
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Real-Time Focused Extraction of Social
Media Users
RODRIGO MARTÍNEZ-CASTAÑO, DAVID E. LOSADA and JUAN C. PICHEL
CiTIUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain

Corresponding author: Juan C. Pichel (e-mail: juancarlos.pichel@usc.es).

This work has been supported by MICINN (RTI2018-093336-B-C21, PLEC2021-007662), Xunta de Galicia (ED431G/08,
ED431G-2019/04, ED431C 2018/19 and ED431F 2020/08) and European Regional Development Fund (ERDF).

ABSTRACT In this paper, we explore a real-time automation challenge: the problem of focused extraction
of Social Media users. This challenge can be seen as a special form of focused crawling where the main
target is to detect users with certain patterns. Given a specific user profile, the task consists of rapidly
ingesting Social Media data and early detecting target users. This is a real-time intelligent automation task
that has numerous applications in domains such as safety, health or marketing. The volume and dynamics of
Social Media contents demand efficient real-time solutions able to predict which users are worth to explore.
To meet this aim, we propose and evaluate several methods that effectively allow us to harvest relevant
users. Even with little contextual information (e.g., a single user submission), our methods quickly focus on
the most promising users. We also developed a distributed microservice architecture that supports real-time
parallel extraction of Social Media users. This modular architecture scales up in clusters of computers and
it can be easily adapted for user extraction in multiple domains and Social Media sources. Our experiments
suggest that some of the proposed prioritisation methods, which work with minimal user context, are
effective at rapidly focusing on the most relevant users. These methods perform satisfactorily with huge
volumes of users and interactions and lead to harvest ratios 2 to 9 times higher than those achieved by
random prioritisation.

INDEX TERMS Big Data, Distributed Systems, Focused User Extraction, Supervised Learning, Informa-
tion Retrieval, Real-Time Processing, Social Media

I. INTRODUCTION

Focused Crawling techniques are oriented to extracting web
pages that satisfy a given property or topic of interest. This is
typically supported by supervised learning technology (e.g.,
text classifiers) that help to decide what links are worth to
explore. Nowadays, it is feasible to run crawling tools that
efficiently extract on topic contents from massive repositories
such as the web or certain Social Media (SM) sources.
Focused Crawling was first introduced in [1] and coined
in [2]. It has been intensely discussed in the literature [3],
[4] and it plays a fundamental role, for example, in building
vertical search engines [5]. Nevertheless, to the best of our
knowledge, the real-time extraction of SM users that are
relevant to a target topic has received little attention. In this
paper, we make a first attempt to fill this gap. Many studies
in the literature have proposed different alternatives to crawl
or extract SM contents. However, the notion of user is often
ignored and most existing methods do not try to anticipate

which users are worth to explore. We claim that we need real-
time technology that rapidly ingests SM contents and, given
little context (e.g., the last user’s SM submission), moves
quickly towards relevant users. We envisage intelligent forms
of user crawling that aggregate the history of the target users
with little delay and do not overload the system with users
that are likely non-relevant. As reported in our Related Work
section, some user-oriented SM methods exist but they are
oriented to extract samples of users (rather than massively
analysing the entire SM site in real-time) or do not implement
any form of user prioritisation.

Given a certain SM platform, we formally define the
task of Focused User Extraction (FUE) and investigate the
efficiency and effectiveness issues involved in extracting
target users. FUE has important applications in numerous
domains. The rapid growth of SM platforms and their content
production dynamics demand Big Data solutions able to
(1) efficiently ingest contents in real-time, (2) quickly react

VOLUME 4, 2016 1

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

to changes, and (3) intelligently anticipate which users are
worth to explore.

This task requires methods able to perform user extraction
from large repositories of SM data. By smartly prioritis-
ing SM users who are of potential interest, we can early
identify target individuals and, thus, support a number of
risk assessment tasks such as grooming detection, criminal
recruitment or early identification of psychological problems.
This requires not only large-scale technologies but also smart
predictive components that continuously rank users based on
real-time evidence (e.g., last SM post).

In popular SM sources, we constantly obtain new pieces of
evidence. Each new SM post is typically short and gives only
a partial description and context of the author of the post.
The user crawling process needs to evaluate this real-time
evidence and, for example, decide whether or not to crawl
the entire user history. This prediction task resembles when
focused web crawlers see a link to a new page and have to
decide whether or not to download the linked page. However,
in FUE, the full exploration of a given user often requires tens
or hundreds of requests to the SM servers and, thus, effective
prioritisation of users becomes crucial.

Taking only into account the partial user context allows us
to optimise the existing resources and extract the maximum
number of relevant users per unit of time. In this paper, we
propose several user prioritisation methods that guide this
exploration process and we study which of these methods
lead to high-speed FUE.

In order to extract and process huge amounts of data in real
time, it is necessary to design and implement an adequate
architecture that can scale up horizontally in a cluster of
computers. In this regard, we contribute here by developing
an adaptable distributed crawling architecture based on Cate-
nae1 [6]–[8], Kafka [9] and Docker [10]. The architecture
was developed to support FUE but it can be easily adapted to
other scenarios such as real-time query-based filtering, topic
extraction or summarisation.

Summing up, the paper describes the practical application
of user prioritisation methods in real-time intelligent extrac-
tion of SM users. The main contributions of this paper are:

– A formal definition of the Focused User Extraction
(FUE) task and a systematic analysis of the main ef-
fectiveness and efficiency issues involved.

– Several heuristic-based methods that consistently in-
crease the harvest ratio of target users and a comprehen-
sive study of their relative importance under real-time
SM experiments. To the best of our knowledge, this is
the first study that analyses the ability of a set of user-
related variables in user crawling prioritisation.

– A modular SM crawler that performs real-time extrac-
tion and exploration of SM communities and user pro-
files. An experimental evaluation performed on Reddit
demonstrates the real-time processing capabilities of
the crawler. The competing methods are benchmarked

1https://github.com/catenae

against each other under real-time experiments where
the methods run in parallel. In this way, the relative
benefits of each prioritisation method are not affected
by seasonal factors.

– A Docker-based distributed architecture that can be
easily deployed and scales by increasing the number
of instances of each module in a cluster of computers
(publicly available2 under a Free Software license).

The paper is structured as follows. Section II describes
the methodology followed by our crawler to extract SM
contents and rank users following different strategies. Section
III discusses the architecture of the system, its modules, con-
nections and the scalability of the proposed solution. Sections
IV and V illustrate how different user extraction methods
run and evolve under real-time experiments. In Section VI
the adaptability of our approach to other Social Media is
discussed. Section VII discusses related work and, finally,
Section VIII contains the main conclusions of this study.

II. METHODOLOGY
A. FOCUSED USER EXTRACTION
Given a profile of interest that defines target users (target user
profile), the relevance of each newly detected user has to be
estimated. If possible, this needs to be done using minimal
contextual information. For example, crawling the entire
history of user posts, even if possible, introduces a significant
overhead on the user crawling process. And many of those
users might be non-relevant. An effective user crawler must
process light volumes of user data (e.g., last post) and only
make a full extraction of user’s data for those users that seem
to be on-target. This represents a two-stage process in which
SM web pages are constantly explored to extract candidate
usernames (e.g., from web pages with the newest threads
of user posts) and the user crawler process predicts which
candidate users are worth to explore (i.e., which users are
fully explored).

The target user profile can be represented with a driving
query or with a set of examples (users who fulfil the target
profile and which can be used to build a user classifier). Given
a Social Media platform, the aim of the task is to extract
as many target users per unit of time as possible. Effective
algorithms that solve this problem should somehow prioritise
those users that are presumably on target and optimise the use
of available resources.

There are two main useful metrics to evaluate the perfor-
mance of this task. First, the harvest ratio (HR), or precision,
as the number of relevant users extracted divided by the total
number of extracted users. A user is deemed as relevant if it is
cataloged as so with high confidence by a reference classifier.
This reference classifier represents the target profile of users.
This means that the entire user profile –concatenation of all
their posts– , when passed to the classifier, exceeds a certain
threshold of the classifier (prediction probability higher than
0.9 in the case of the logistic regression classifier). A second

2https://github.com/blind-sniper

2 VOLUME 4, 2016

https://github.com/catenae
https://github.com/blind-sniper

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

performance metric is the extraction speed expressed as the
number of extracted users per unit of time.

There is a huge number of active users on Social Media. In
realistic scenarios, where hardware is limited, extracting and
processing everything would be unfeasible due to the mas-
sive volume of contents produced in real-time. Furthermore,
there are usually some access restrictions imposed by the
source (e.g., robots.txt constraints). As a consequence,
lightweight exploration needs to be performed in order to
extract SM users. A crucial issue is how to estimate user’s rel-
evance from the little context available. Note also that, even
if we have extensive hardware resources and computational
power at our disposal, a random or arbitrary exploration of
SM users is not pertinent. Such näive extraction of users
slows down the identification of relevant users and, thus,
cannot support the early identification of target users.

Typically, when exploring a Social Media site looking for
new users, candidate usernames can be found on pages that
list users’ descriptions or on pages that contain a thread of
user’s posts (e.g., the entry page of a given user commu-
nity or forum). The available posts often include a title or
description, possibly a snippet, information about the author
and other relevant social properties (such as the number of
replies, votes, etc.). These types of listings serve as seed
pages for extracting candidate users. Among the available
evidence that can be used to guide the crawler, we have
elements such as the title or the text of the last user’s post,
the date and time of publication, the number of comments,
the score or the number of times a post has been liked, the
number of times the post has been shared or re-posted, etc. In
this paper, we study which of the available pieces of evidence
are predictive of relevance in order to guide the crawling
process.

B. FOCUSED USER EXTRACTION ON REDDIT

Reddit is a Web platform where users submit content (posts)
such as text, images or links and other users can comment
and vote for or against them. Comments, at the same time,
can also be commented and voted. The platform is subdivided
into communities (subreddits) focused on specific topics. It is
currently ranked in Alexa [11] as the 7th website with more
traffic in the United States and 19th globally. The number of
average daily active users is higher than 52 million, and there
are more than 100,000 active communities [12].

We have chosen Reddit as our reference platform for
experimenting with FUE algorithms. This decision was based
on several criteria. First, it is one of the three largest Social
Media platforms with increasing popularity. Second, the di-
versity of users and communities make Reddit a perfect place
for user mining. Third, its terms of service state their open
philosophy and willingness to support external applications
or services connected to Reddit. This allows us to easily
conduct crawling research on this platform. Furthermore, the
lessons learned from our study can be potentially transferred
to other social networks.

The crawling process is composed of two main steps. First,
the crawler has to choose the next subreddit from which
to explore the latest posts and comments. This subreddit
exploration step constantly detects new usernames that are
candidates to be fully explored. The second step consists of
ranking the candidate users based on the available evidence.
To meet this aim, a user ranking is built (using a number of
user prioritisation methods) and the top user is selected and
fully explored (all his/her submissions are collected).

The first stage (subreddit exploration) works with a sub-
reddit frontier that stores the subreddit names that have been
found so far. Initially, the main frontpage of Reddit is used
as a seed to extract some subreddit names that are stored in
the frontier. This frontier grows during the crawling process
(any web page retrieved from Reddit potentially contains
references to unseen subreddits) and the selection of the next
subreddit is done randomly from the subreddits available in
the frontier.

The second stage consists of choosing the next user to be
analysed in depth. When exploring subreddits, new users are
discovered and ranked according to different methods (see
below). After a user is fully explored (all his/her submissions
are retrieved), he/she is marked as processed on the list of
known users and, thus, he/she will not be processed again.

Algorithm 1 describes our focused user crawler in pseu-
docode. There are four main procedures. First, during the
Initialisation, the Reddit’s front page is downloaded. This
page is a list of the most recent posts on the platform from
any subreddit. The names of the subreddits are collected
and used as seeds. In addition, the features of the posts (for
example, title or number of comments) are extracted. These
features are used to update the ranking of candidate users
(according to different methods, as we will explain below).
After obtaining the seeds, three tasks are launched in parallel:

– Community Exploration. A subreddit is picked at
random from the list of known communities. The front
page of the selected subreddit is visited, extracting the
latest posts and their features. The user ranking is up-
dated by aggregating the new features with the existing
ones.

– User Extraction. The top user from the user ranking is
selected. All the available submissions and comments
posted by this user are extracted from the SM platform.
Note that this requires several calls to Reddit and, thus,
the focused user crawler aims at extracting only those
users who are likely relevant.

– Evaluation. All the extracted users are queued to eval-
uate their relevance. To meet this aim, we employ a
user classifier. This classification tool analyses the full
user information and determines whether or not the
user is on-topic. In this way, this evaluation component
assesses whether or not the extraction of the entire
user history was worthwhile. This evaluation strategy
follows [2], [13], where the relevance of the extracted
pages is evaluated with a classifier. The main reason to
estimate relevance in this way is that there are practical

VOLUME 4, 2016 3

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Algorithm 1 Pseudo-code of the focused user crawler for Reddit
1: procedure INITIALISATION
2: if length of subreddit_list == 0 then
3: html_code = load_url(′′https://reddit.com/r/all/new/′′)
4: subreddits = extract_subreddits(html_code)
5: for each subreddit in subreddits do
6: if subreddit not in subreddit_frontier then
7: subreddit_frontier.add(subreddit)
8: posts_features = extract_posts_features(html_code)
9: for each post_features in posts_features do

10: users_ranking.update_user_features(post_features)
11: do in parallel
12: COMMUNITY EXPLORATION()
13: USER EXTRACTION()
14: EVALUATION()
15:
16: procedure COMMUNITY EXPLORATION
17: while true do
18: selected_subreddit = pick_at_random(subreddit_frontier)
19: html_code = load_url(′′https://reddit.com/r/′′ + selected_subreddit + ′′/new/′′)
20: posts_features = extract_posts_features(html_code)
21: for each post_feature in posts_features do
22: users_ranking.update_user_features(post_features)
23:
24: procedure USER EXTRACTION
25: while true do
26: selected_user = users_ranking.get_first_user()
27: html_code = load_url(′′https://reddit.com/user/′′ + selected_user)
28: user_posts = extract_posts(html_code)
29: for each user_post in user_posts do
30: subreddit_frontier.add(user_post[′′subreddit′′])
31: users_posts_to_evaluate.add(user_posts)
32:
33: procedure EVALUATION
34: while true do
35: user_posts = users_posts_to_evaluate.get_first()
36: probability = classification_model.predict(user_posts)
37: if probability > THRESHOLD then
38: positive_users.add(user_posts)
39: else
40: negative_users.add(user_posts)

impediments to perform a manual analysis of thousands
of texts from hundreds of thousands of users.

We now make a brief discussion on the computational
complexity involved in the procedures described above:

– Community Exploration: The community exploration
procedure is quite lightweight. For each subreddit, it
gets the subreddit’s page of new contents, extracts some
metadata from the available posts and updates some
user’s features. The time complexity of this procedure
is O(s), where s is the number of communities or sub-
reddits. With proper data storage structures, the cost of
choosing a random subreddit from the subreddit frontier
(line 18) and updating user’s features (lines 21-22) do
not add further complexity to the process.

– User Extraction: The computational load of the user
extraction procedure grows linearly with the number of
users and, for each user, the user’s posts available at the
user’s frontpage need to be crawled and added to the

corresponding data structures. This means that the time
complexity of this procedure is O(u · pavg), where u
is the number of users and pavg is the mean number
of posts published in the user’s frontpage. Observe
that, having proper data storage structures, the costs
of extracting the next user from the available list of
users (line 26), incorporating the post’s subreddit to the
subreddit frontier (line 30), and incorporating the user’s
posts to the evaluation’s data structure (line 31) can be
considered negligible.

– Evaluation: This procedure essentially consists of pass-
ing users through the classification model. The con-
struction of the classifier from (external) training data
is not part of the crawling process (the crawling process
simply reads the trained classifier and the text vectorizer
from disk). The text vectorizer processes the user’s
posts and produces a numerical representation that is
then passed to the classifier. We work with a lightweight

4 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

 new model

 posts Reddit

 user request

user content

 user

 user

USER
EXTRACTOR

 classified user
contentUSER

CLASSIFIER

 user features

USER
UPDATER

subreddits frontier
 subreddits

seen posts

subreddit request

 user features

initialisation subreddits

post ids

SUBREDDIT
EXPLORER

subreddit

SUBREDDIT
CHOOSER

user

USER
CHOOSER

 subreddits

 subreddits

SUBREDDIT
STORER

 new model

 new model

 new model

MODEL
TRAINER

 top user of the rank

users ranking

user features

BATCH
UPDATER

Basic module

Advanced module

Database

FIGURE 1. Simplified architecture diagram of the real-time focused user crawler for Reddit.

classifier (Logistic regression, see section IV-A) whose
prediction cost grows linearly with the number of fea-
tures. The number of features depends on the number
of unique words in the training corpus and it is often
larger than the number of words in the user’s posts. As
a consequence, the time complexity essentially depends
on the number of users and the number of classification
features: O(u · ft), where u is the number of users
and ft is the number of classification features, which is
bounded the size of the vocabulary of the training col-
lection. Again, with proper storage structures, the cost
of extracting the first user (line 35) and incorporating
the user to the positive or negative lists (lines 38-40) is
insignificant.
In terms of space complexity, the size of subreddit fron-
tier is bounded by the number of available subreddits
(less than 200k) and, in any case, we only need to store a
string for each subreddit (the name). The users’ features
and posts demand more space but the crawling process,
if needed, can remove the features and posts of the users
who have been already passed to the classifier.
Note also that community exploration, user extraction
and evaluation run in parallel (lines 11-14) and, further-
more, the operation of each of these three procedures
can be easily parallelized. As argued in the next sec-
tion, depending on the load of each procedure, we can
add more computational resources (e.g., to do parallel
extraction of multiple users).

III. REAL-TIME CRAWLING ARCHITECTURE

The focused user crawler is composed of multiple microser-
vices, designed to facilitate the scalability of the system when

running on a cluster of computers. Modules are intercon-
nected to form an execution graph built on Catenae [6]–[8],
a Python library for easy development of scalable stream
execution graphs. Catenae uses the Kafka message broker
to interconnect different microservices. Catenae-based sys-
tems can scale up horizontally by increasing the number of
instances of any microservice without further configuration.

Our architecture permits the deployment of this focused
crawler in infrastructures where dynamic resources can be
configured, such as computing clouds (e.g., Amazon Web
Services, Microsoft Azure, Google Cloud Platform, Alibaba
Cloud). In addition, when few hardware resources are avail-
able, the crawler can scale up or down without interrupting
its execution. Due to this distributed architecture, the focused
user crawler can be simply scaled by augmenting the number
of instances (e.g., if there is a bottleneck in one of the
modules). The main modules and connections of the system
are shown in Figure 1. The modules of the focused user
crawler for Reddit are explained below:

– SUBREDDIT EXPLORER. At this stage, subreddits are
requested to the Subreddit Chooser through RPC (Re-
mote Procedure Call). When a subreddit is assigned,
this module explores it by extracting the last posts and
comments. For each submission, it extracts the available
features and sends them to a User Updater instance
(for example, if the crawler prioritises users based on
the number of votes of the user submissions, then any
new update on the user’s votes is handled by the User
Updater). When initialising the system, the Subreddit
Explorer module extracts the subreddits of the texts
available under /all, a pseudo-community that holds
together the posts from all communities. Note that, at

VOLUME 4, 2016 5

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

the beginning of the process, there is no knowledge
on which subreddits are more promising (potentially
contain more on-topic users) and, thus, we need to start
from a general page of the platform.

– SUBREDDIT CHOOSER. This module is responsible
for selecting a new subreddit to be sent to the subreddit
explorers. In this work, we experiment with a random
selection of subreddits but the platform can easily im-
plement more sophisticated selection methods.

– USER UPDATER. The User Updater is responsible for
updating the user features that guide the focused crawl-
ing process. For example, it averages, for every user, the
number of comments in his/her posts. A full description
of user features and related requirements to the User
Updater module are given in Section IV.

– USER EXTRACTOR. The User Extractor instances re-
quest users to the User Chooser module and extract the
maximum possible number of user texts3. The extracted
content is sent to the User Classifier, which evaluates the
performance. Additionally, the subreddits discovered
during this process are sent to the Subreddit Storer.

– USER CHOOSER. This module handles the selection of
new users to be processed (according to the user priori-
tisation process that guides the focused crawler). User
extractors invoke the User Chooser module through
RPC once they finish the extraction of a user. Since
the new users are requested only when needed, the user
selection is coherent with the updated ranking state in
every moment. The User Chooser assigns a unique user
for each user extractor. It also marks the selected users
as processed in order to avoid repeated processing.

– USER CLASSIFIER. The main goal of this module is to
evaluate the performance of the focused user crawler. It
receives all the available texts for every extracted user,
classifies the user and stores the probability provided by
the user classifier.

– SUBREDDIT STORER. In this phase, the previously
unseen subreddit names are stored in the database.
It receives new subreddits from a Subreddit Explorer
instance during the initialisation and from the User
Extractor instances.

– STATS DUMPER. This module is connected to all the
other modules and stores events with information re-
lated to the real-time execution. Every event is times-
tamped, so the behaviour of the system in several di-
mensions can be easily analysed during or after the
execution. This module is not represented in Figure 1
due to its number of interconnections.

– MODEL TRAINER. This module is responsible for
training the user classifier. In our initial experiments,
the user classifier is built once (from external data) and
remains unchanged thereafter.

– BATCH UPDATER. This module is needed for one of

3In our experiments, we respect Reddit’s robots.txt and, thus, each
request gets a maximum of two hundred texts (posts and comments).

the advanced prioritisation methods detailed in Sec-
tion V. It updates user-related data after learning new
user classification models.

MongoDB [14] is used as a storage system and for manag-
ing the rankings. Aerospike [15], a memory-based key-value
store, is used to avoid processing repeated posts during the
crawling process.

IV. BASIC PRIORITISATION METHODS

In our attempt to early identify target users during crawling,
we have defined several methods to guide the FUE process.
Standard focused crawlers employ a number of strategies
when, for example, they get a new link and they need to
predict whether it is worth to download the linked web page.
In FUE, the available evidence is different and, thus, we need
to design new strategies for prioritising the users that are
found. These methods work with a number of features that
are available when browsing the SM website. The methods
considered are:

Random. A random (RND) selection of the next user.
This is a näive baseline used for comparison against more
sophisticated methods.

Average score of user’s texts. In SM platforms, users’
interactions are often scored, voted or liked. The popularity
of user’s posts and comments might be a valuable clue to
guide FUE. For example, a focused user extraction process
might be interested in early identifying those users emitting
highly influential contents. In Reddit, the score of a post
reflects the utility and quality of the content within its context
(the subreddit). The interaction of the users determines the
total score of a post (users can add, upvote, or subtract,
downvote, a point to each post or comment). The score of
a Reddit’s post or comment is calculated by summing the
positive and negative votes. Depending on the focus of the
crawler, this feature might be indicative of target users (e.g.,
a focused extraction of offensive users might benefit from
the existence of many negative votes). During the crawling
process, this average score is accumulated for each user. Note
that this is computed from the user texts seen so far (web
pages downloaded) and, thus, it is usually an incomplete view
of the overall score for this user.

Let U be the set of candidate users and Su =
{Sut1

, Sut2
, ...} be the set of scores for each observed text of

a given user u. Let Su be the average score of the known texts
of a given user. We propose two different ways to determine
the chosen user (cuser). These two variants select the next
user based on the highest or lowest average score, respec-
tively. The first approach builds (and constantly updates) a
ranking of users by decreasing average score and extracts the
top user. This will be referred to as Highest Average Score
(HAS). Similarly, the Lowest Average Score (LAS) builds a
ranking of users by increasing average score.

6 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

cuser = argmax
u∈U

Su (1)

cuser = argmin
u∈U

Su (2)

Average number of comments in user’s texts. This fea-
ture also weights users based on the impact of their texts.
In this case, we employ the average number of comments
associated to the posts of a given user. Users with long
threads of comments to their posts might be particularly
relevant for a given FUE process. Let Cu be the number of
comments for each observed text of a given user u. Let Cu

be the average number of comments of the known texts of a
given user u.

Again, we define two approaches that build descending
and ascending rankings with the average number of com-
ments of every user: Highest Average Comments (HAC) and
Lowest Average Comments (LAC), respectively. The ranking
is updated every time new data is available. When the system
needs to extract a new user, the top user of the ranking is
selected.

cuser = argmax
u∈U

Cu (3)

cuser = argmin
u∈U

Cu (4)

Time-based user selection. The post time of user’s texts
might also be useful for discovering target users. For ex-
ample, a FUE process aiming at extracting users showing
signs of psychological problems (e.g., depression) could
benefit from time-related trends (e.g., users might make more
submissions during the night because sleeping problems is
one of the symptoms of depression). To encode this feature,
we extract the hour when each observed text was posted, we
average these hours for each user and we compute how close
the average is to four selected times (0h, 6h, 12h and 18h).
Let T = {0, 6, 12, 18} be the set of selected hours. Let Hu

be the set of hours for the seen texts of a given user u. Let
Hu be the average hour when the seen texts of a given user
were posted. We have defined four time-related prioritisation
methods: Near 00:00 UTC±00:00 (N00) gives more weight
to users that post near midnight, Near 06:00 UTC±00:00
(N06) gives more weight to users that post near 6 in the
morning, and so on.

cuser = argmin
u∈U

min(|t−Hu|, 24−|t−Hu|), where t ∈ T

(5)
Classifier-based prioritisation. A focused crawler is of-

ten guided by a driving query or classifier. Given the text
observed from each user, a natural way to guide the FUE
process is either to compute the matching between the driving
query and the user’s text or to pass the user’s text to the
classifier that guides FUE. At any point, the user’s texts
available to the crawler are a subset of the user’s history of

posts but, still, this partial representation of the user might be
highly valuable to early identify target users. For example,
the first time that the crawler sees a user, it probably reads a
single comment or post from the user. This resembles when a
focused crawling of web pages sees the first reference (link)
to a new web page. In such a case, a single anchor text and
the associated URL are the only pieces of evidence available
but the focused crawler can still estimate topicality with
respect to the target profile. In FUE, we can maintain (and
constantly augment) a textual representation of each user.
This consists of the concatenation of the titles and comments’
bodies of the posts observed for each user. Let D be the set
of incremental user’s representations. Given D, we can pass
it to the classifier and obtain a probability estimation of the
user being on-target, Pu(D).

We define two approaches to select target users: Highest
Classification Probability (HCP) builds a ranking of users
by decreasing probability, whereas Lowest Classification
Probability (LCP) builds a ranking of users by increasing
probability. LCP is supposed to perform poorly since this
prioritisation makes little sense. However, LCP serves as a
safe check in our empirical study.

cuser = argmax
u∈U

Pu(D) (6)

cuser = argmin
u∈U

Pu(D) (7)

Table 1 summarises all prioritisation methods described
above.

A. EXPERIMENTAL RESULTS
In order to make fair comparisons among the proposed meth-
ods, we have designed an experimental framework where all
crawling variants run in parallel. In this way, we can fairly
evaluate their relative merits on identifying target users and
we avoid undesirable biases from seasonal effects that might
affect the comparison.

The server where all the experiments in the paper were
conducted has the following characteristics:

– CPU: 2 x Intel® Xeon® CPU E5-2630 v4 @ 2.20 GHz
- 20 cores (40 threads)

– Memory: 12 x Hynix 32 GiB DIMM DDR4 @ 2400
MHz (384 GiB)

– Disk: Toshiba MD04ACA400 4 TB @ 7,200 RPM, 64
MB cache

– Internet bandwidth:∼400/200 Mbps (download/upload)
The first experiment lasted seven days. During this period,

the total number of unique extracted users was higher than
110, 000 (655 per hour) for each prioritisation method (see
Figure 2). Note that the extraction performance can be highly
scaled, while maintaining the politeness of the crawler, by
mainly launching more instances of the User Extractor mod-
ule, which is the main bottleneck.

The crawling variants HAC and HAS are slower at extract-
ing users. This is due to the way in which users are prioritised.

VOLUME 4, 2016 7

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1. Basic prioritisation methods.

Acronym Category Description
RND Random Random Selection of the next user
HAS Score (Pos-Neg votes) Selects user with the Highest Average Score
LAS Score (Pos-Neg votes) Selects user with the Lowest Average Score
HAC Comments Selects user with the Highest Average # of Comments
LAC Comments Selects user with the Lowest Average # of Comments

N00/N06/N12/N18 Time-based Select user whose avg submission time of day is the closest to
0h, 6h, 12h and 18h

HCP Classifier-based Selects user whose submissions yield the Highest Classifier
Probability

LCP Classifier-based Selects user whose submissions yield the Lowest Classifier
Probability

FIGURE 2. Number of extracted users by each focused user crawling method.

These two variants extract users that have a high number of
comments or points. These users tend to be highly active on
the platform and, thus, when the crawler extracts them, the
retrieval of all their submissions is costly.

Let us now evaluate the ability of these prioritisation
strategies in identifying target users. To meet this aim, we
use a user classifier built from external training data. More
specifically, we built a binary classifier from a sample of
Reddit users that predicts if a given user is likely to have signs
of depression. We worked with a collection on depression
and natural language use [16]. The classifier is a Logistic
Regression model with L1 regularisation implemented in
Python with scikit-learn. It was built with a training set of
486 users (83 positives, 403 negatives) where users were
represented with a single document consisting of the con-
catenation of all their writings. In order to decide if a user
is on-target, we established a threshold equal to 0.9 since
previous experiments demonstrated that this setting leads to
high precision [16].

Figures 3 and 4 plot the harvest ratio of different priori-
tisation strategies and, thus, it helps to compare the relative
merits of the proposed metrics in early identifying the target
users. To facilitate readability, the methods have been sepa-
rated into two independent plots but the random strategy is
shown in both graphs. The highest harvest ratio is achieved
by HCP: 2.8 times better than the second best (N06) and 4.9
times better than RND during the first day. On the last day
these numbers decay to 1.4 and 1.8, respectively.

After the first day, four of the proposals behave better than

random. This number increases to five after the third day.
At this point, many strategies behave similarly since most of
them have already explored a high number of users. The most
promising strategies are HCP, N06, HAC and N00 since they
perform considerably better than random. On the other hand,
HAS, N12, N18, LAC, LAS and LCP can be discarded.

Observe that HCP effectively exploits the little pieces
of textual evidence available. These small extracts seem to
be indicative of user relevance. Note also that none of the
other good performers employ the texts written by users to
prioritise them.

V. ADVANCED PRIORITISATION METHODS
Given the results discussed above, we designed three new
FUE methods. The first is based on re-training the classifier
that guides the HCP crawler (from new tagged users obtained
with pseudo-training data). A second method performs a
fusion of two user rankings (HCP and HAC). Finally, the
third method combines HCP, N06 and HAC in a hierarchical
way. This section presents these new methods and discusses
the associated changes in the FUE architecture.

HCP with pseudo-training. With HCP, the crawling sys-
tem makes two types of user classifications. The evaluation
classifier (see Section II) is the core evaluation tool of the
FUE process and assesses whether or not user extraction
was effective. The prediction classifier categorises the users
based on the partial information available (e.g., last post
in a recently crawled page), yielding a confidence score

8 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 3. Harvest ratio of some focused user crawling methods.

FIGURE 4. Harvest ratio of some (discarded) focused user crawling methods.

that is used for user prioritisation. With the standard HCP
method discussed above, these two classifiers are the same
and their classification model is built once (from the training
set) and never changes thereafter. However, the classification
model of the predictive classifier could be updated as we
extract and process users. More specifically, those users that
are chosen, fully explored, and classified by the evaluation
classifier can be incorporated as pseudo-training examples.
The main idea of HCP with pseudo-training consists of
updating the prediction classifier based on augmenting the
training examples with new examples and their pseudo-
labels. Every five minutes, a new prediction classifier is built
from the original training set plus the new pseudo-examples
available. We experimented with three variants. With HCP-
0.9-0.1 only those users classified with a probability higher

than 0.9 or lower than 0.1 are incorporated (as positive or
negative, respectively)4. With HCP-0.5-0.5 we employ the
standard threshold of the classifier (0.5) and, thus, any user
classified above or below the threshold is incorporated into
the training set as positive or negative, respectively. We
also experimented with HCP-0.9, which only incorporates
pseudo-positive examples (those with a probability higher
than 0.9). Our hypothesis is that this injection of pseudo-
training data might improve the chances of identifying target
users.

HCP-N06-HAC. This strategy combines the three best-
performing methods in a hierarchical way. First, the users

4Note that we work with Logistic Regression classifiers and, thus, we have
access to probabilities associated to the estimations.

VOLUME 4, 2016 9

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2. Advanced prioritisation methods.

Acronym Category Description

HCP-u-d HCP+pseudo-training

HCP variant that regularly updates the classifier with new
pseudo-training instances (users classified with probability higher than
u are considered as positive, while users with probability lower than d
are considered as negative).

HCP-u HCP+pseudo-training

HCP variant that regularly updates the classifier with new
pseudo-training instances (users classified with probability higher than
u are considered as positive; pseudo-negatives examples are not
incorporated into the training sets).

HCP-N06-HAC Hierarchical combination Ranks users by HCP, breaks ties with N06 and if ties still exist it
resolves them with HAC.

FSN Fusion Ranks users by HCP and HAC (two rankings) and selects the user with
the highest average position in the two ranked lists.

Algorithm 2 Focused user crawler. Batch procedures.
1: procedure BATCH TRAINING
2: while true do
3: classification_model.train(positive_users, negative_users)
4: BATCH UPDATER()
5: sleep(SLEEP_TIME)
6:
7: procedure BATCH UPDATER
8: for each user in users_ranking.get_users() do
9: user.update_proba()

with the highest HCP score are selected. Since there are
usually ties, these are resolved by selecting those users with
the highest N06 score. If we still have ties on N06 scores,
then the HAC score is used to resolve them. In the unlikely
event of ties in all scores, the user is chosen at random.

Fusion (FSN). This prioritisation proposal merges the
rankings of HCP and HAC by averaging the positions of the
users in these two rankings. This fusion approach continu-
ously analyses and merges the top 100 users of the two base
rankings.

Table 2 briefly sketches the advanced prioritisation meth-
ods described above.

A. EXTENSION OF THE ARCHITECTURE
HCP with pseudo-training needs to update the prediction
classifier. To meet this aim, two additional tasks are needed:
Model Trainer and Batch Updater. The first builds a new
classifier based on the original training data plus new pseudo-
examples. Once a new classification model is built, the sec-
ond task makes an update on all users (the classifier has
changed and, thus, the predictions on the available user’s
texts need to be changed):

– MODEL TRAINER. It receives the classification result
from User Classifier and decides if the user will be
added to the training dataset (based on the confidence
score). Every five minutes, the classification model will
be trained (but only if new examples were added). The
new model is spread to the instances that update the
user rankings. When a new model is trained, the User

Updater instances are invoked through RPC so that they
can update the model.

– BATCH UPDATER. According to the HCP method, the
ranks of the users are updated following the newly
trained model.

These tasks run in parallel completing the system architec-
ture shown in Figure 1. The Batch Updater is only activated
when a new model is available. These new procedures are
sketched in Algorithm 2.

B. EXPERIMENTAL RESULTS
In a second experiment, the new proposals and the best
performers of the first experiment were run for four days.
In Figure 5, we plot the cumulative number of extracted
users for each method. The extraction capacity of the fusion
proposal is significantly lower than the capacity of the other
ones. This outcome is due to the heavy and repetitive task of
merging rankings. The existing bottlenecks could be easily
avoided by incorporating more instances of the User Chooser
module, but extraction performance was not the main goal of
these experiments.

In Figure 6, we can observe that the most solid choice is the
fusion method (FSN). FSN is outperformed by HCP-N06-
HAC during the first day of the experiment but, after that,
FSN becomes the most valuable source of relevant users. At
the end of the experiment, FSN yielded an overall harvest
ratio that is 20.7% better than the ratio achieved by HCP-
N06-HAC and 12.9% better than the ratio achieved by HCP.
The harvest ratio of HCP was 6.9% better than HCP-N06-
HAC. These results suggest that if we need a sustained rate
of extraction of on-topic users then FSN, which merges HCP

10 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 5. Second experiment. Number of extracted users by each focused user crawling method.

FIGURE 6. Ratio of users classified as positive over the total for the heuristic proposals of the second experiment with a threshold of 0.9.

and HAC, should be our method of choice. However, if the
crawler is employed for quickly extracting a sample of rele-
vant users, then HCP-N06-HAC should be preferred. During
the first day, the HCP-N06-HAC method performs 12.7%
better than FSN, which behaves comparably to HCP for the
first 24 hours. This second experiment also revealed that
pseudo-training was ineffective at improving the harvest ratio
of the HCP crawler. None of the pseudo-training variants
performed better than the standard HCP, which never updates
the prediction classifier.

Table 3 helps to further analyse the HCP-N06-HAC
method. In many cases, this method extracts the same users
as HCP. However, as shown in the table, the number of ties
in the HCP scores is not negligible. HCP breaks these ties
randomly, while HCP-N06-HAC resorts to the second level
user score (N06) and, if required, to the third level user score
(HAC). Such a smart tie-breaking approach was productive in
early identifying target users. HCP-N06-HAC outperformed
all the other methods during the first day of the experiment.
After the first 24 hours, this crawling approach descended
from a harvest ratio of 0.18 to levels around 0.07.

Figure 7 plots the number of on-target users detected by

TABLE 3. Number of ties in the HCP and N06 scores for the HCP-N06-HAC
method. The table also reports the total number of ties and the ratio of ties
with respect to the number of users.

HCP N06 Total Ratio Extracted Users
Day 1 483 76 559 0.056 9, 920
Day 2 2, 410 1, 096 3, 506 0.117 29, 922
Day 3 3, 836 1, 248 5, 084 0.101 50, 119
Day 4 5, 571 1, 581 7, 152 0.103 69, 382

each FUE method. There are no major differences among
the methods tested, but the graphs reveal the main temporal
trends of extraction of relevant users. The detection of on-
target users peaks during the first day. Initially, all target
users are unexplored and the FUE methods can work with a
large sample of potentially relevant users. The initial peaks
suggest that the strategies are effective at quickly guiding
their exploration to relevant users. After day 1, the curves
become flattered and new on-target users are detected in
periodic waves (e.g., because new evidence is found about
previously existing users or because some users become
active and, thus, their usernames are revealed to the crawler).
The peaks are associated to new interactions by on-target

VOLUME 4, 2016 11

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 7. Number of new on-target users detected by each crawling method.

users. In SM, user interactions tend to be clustered around
certain time points and communities (e.g., new discussion
threads become highly active). Note also that, after Day 3,
the peaks become lower. This suggests that most relevant
communities of users have been explored and the pattern of
identification of new on-target users is smoother.

In summary, HCP-N06-HAC and FSN were the most
effective user crawling methods. HCP-N06-HAC shows a
solid behaviour during the first day, when the number of new
(previously unknown) users is large and, potentially, there are
many ties. As the hours pass and the number of new users
stabilises, a more sophisticated method, FSN, which merges
the HCP and HAC ranks of the users, is required.

VI. DISCUSSION
In focused user crawling, it is crucial to speed up the process
of extracting on-target users. For example, in early risk
applications (e.g., detecting criminal recruiters or identifying
individuals showing signs of psychological disorders), it is
important to maximise the number of users processed per
unit of time and quickly focus the analysis on users who
are potentially relevant. In this way, effective and efficient
crawlers can support multiple user screening tasks and facil-
itate preventive measures.

Depending on the application domain, such screening ac-
tions and the associated interventions need to be designed
with full consideration of proper ethical guidelines. For
example, as Neuman [17] suggests, screening of signs of
depression on Social Media could be employed by health
agencies to economically screen massive samples of the pop-
ulation, before more accurate, albeit more expensive, steps
can be taken. Given the subject’s permission, a screening
system, powered by user crawlers such as those developed
here, may extract signs of depression in SM texts and, if
concerning symptoms are detected, the system may inform
the subject and offer the opportunity to complete an online
questionnaire (or the subject might be advised to consult
a medical expert). In any case, the development of solid
focused user crawling solutions can impact a number of areas
including cybercrime detection, expert search, and health,
just to name a few. With these new technologies, the work
of experts, authorities and other stakeholders can be eased

through the effective and rapid filtering and prioritisation of
users who likely match a given pattern of interest.

Our proposal focused on Reddit as the reference source for
experimentation but the lessons learned here are potentially
applicable to other SM platforms. This is due to the mod-
ularity of our crawling architecture and the commonalities
among SM sources. For example, it would be relatively easy
to transfer this research to other social networks in which
text-based posts are common and openly accessible.

User features, such as the time of posting or the probability
assigned by the classifier, can be applied on most SM plat-
forms. Furthermore, microblogging platforms, such as Twit-
ter or Mastodon, would give us the opportunity of exploiting
additional features such as certain hashtags, words or geotags
(instead of subreddits). Additionally, we could design new
prioritisation methods from variables such as the number of
likes/favourites, the number of retweets/boosts of a tweet/toot
or the number of replies. New crawlers oriented to these
platforms can be easily implemented in our architecture and
the crawling system can be connected to API services of SM,
where available.

Note also that the most effective prioritisation method is
a text-based approach that predicts user’s relevance based on
the user’s available interactions. This type of textual evidence
exists in nearly all SM platforms and, thus, there is potential
to apply our results to many other SM sources.

VII. RELATED WORK
Our work is related to several lines of research, which include
real-time crawling, focused web crawling, and user extrac-
tion. The following subsections summarise the work that
has been done in these areas and emphasise the differences
with our approach. Table 4 provides a global view of related
papers and their main attributes.

A. REAL-TIME CRAWLING OF SOCIAL MEDIA
There are several studies in the literature that propose
crawlers to support real-time extraction and analysis of SM
data. For example, in [18], the authors present a system
that monitors real-time events on Twitter using an adaptive
crawler. This crawler was guided by periodically updated
keywords, which were tagged as relevant for a given event.

12 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

In [19], a monitoring system to detect drug abuse risk be-
haviours from SM was described. This system worked in
near real-time. In [20], the authors optimised a social network
crawler based on the posting frequency of their users. In this
way, the crawling process could crawl most of the newly
produced content with limited resources (and taking into
account the access restrictions of the SM source). In [21],
a user-guided Social Media crawling method was proposed.
The goal was not to crawl the entire SM platform (or extract
the full set of users) but instead to obtain a sample of posts
or submissions that are statistically representative of the
entire dataset. The approach is based on utilising user-based
evidence to decide in which order the SM contents should
be collected. In [22], several methods are described to build
an unbiased sample of social media content to characterise
the vast amount of the existing content given the networks’
large-scale nature and query imposed limitations. Zhou and
colleagues [23] were instead interested in measuring SM
bias and proposed a hybrid sampling strategy that considers
network information.

Wang and Nasraouni [24] proposed a Twitter crawling
approach where they can dynamically detect and monitor
new hashtags related to an initial set of keywords during a
live event. In [25], the authors analysed SM user profiles for
guiding the crawling of posts. This methodology speeds up
the crawling process of relevant posts but requires analysing
the profile of each newly detected user in a FIFO fashion.

Some teams focused on how to extract specific media
from SM platforms. For example, Leung and colleagues [26]
proposed an adapted search engine architecture aimed at
indexing multimedia resources (e.g., images or videos). The
estimation of relevance relies on user’s ratings as evaluated
by a community of users. By incorporating this form of user
feedback, this approach allows to gradually discover and
index certain properties of media resources.

B. FOCUSED WEB CRAWLING
Focused Web Crawling techniques aim to extract web pages
that satisfy a given pattern, and therefore, are related to the
FUE task introduced in this paper. In [27], Kan analysed the
performance of web page categorisation using exclusively the
URL of the web page in order to determine the relevance of
its content. In [28], Meusel and colleagues predicted data-
rich web content based on the context of the page and other
metadata available from previously extracted pages. Their
approach was a combination of online learning and a bandit-
based selection process. In [29], a framework to fairly eval-
uate focused crawlers was proposed. Such a framework was
employed to further design new evolutionary crawlers that
combine exploration and exploitation. These are examples
of studies that effectively crawl on-topic contents guided by
predictive features. Our paper represents an attempt to build
similar effective and efficient solutions for extracting Social
Media users that are relevant to a given profile of interest.

There are several studies where Social Media is used to
improve the performance of a focused crawler. However, the

vast majority of them do not focus on retrieving relevant
users but, instead, focus on extracting relevant Web pages or
documents. In [30], the authors proposed a focused crawling
approach that analyses the interlink between the Web and
SM content in order to guide the crawler towards fresh and
relevant content.

For a more general discussion of web crawling, categories
of crawling and their main challenges the reader can refer to
the survey by Kumar and colleagues [4].

C. USER OR COMMUNITY EXTRACTION/CRAWLING
A few studies in the literature explored user extraction tasks
that are similar to ours. In [31], Gisselbrecht and colleagues
implemented a multi-armed bandit approach that guides a
real-time capture towards users that are most likely to pro-
duce data on a given topic. Our approach is based on the study
of a set of prioritisation methods that lead to quick identifi-
cation of target users, while Gisselbrecht’s approach needs to
listen to the users in real-time (for a given period of time) in
order to assign a reward. Another important difference is that
Gisselbrecht and colleagues strictly analysed real-time data
while we performed a historical analysis of every selected
user in order to assess user relevance.

Focusing on the detection of hate-promoting users and
discovering their communities, Agarwal and Sureka [32]
implemented a focused user crawler for Tumblr. First, a
number of texts are analysed to determine if they are relevant.
If so, metadata from those posts are collected, feeding up a
social graph. This graph is used to guide the crawling pro-
cess through stochastic exploration. Their approach makes
further analysis of the information available and, in this
way, extremist communities can be undercovered. This study
represents a case of focused user crawling where the focus
is extremism and the method only analyses users related to
those who have been already classified as extremists. Their
goal is to undercover hidden extremist communities and
they do not perform an ordered extraction or prioritisation
of the most relevant users. Furthermore, their approach is
computationally expensive because a substantial amount of
user texts are needed to guide the crawler.

Some teams proposed other user-oriented tasks, such as
ranking user influence or user behaviour prediction that are
intrinsically different from the FUE task explored in our
paper. For example, Tang and Yang [33] were interested
in measuring a user’s influence on other users in online
healthcare forums and, to that end, user influence was esti-
mated from users’ reply relationships, conversation content
and response immediacy. Li and colleagues [34] designed a
neural approach to predict user behaviour (e.g., social link
behaviour or consumption behaviour).

Hsu and colleagues [35] proposed a network-based algo-
rithm that supports crawling community-aware data. Their
approach is not oriented to support a massive analysis of
Social Media users but, instead, it focuses on how to obtain
valuable community information for research purposes. The
proposed solution identifies socially tight communities by

VOLUME 4, 2016 13

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Real-Time Crawling / Social Media Sampling
Paper Source Task Method Type

[24] Twitter Event Monitoring
Recall-oriented adaptive crawling
that identifies new event-related
keywords

Real-Time

[18] Twitter Event Monitoring Keyword-based Adaptive Crawler Real-Time

[25] Flickr/Youtube Crawling SM pages User profiles used as ranking criteria
for guiding the crawling process Not reported

[19] Twitter and
Census Data

Drug Abuse Monitoring
(community-focused)

Keyword-based & Deep Learning
(CNN & LSTM) Near Real-Time

[20] Weibo.com Social Network Crawling User-based model to extract fresh
contents Real-Time

[21] Facebook Social Network Crawling User-guided method to prioritize
crawling contents Real-Time

[22] Xiami/YouTube/
Flickr Content Characterisation Graph-based Sampling -

[23] Twitter Estimating SM bias Network-based approach -
[26] Flickr Multimedia Indexing Feedback-based approach -

Focused Web Crawling
Paper Source Task Method

[27] WebKB
Web Page Categorisation
(predict the topic of a linked
webpage)

SVM (features based only on URL)

[28] Common
Crawl

Crawling Structured Data
(data-rich webpages) Online Learning and Bandit-based methods

[29] Web Focused Web Crawling Evolutionary crawler (exploitation+exploration)

[30] Web Web and Social Media
Focused Crawling

Integration of SM streams & Web to continuously guide
the crawler towards fresh and relevant content

User or Community Extraction/Crawling
Paper Source Task Method

[31] Twitter User Crawling Multi-Armed Bandit Approach
[32] Tumblr User Crawling Random walk, centrality and link features

[33]
Medical
Support
Forums

Ranking User Influence Link-based and content-based approach

[34] Epinions/Flickr User Behaviour Prediction Neural model

[35] egoFacebook Community Crawling Branch & Bound network algorithm to extract socially
tight communities

[36] Flickr Community Discovery Low-rank matrix approach
[37] Twitter Campaign Extraction Content-driven graph-based approach

Risk Analysis & Social Media
Paper Source Task Risk Method

[38]
(survey) Twitter/Facebook User Classification Depression/PTSD Regression or Classification

[39]
(survey)

Twitter/Reddit/
Facebook/Tumblr/... User Classification Depression/PPD/Eating

Disorders/PTSD/...
Multiple (supervised,
unsupervised, ...)

[40] Twitter User Classification Online Radicalisation KNNs & SVMs

[41] Formspring.me/
MySpace Post Classification Cyberbullying Genetic algorithms & Fuzzy

rules

TABLE 4. Related papers organised by topic and main attributes.

optimising user willingness, which estimates what users are
willing to contribute their data. Related to this, Zhuang et al
[36] presented a low-rank matrix recovery technique-oriented
to discovering communities from SM.

Rather than identifying users or communities, some re-
searchers aimed at extracting certain types of behaviour.
For example, Lee and colleagues [37] proposed a campaign
extraction method. Their approach, which is content-based
and graph-based, identifies and extracts campaigns (e.g.,
coordinated spamming, promotional campaigns or political
“astro-turfing”) in large-scale social media.

FUE techniques could be applied to support health-related
applications, such as detection of users with signs of the onset

of mental illnesses (e.g., depression, anorexia or dementia).
As a matter of fact, depression and behavioural disorders,
such as irritability, can constitute part of the symptomatology
of neuro-degenerative mental diseases such as Alzheimer,
Huntington or Creutzfeldt-Jakob. FUE can also assist in
analysing users massively, searching for threats related to on-
line harassment or terrorist radicalisation. Our FUE crawling
methods can, in general, be employed to detect users showing
any behavioural pattern identifiable by their public activity on
SM. There are numerous works of SM analytics that target
risks such as mental illnesses [38], [39], radicalisation [40]
or harassment [41]. However, these studies are oriented to

14 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

classification or predictive aspects and they are not concerned
with how to efficiently extract target users from massive
streams of user data.

D. FINAL REMARKS
Table 4 presents a structured view of the studies described
above. Our paper represents a distinctive contribution where
the latest (unseen) user posts are analysed, and the corre-
sponding authors are ranked according to several proposed
prioritisation methods. New users are analysed from little
context and, thus, this represents a lightweight crawling
method that rapidly explores communities in the quest of
relevant users. Our experimentation, performed on Reddit,
demonstrates that the exploration is efficient and effective.

VIII. CONCLUSIONS
In this paper, we have approached (and formally defined) the
task of Focused User Extraction (FUE), which has received
little attention in the literature. In FUE, the main goal is to
extract as many relevant users as possible, being guided by
a minimal context (i.e., only using the information available
at the pages where the usernames are initially observed). As
argued above, most previous studies on extracting SM users
were not explicitly concerned about efficiency and about how
to quickly harvest the most relevant users.

As a case study, we have implemented a focused crawler
oriented to an early risk task. We proposed a set of user pri-
oritisation methods that proved to work well with limited user
contexts. In a first experiment, we have determined that HCP
is a robust FUE method that only requires the last textual
interactions written by the users. In a second experiment, we
have found that two variants of the basic FUE methods can
further improve the harvest ratios. We have also shown that
our FUE methods perform satisfactorily with huge volumes
of users and interactions. In terms of harvest ratios, the
crawlers initially detect many on-target users and, next, the
harvest ratios tend to decay. This is a natural consequence of
the fact that all users are initially unexplored and, thus, at the
beginning of the process, the chances of extracting relevant
users are higher. Our experiments also revealed that, as the
crawlers proceed, smarter methods, which combine multiple
signs, are required to further mine on-target users.

Despite the simplicity of the methods tested, their harvest
ratios are high. In the future, we plan to study more sophisti-
cated and formal ways to prioritise users. The methods pro-
posed here can also serve as an input to bootstrap other future
focused user crawlers. We have used Reddit to perform our
experiments but our contributions are potentially applicable
to other SM platforms.

REFERENCES
[1] F. Menczer, “ARACHNID: Adaptive retrieval agents choosing heuris-

tic neighborhoods for information discovery,” in Machine Learning-
International Workshop Then Conference. Morgan Kaufmann Publishers,
Inc., 1997, pp. 227–235.

[2] S. Chakrabarti, M. Van den Berg, and B. Dom, “Focused crawling: a new
approach to topic-specific Web resource discovery,” Computer networks,
vol. 31, no. 11-16, pp. 1623–1640, 1999.

[3] B. Novak, “A survey of focused web crawling algorithms,” Proceedings of
SIKDD, vol. 5558, pp. 55–58, 2004.

[4] M. Kumar, R. Bhatia, and D. Rattan, “A survey of web crawlers for
information retrieval,” WIREs Data Mining and Knowledge Discovery,
vol. 7, no. 6, p. e1218, 2017. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1002/widm.1218

[5] G. Almpanidis, C. Kotropoulos, and I. Pitas, “Combining text and link
analysis for focused crawling—an application for vertical search engines,”
Information Systems, vol. 32, no. 6, pp. 886–908, 2007.

[6] R. Martínez-Castaño, J. C. Pichel, D. E. Losada, and F. Crestani, “A Mi-
cromodule Approach for Building Real-Time Systems with Python-Based
Models: Application to Early Risk Detection of Depression on Social
Media,” in Advances in Information Retrieval. Springer International
Publishing, 2018, pp. 801–805.

[7] R. Martínez-Castaño, J. C. Pichel, and D. E. Losada, “Building Python-
Based Topologies for Massive Processing of Social Media Data in Real
Time,” in Proceedings of the 5th Spanish Conference on Information
Retrieval. ACM, 2018, p. 18.

[8] ——, “A Big Data Platform for Real Time Analysis of Signs of Depression
in Social Media,” International Journal of Environmental Research and
Public Health, vol. 17, no. 13, p. 4752, 2020.

[9] Apache Kafka, https://kafka.apache.org/, 2017, [Online; accessed Febru-
ary, 2022].

[10] Docker, http://www.docker.com/, 2021, [Online; accessed February,
2022].

[11] Reddit on Alexa, https://www.alexa.com/siteinfo/reddit.com/, 2021, [On-
line; accessed February, 2022].

[12] About Reddit, https://www.redditinc.com/, 2021, [Online; accessed Febru-
ary, 2022].

[13] S. Chakrabarti, K. Punera, and M. Subramanyam, “Accelerated focused
crawling through online relevance feedback,” in Proceedings of the 11th
international conference on World Wide Web. ACM, 2002, pp. 148–159.

[14] MongoDB, https://www.mongodb.com/, 2021, [Online; accessed Febru-
ary, 2022].

[15] Aerospike, https://www.aerospike.com/, 2018, [Online; accessed Febru-
ary, 2022].

[16] D. E. Losada and F. Crestani, “A Test Collection for Research on Depres-
sion and Language Use,” in Proc. of CLEF, 2016, pp. 28–39.

[17] Y. Neuman, Y. Cohen, D. Assaf, and G. Kedma, “Proactive screening for
depression through metaphorical and automatic text analysis,” Artificial
intelligence in medicine, vol. 56, no. 1, pp. 19–25, 2012.

[18] A. T. Hadgu, S. Abualhaija, and C. Niederée, “Sover! social media
observer,” in The 41st International ACM SIGIR Conference on Research
& Development in Information Retrieval. ACM, 2018, pp. 1305–1308.

[19] H. Hu, N. Phan, X. Ye, R. Jin, K. Ding, D. Dou, and H. T. Vo, “Drug-
tracker: A community-focused drug abuse monitoring and supporting sys-
tem using social media and geospatial data (demo paper),” in Proceedings
of the 27th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM, 2019, pp. 564–567.

[20] R. Guo, H. Wang, M. Chen, J. Li, and H. Gao, “Parallelizing the extraction
of fresh information from online social networks,” Future Generation
Computer Systems, vol. 59, pp. 33–46, 2016.

[21] F. Erlandsson, P. Bródka, M. Boldt, and H. Johnson, “Do we
really need to catch them all? a new user-guided social media
crawling method,” Entropy, vol. 19, no. 12, 2017. [Online]. Available:
https://www.mdpi.com/1099-4300/19/12/686

[22] P. Wang, J. Zhao, J. C. Lui, D. Towsley, and X. Guan, “Fast crawling
methods of exploring content distributed over large graphs,” Knowledge
and Information Systems, vol. 59, no. 1, pp. 67–92, 2019.

[23] Y. Zhou, R. Ji, J. Su, and J. Yao, “Uncovering media bias via social network
learning,” ACM Trans. Intell. Syst. Technol., vol. 12, no. 1, 2020.

[24] X. Wang, L. Tokarchuk, F. Cuadrado, and S. Poslad, “Exploiting hashtags
for adaptive microblog crawling,” in Proceedings of the 2013 IEEE/ACM
International Conference on Advances in Social Networks Analysis and
Mining. ACM, 2013, pp. 311–315.

[25] Z. Zhang and O. Nasraoui, “Profile-based focused crawler for social
media-sharing websites,” in 2008 20th IEEE International Conference on
Tools with Artificial Intelligence, vol. 1. IEEE, 2008, pp. 317–324.

[26] C. H. C. Leung, A. W. S. Chan, A. Milani, J. Liu, and Y. Li,
“Intelligent social media indexing and sharing using an adaptive
indexing search engine,” vol. 3, no. 3, May 2012. [Online]. Available:
https://doi.org/10.1145/2168752.2168761

VOLUME 4, 2016 15

https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1218
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1218
https://kafka.apache.org/
http://www.docker.com/
https://www.alexa.com/siteinfo/reddit.com/
https://www.redditinc.com/
https://www.mongodb.com/
https://www.aerospike.com/
https://www.mdpi.com/1099-4300/19/12/686
https://doi.org/10.1145/2168752.2168761

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[27] M.-Y. Kan, “Web page categorization without the web page,” in 13th
International World Wide Web Conference (WWW’04), New York, USA,
2004.

[28] R. Meusel, P. Mika, and R. Blanco, “Focused crawling for structured data,”
in Proceedings of the 23rd ACM International Conference on Conference
on Information and Knowledge Management. ACM, 2014, pp. 1039–
1048.

[29] F. Menczer, G. Pant, and P. Srinivasan, “Topical web crawlers: Evaluating
adaptive algorithms,” ACM Transactions on Internet Technology, vol. 4,
no. 4, p. 378–419, 2004.

[30] G. Gossen, E. Demidova, and T. Risse, “iCrawl: Improving the freshness
of web collections by integrating social web and focused web crawling,”
in Proceedings of the 15th ACM/IEEE-CS Joint Conference on Digital
Libraries. ACM, 2015, pp. 75–84.

[31] T. Gisselbrecht, L. Denoyer, P. Gallinari, and S. Lamprier, “Whichstreams:
A dynamic approach for focused data capture from large social media,” in
Ninth International AAAI Conference on Web and Social Media, 2015.

[32] S. Agarwal and A. Sureka, “Spider and the flies: Focused crawl-
ing on tumblr to detect hate promoting communities,” arXiv preprint
arXiv:1603.09164, 2016.

[33] X. Tang and C. C. Yang, “Ranking user influence in healthcare social
media,” ACM Trans. Intell. Syst. Technol., vol. 3, no. 4, Sep. 2012.
[Online]. Available: https://doi.org/10.1145/2337542.2337558

[34] J. Li, L. Wu, R. Hong, K. Zhang, Y. Ge, and Y. Li, “A joint neural
model for user behavior prediction on social networking platforms,” ACM
Trans. Intell. Syst. Technol., vol. 11, no. 6, Sep. 2020. [Online]. Available:
https://doi.org/10.1145/3406540

[35] B.-Y. Hsu, C.-L. Tu, M.-Y. Chang, and C.-Y. Shen, “On crawling
community-aware online social network data,” in Proceedings of the
30th ACM Conference on Hypertext and Social Media, ser. HT ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
265–266. [Online]. Available: https://doi.org/10.1145/3342220.3344937

[36] J. Zhuang, T. Mei, S. C. H. Hoi, X.-S. Hua, and Y. Zhang, “Community
discovery from social media by low-rank matrix recovery,” ACM Trans.
Intell. Syst. Technol., vol. 5, no. 4, 2015.

[37] K. Lee, J. Caverlee, Z. Cheng, and D. Z. Sui, “Campaign extraction from
social media,” ACM Trans. Intell. Syst. Technol., vol. 5, no. 1, Jan. 2014.
[Online]. Available: https://doi.org/10.1145/2542182.2542191

[38] S. C. Guntuku, D. B. Yaden, M. L. Kern, L. H. Ungar, and J. C. Eichstaedt,
“Detecting depression and mental illness on social media: an integrative
review,” Current Opinion in Behavioral Sciences, vol. 18, pp. 43–49, 2017.

[39] E. Rissola, D. E. Losada, and F. Crestani, “A survey of computational
methods for online mental state assessment on social media,” ACM Trans-
actions on Computing for Healthcare, vol. 2, no. 2, 2021.

[40] S. Agarwal and A. Sureka, “Using KNN and SVM based one-class
classifier for detecting online radicalization on Twitter,” in International
Conference on Distributed Computing and Internet Technology. Springer,
2015, pp. 431–442.

[41] B. S. Nandhini and J. I. Sheeba, “Online social network bullying detection
using intelligence techniques,” Procedia Computer Science, vol. 45, pp.
485–492, 2015.

RODRIGO MARTÍNEZ-CASTAÑO received his
B.Sc. in Computer Science and M.Sc. in Big Data
& Data Analysis Technologies from the University
of Santiago de Compostela (Spain). He is currently
working toward the PhD degree. His research in-
terests include Big Data technologies, Distributed
Systems, Information Retrieval and Blockchain.

DAVID E. LOSADA is an associate professor
in computer science & artificial intelligence at
CiTIUS (University of Santiago de Compostela,
Spain). His current research interests include a
wide range of Information Retrieval (IR) and
related areas such as: early risk detection, text
mining, IR evaluation, IR probabilistic models,
summarization, novelty detection, and sentence
retrieval. He is an active member of the IR com-
munity and he regularly serves on the program

committee of prestigious international conferences such as SIGIR or ECIR.
In 2011, he was recognized with ACM Senior Member Award.

JUAN C. PICHEL received his B.Sc. and M.Sc.
in Physics from University of Santiago de Com-
postela (Spain). In 2006 he received the Ph.D.
in Computer Science from University of Santi-
ago de Compostela. He was a visiting postdoc-
toral researcher at University Carlos III de Madrid
(Spain) and University of Illinois at Urbana-
Champaign (USA). He also worked as a researcher
and project manager at Galicia Supercomputing
Center (Spain). Currently he is an associate pro-

fessor at CiTIUS (University of Santiago de Compostela). His research
interests include parallel and distributed computing, Big Data technologies,
programming models and software optimization techniques for emerging
architectures.

16 VOLUME 4, 2016

https://doi.org/10.1145/2337542.2337558
https://doi.org/10.1145/3406540
https://doi.org/10.1145/3342220.3344937
https://doi.org/10.1145/2542182.2542191

	Introduction
	Methodology
	Focused User Extraction
	Focused User Extraction on Reddit

	Real-time Crawling Architecture
	Basic Prioritisation Methods
	Experimental Results

	Advanced Prioritisation Methods
	Extension of the Architecture
	Experimental Results

	Discussion
	Related Work
	Real-time crawling of Social Media
	Focused Web Crawling
	User or community extraction/crawling
	Final Remarks

	Conclusions
	REFERENCES
	Rodrigo Martínez-Castaño
	David E. Losada
	Juan C. Pichel

