPC
MPI

(b) Speedup

Figure 22: Study of the scalability of miniVite (20 threads/cores per node).

1 2 4 8 12
Nodes

102

103

104

T
im

e
(s

ec
)

-
lo

g
 s

ca
le IgnisHPC

MPI

(a) Times (strong scaling)

1 2 4 8 12
Nodes

0

2

4

6

8

S
p

ee
d

u
p

IgnisHPC
MPI

(b) Speedup

Figure 23: Study of the scalability of MSAProbs (20 threads/cores per node).

Application SLOC MPI SLOC IgnisHPC
LULESH 5,918 5,993 (+75)
AMG 65,154 65,197 (+43)
MiniAMR 9,958 9,987 (+39)
MiniVite 3,264 3,324 (+60)
MSAProbs 6,045 6,062 (+17)

Table 5: SLOC of the HPC applications.

is required, all modules will be affected. For this reason, the
most common difficulty faced by end-users when creating and
implementing scientific software is the installation and config-
uration of a framework with thousands of dependencies.

Containers are a good way to self-contain an application and
its dependencies in a controlled environment. Containers do
not interfere with each other and allow to be deleted or updated
without leaving any trace on the physical machine. They are an
alternative to virtual machines while maintaining a similar level
of isolation and showing a superior performance that in some
cases is almost identical to the one obtained when executing
natively on a real machine [41, 42].

IgnisHPC can be seen as an MPI application, so it can be ef-
ficiently executed inside containers as it was proven in several
works. For example, running MPI applications on a container-
ized cluster using Docker on a cluster [43] or in the Cloud [44],
or using Shifter [45] instead. Other works deal with the or-
chestration of Docker containers in an HPC environment. For
instance, Higgins et al. [46] implemented a script based on
SSH for the creation of an MPI environment inside a Docker
container. Unlike IgnisHPC, this approach requires root privi-
leges to modify the hosts configuration. Another paper intro-
duces Scylla [47], a framework for deploying MPI jobs within
Docker Containers using Apache Mesos. As explained in Sec-
tion 2, Apache Mesos requires an orchestration framework such

as Marathon or Singularity to be used. However, the authors, in-
stead of considering a third party framework, implemented an
ad-hoc solution. Their approach also requires root privileges.
We must highlight that IgnisHPC supports all the functionali-
ties included in Scylla without needing root permissions and is
not limited to work with Apache Mesos.

7.2. Spark and HPC applications

As a general-purpose framework, Spark has been widely
used for many scientific applications and algorithms. How-
ever, there are examples from different areas such as linear alge-
bra [48], genomics [49] or even data science [50] where Spark
does not obtain the expected performance.

One way to approach Big Data and HPC worlds is trying to
boost the performance of well-established Big Data technolo-
gies when running on HPC systems. For example, taking ad-
vantage of the Infiniband fast interconnection network [51] or
the standard HPC programming models such as MPI. We are
especially interested in those works that opt for the latter ap-
proach. For instance, Anderson et al. [52] try to combine Spark
and MPI. They offload computations to an MPI environment
from within Spark in such a way that Spark and MPI tasks run
at the same time, using a socket-based implementation for ef-
ficient data exchange between processes. In their approach the
results of the MPI processing are copied back to persistent stor-
age (HDFS), and then into Spark for further processing. As a
consequence, for those applications that require few iterations
and/or less work per iteration, there is a degradation in the per-
formance. However, their approach shows a good behavior with
several graph and machine learning applications that do not re-
quire a lot of data movement between Spark and MPI environ-
ments.

16

A similar solution can be found in [53]. They introduce Al-
chemist, a TCP socket-based implementation for inter-process
communication between Spark and MPI. Alchemist was de-
signed to call MPI-based libraries from Spark using the Scala
programming language. Like previous work, due to the use of
two type of tasks for MPI and Spark, it is always necessary to
keep two copies of the same data. In addition, moving data
between Spark and MPI processes is costly since TCP sock-
ets are often a slower alternative with respect to shared mem-
ory. Therefore, this approach is also limited to computationally-
intensive applications for which the cost associated with data
transfers is negligible when compared to the overhead that would
have been incurred by Spark.

Finally, there are several related works of the same research
group that make a better integration between Spark and HPC
technologies. In [54], Spark and MPI tasks share the same pro-
cess, which removes the overhead caused by the data transfers.
Python is used as programming language since Spark and MPI
has an interface for this language. However, as we explained
in [8], Python is not natively supported by Spark which causes
an important degradation in its overall performance. IgnisHPC
overcomes that limitation using native executors for each sup-
ported programming language.

In their next works, the authors introduce Spark-MPI [55,
56], a hybrid platform that combines Spark and MPI taking
advantage of the MPI Exascale Process Management Interface
(PMIx). A Spark-MPI application consists of a driver launched
by Spark and a set of processes launched by MPI. These MPI
processes connect to the Spark driver as workers, and they will
be able to execute both RDD and MPI functions. Note that us-
ing MPI routines in Spark-MPI only makes sense when the data
is processed using mapPartitions. That is the only way that
Spark provides to work on a complete partition instead of on
each element of the partition. The authors showed the benefits
of Spark-MPI with deep learning algorithms and ptychographic
and tomographic applications. However, Spark-MPI has sev-
eral limitations that we detailed next:

– Spark-MPI requires a hybrid environment for Spark and
MPI, which will be configured with their respective re-
source managers. For example, Mesos or Yarn for Spark
and Hydra or Slurm for MPI. It is hard to find a sys-
tem configured this way since resource managers can-
not share the available hardware resources. Moreover,
a Spark-MPI job should queue for both Spark and MPI
queuing systems, and the requested resources may not be
granted at the same time. On the other hand, IgnisHPC
is a single application so the previous problems do not
apply.

– Due to its particular architecture and how Spark execu-
tors are launched, Spark-MPI loses the fault tolerance
system provided by Spark. As a consequence, after any
failure in the executors, all the job is lost. On the contrary,
as we demonstrated in [8], Ignis and IgnisHPC are able to
recover after a failure of a cluster node or some of the ex-
ecutors. If some data is lost, IgnisHPC has enough infor-
mation about how it was derived in such a way that only

those operations needed to recompute the corresponding
portion of data are performed.

– Spark-MPI can only be used with Python codes (PyS-
park). Although communications are performed using
MPI, Spark-MPI would experience the same degradation
in the performance observed for Spark when executing
Python applications (see Section 6.2.1). Spark suffers
performance issues since it requires sharing data outside
the JVM through system pipes. Therefore, Spark-MPI
performance results would be similar to those obtained
by Spark when running Python codes (see, for example,
the Minebench results in Figure 14). On the other hand,
although the execution of pure MPI codes in Spark-MPI
is discussed, the vast majority of MPI applications are
implemented in C/C++ for which Spark and Spark-MPI
does not have native support.

– Spark-MPI is limited to access one partition at the same
time per executor. Partition size is restricted to a max-
imum of 2 GB, which is related to the use of JVMs in
Spark. Therefore, additional executors should be created
in case more data is necessary, degrading the overall I/O
performance. This restriction only applies to IgnisHPC
for Java applications, but not for Python and C/C++.

8. Conclusions

In this work we have introduced a new computing frame-
work named IgnisHPC6 to fill the gap between Big Data and
HPC languages and programming models. IgnisHPC supports
the combination of JVM and non-JVM-based languages in the
same application (currently, Java, Python and C/C++). It was
designed to take advantage of MPI for communications, which
allows the framework to execute efficiently MPI applications
and libraries. As a consequence, the MPI-based HPC scien-
tific applications do not have to be ported to a new API or
programming model. Moreover, it is possible to combine in
the same multi-language code HPC tasks (using MPI) with Big
Data tasks (using MapReduce operations).

The experimental evaluation demonstrated the benefits of
our proposal in terms of performance with respect to the de-
facto standard for Big Data processing, Spark, and our first
prototype of multi-language framework, Ignis. In particular, Ig-
nisHPC is from 1.1× to 3.9× faster than Spark, and about 1.2×
faster than Ignis. In the same way, we observed that running
MPI and MPI+OpenMP applications in IgnisHPC is as efficient
as executing them natively. Therefore, thanks to IgnisHPC we
are merging both Big Data and HPC software ecosystems in
just one execution environment.

References

[1] S. Heldens, et al., The Landscape of Exascale Research: A Data-Driven
Literature Analysis, ACM Comput. Surv. 53 (2) (2020).

[2] T. White, Hadoop: The Definitive Guide, 4th Edition, O’Reilly Media,
Inc., 2015.

6It is publicly available at https://github.com/ignishpc

17

[3] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, Spark:
Cluster Computing with Working Sets, in: Proc. of the 2nd USENIX
Conf. on Hot Topics in Cloud Computing (HotCloud), 2010, pp. 10–10.

[4] M. Asch, et al., Big data and extreme-scale computing: Pathways to
Convergence-Toward a shaping strategy for a future software and data
ecosystem for scientific inquiry, IJHPCA 32 (4) (2018) 435–479.

[5] J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large
Clusters, in: Symposium on Operating System Design and Implementa-
tion, 2004, pp. 10–10.

[6] M. Ding, et al., More Convenient More Overhead: The Performance
Evaluation of Hadoop Streaming, in: Proc. of the ACM Symposium on
Research in Applied Computation, 2011, pp. 307–313.

[7] Jython, http://www.jython.org/, [Online; accessed April, 2019].
[8] C. Piñeiro, R. Martı́nez-Castaño, J. C. Pichel, Ignis: An efficient and scal-

able multi-language Big Data framework, Future Generation Computer
Systems 105 (2020) 705–716.

[9] B. Alverson, E. Froese, L. Kaplan, D. Roweth, Cray XC series network,
Cray Inc., White Paper WP-Aries01-1112 (2012).

[10] D. De Sensi, S. Di Girolamo, K. H. McMahon, D. Roweth, T. Hoefler,
An In-Depth Analysis of the Slingshot Interconnect, in: Proceedings of
the Int. Conf. for High Performance Computing, Networking, Storage and
Analysis (SC), 2020.

[11] Y. Ajima, et al., The Tofu Interconnect D, in: IEEE Int. Conference on
Cluster Computing (CLUSTER), 2018, pp. 646–654.

[12] MPICH, https://www.mpich.org, [Online; accessed October, 2021].
[13] Open-MPI, https://www.open-mpi.org/, [Online; accessed October,

2021].
[14] B. Hindman, et al., Mesos: A Platform for Fine-Grained Resource Shar-

ing in the Data Center, in: Proc. of the 8th USENIX Conf. on Networked
Systems Design and Implementation, 2011, p. 295–308.

[15] HashiCorp, Nomad: workload orchestration made easy, https://www.
nomadproject.io/, [Online; accessed October, 2021].

[16] D. Merkel, Docker: lightweight linux containers for consistent develop-
ment and deployment, Linux journal 2014 (239) (2014) 2.

[17] Apache Marathon, https://mesosphere.github.io/marathon/.
[18] Apache Singularity, https://getsingularity.com/.
[19] J. T. Kukunas, V. Gopal, J. Guilford, S. Gulley, A. van de Ven, W. Feghali,

High Performance ZLIB Compression on Intel Architecture Processors,
Tech. rep., Intel (2014).

[20] M. Zaharia, et al., Resilient Distributed Datasets: A Fault-tolerant Ab-
straction for In-memory Cluster Computing, in: Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementa-
tion, USENIX Association, 2012, pp. 2–2.

[21] M. de Bayser, R. Cerqueira, Integrating MPI with Docker for HPC, in:
IEEE Int. Conference on Cloud Engineering (IC2E), 2017, pp. 259–265.

[22] I. Karlin, et al., Exploring Traditional and Emerging Parallel Program-
ming Models Using a Proxy Application, in: 27th Int. Symposium on
Parallel and Distributed Processing, 2013, pp. 919–932.

[23] V. K. Vavilapalli, et al., Apache Hadoop YARN: Yet Another Resource
Negotiator, in: Proc. of the 4th Annual Symposium on Cloud Computing,
ACM, 2013, pp. 5:1–5:16.

[24] J. Shi, et al., Clash of the Titans: MapReduce vs. Spark for Large Scale
Data Analytics, Proc. VLDB Endowment 8 (13) (2015) 2110–2121.

[25] S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System (2008).
URL http://bitcoin.org/bitcoin.pdf

[26] R. C. Merkle, Protocols for public key cryptosystems, in: IEEE Sympo-
sium on Security and Privacy, 1980, pp. 122–122.

[27] X. Li, P. Lu, J. Schaeffer, J. Shillington, P. S. Wong, H. Shi, On the Ver-
satility of Parallel Sorting by Regular Sampling, Parallel Computing 19
(1993) 1079–1103.

[28] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, Y. Zheng, NUS-WIDE: A
Real-world Web Image Database from National University of Singapore,
in: Proc. of the ACM CIVR, 2009, pp. 48:1–48:9.

[29] J. Leskovec, A. Krevl, SNAP Datasets: Stanford Large Network Dataset
Collection, http://snap.stanford.edu/data (2014).

[30] X. Meng, et al., MLlib: Machine Learning in Apache Spark, The Journal
of Machine Learning Research 17 (1) (2016) 1235–1241.

[31] R. S. Xin, J. E. Gonzalez, M. J. Franklin, I. Stoica, GraphX: A Resilient
Distributed Graph System on Spark, in: 1st International Workshop on
Graph Data Management Experiences and Systems, ACM, 2013.

[32] I. Karlin, J. McGraw, J. Keasler, B. Still, Tuning the LULESH Mini-app

for Current and Future Hardware, Tech. rep. (2013).
[33] V. E. Henson, U. M. Yang, BoomerAMG: A parallel algebraic multigrid

solver and preconditioner, Applied Numerical Mathematics 41 (1) (2002)
155–177.

[34] A. Sasidharan, M. Snir, MiniAMR - A miniapp for Adaptive Mesh Re-
finement, Tech. rep. (2016).

[35] S. Ghosh, M. Halappanavar, A. Tumeo, A. Kalyanaraman, A. H.
Gebremedhin, MiniVite: A Graph Analytics Benchmarking Tool for
Massively Parallel Systems, in: IEEE/ACM Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems
(PMBS), 2018, pp. 51–56.

[36] J. Yang, J. Leskovec, Defining and Evaluating Network Communities
based on Ground-truth (2012). arXiv:1205.6233.

[37] Y. Liu, B. Schmidt, D. L. Maskell, MSAProbs: multiple sequence align-
ment based on pair hidden Markov models and partition function posterior
probabilities, Bioinformatics 26 (16) (2010) 1958–1964.

[38] J. González-Domı́nguez, Y. Liu, J. Touriño, B. Schmidt, MSAProbs-MPI:
parallel multiple sequence aligner for distributed-memory systems, Bioin-
formatics 32 (24) (2016) 3826–3828.

[39] J. Mistry, et al., Pfam: The protein families database in 2021, Nucleic
Acids Research 49 (D1) (2020) D412–D419.

[40] D. Wheeler, SLOCCount, http://www.dwheeler.com/sloccount,
[Online; accessed November, 2021].

[41] T. Adufu, J. Choi, Y. Kim, Is container-based technology a winner for
high performance scientific applications?, in: 17th Asia-Pacific Network
Operations and Management Symp. (APNOMS), 2015, pp. 507–510.

[42] M. T. Chung, N. Quang-Hung, M.-T. Nguyen, N. Thoai, Using Docker in
high performance computing applications, in: IEEE 6th Int. Conference
on Communications and Electronics (ICCE), 2016, pp. 52–57.

[43] L. Benedicic, F. A. Cruz, A. Madonna, K. Mariotti, Portable, high-
performance containers for HPC (2017). arXiv:1704.03383.

[44] A. J. Younge, K. Pedretti, R. E. Grant, R. Brightwell, A Tale of Two Sys-
tems: Using Containers to Deploy HPC Applications on Supercomputers
and Clouds, in: IEEE Int. Conference on Cloud Computing Technology
and Science (CloudCom), 2017, pp. 74–81.

[45] P. Saha, A. Beltre, P. Uminski, M. Govindaraju, Evaluation of Docker
Containers for Scientific Workloads in the Cloud, in: Proc. of the Practice
and Experience on Advanced Research Computing, 2018.

[46] J. Higgins, V. Holmes, C. Venters, Orchestrating Docker Containers in
the HPC Environment, in: HPC. Lecture Notes in Computer Science, vol
9137., Springer Int. Publishing, 2015, pp. 506–513.

[47] P. Saha, A. Beltre, M. Govindaraju, Scylla: a Mesos Frame-
work for Container Based MPI Jobs, CoRR abs/1905.08386 (2019).
arXiv:1905.08386.

[48] A. Gittens, et al., Matrix factorizations at scale: A comparison of scien-
tific data analytics in Spark and C+MPI using three case studies, in: IEEE
Int. Conf. on Big Data, 2016, pp. 204–213.

[49] J. M. Abuı́n, N. Lopes, L. Ferreira, T. F. Pena, B. Schmidt, Big Data in
metagenomics: Apache Spark vs MPI, Plos One 15 (10) (2020) 1–20.

[50] M. Saxena, S. Jha, S. Khan, J. Rodgers, P. Lindner, E. Gabriel, Com-
parison of MPI and Spark for Data Science Applications, in: IEEE Int.
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
2020, pp. 682–690.

[51] X. Lu, et al., High-Performance Design of Hadoop RPC with RDMA
over InfiniBand, in: 42nd Int. Conference on Parallel Processing, 2013,
pp. 641–650.

[52] M. Anderson, et al., Bridging the Gap between HPC and Big Data Frame-
works, Proc. VLDB Endow. 10 (8) (2017) 901–912.

[53] A. Gittens, et al., Accelerating Large-Scale Data Analysis by Offloading
to High-Performance Computing Libraries Using Alchemist, in: Proc.
of the 24th ACM SIGKDD Int. Conference on Knowledge Discovery &
Data Mining, 2018, p. 293–301.

[54] N. Malitsky, Bringing the HPC reconstruction algorithms to Big Data
platforms, in: NY Scientific Data Summit (NYSDS), 2016, pp. 1–8.

[55] N. Malitsky, et al., Building near-real-time processing pipelines with the
Spark-MPI platform, in: NY Scientific Data Summit (NYSDS), 2017, pp.
1–8.

[56] N. Malitsky, R. Castain, M. Cowan, Spark-MPI: Approaching the Fifth
Paradigm of Cognitive Applications (2018). arXiv:1806.01110.

18

