Ignis: an efficient and scalable multi-language Big Data framework*

César Pifeiro?, Rodrigo Martinez-Castafio and Juan C. Pichel**

ACIiTIUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain

ARTICLE INFO

Keywords:
Big Data; Multi-language; Performance;
Scalability; Container

Abstract

Most of the relevant Big Data processing frameworks (e.g., Apache Hadoop, Apache Spark) only
support JVM (Java Virtual Machine) languages by default. In order to support non-JVM languages,
subprocesses are created and connected to the framework using system pipes. With this technique, the
impossibility of managing the data at thread level arises together with an important loss in the perfor-
mance. To address this problem we introduce Ignis, a new Big Data framework that benefits from an
elegant way to create multi-language executors managed through an RPC system. As a consequence,
the new system is able to execute natively applications implemented using non-JVM languages. In
addition, Ignis allows users to combine in the same application the benefits of implementing each com-
putational task in the best suited programming language without additional overhead. The system runs
completely inside Docker containers, isolating the execution environment from the physical machine.
A comparison with Apache Spark shows the advantages of our proposal in terms of performance and

scalability.

1. Introduction

Nowadays we are living in the Big Data era, which de-
mands processing in a efficient way huge amounts of data
coming from many different sources. In the past, clusters
were reserved for HPC (High-Performance Computing) tasks,
but with the arrival of Big Data it became necessary to de-
sign new frameworks and technologies for the execution on
these systems. The de facto standards for parallel processing
of Big Data are Apache Hadoop [31] and Apache Spark [35]
engines. To fully exploit the capabilities of these frame-
works programmers should implement their applications in
languages based on the Java Virtual Machine (JVM) (funda-
mentally, Java and Scala) or other high-level languages such
as Python.

However, developers build applications in the program-
ming languages that best suit their needs and, many times,
those languages are not natively supported by the correspond-
ing Big Data framework. For instance, most of the exis-
tent scientific applications are developed in languages like
C, C++ or Fortran. In that case, it is necessary to port the
source codes, which requires a huge effort, use source-to-
source compilers [27] or take advantage of the mechanisms
provided by the frameworks to call external processes based
on system pipes with the corresponding degradation in the
performance [9]. Note that in the latter case, the main code
that performs the calls should be anyway implemented in
Python, Java or Scala.

To overcome the above limitations of the Big Data pro-
cessing engines we introduce Ignis, a new framework that
allows users to execute their applications written in multiple

*This work has been supported by MICINN (RTI2018-093336-B-
C21), Xunta de Galicia (ED431G/08 and ED431C-2018/19) and European
Regional Development Fund (ERDF).

*Corresponding author

9 cesaralfredo.pineiro@usc.es (C. Pifieiro);
rodrigo.martinezl@usc.es (R. Martinez-Castafio);
juancarlos.pichel@usc.es (J.C. Pichel)

ORCID(S): 0000-0001-9505-6493 (J.C. Pichel)

programming languages without additional overhead. Our
framework uses a multi-language RPC (Remote Procedure
Call) approach to create a native executor for each language
in order to avoid data transfers. In this way, data is handled
by the executor in the most efficient way for each program-
ming language. Currently Ignis supports Python, Java, C and
C++, but thanks to its modular architecture, adding support
for new languages is a straightforward process.

Several efforts have been done to bridge the gap between
HPC and Big Data technologies [11, 12, 19, 20, 24, 33].
However, Ignis follows a different path in order to reach this
convergence since none of the previous works have as their
final goal searching for a unique processing engine for Big
Data and HPC applications.

We can summarize the key contributions of this paper as
follows:

— To the best of our knowledge, Ignis is the first Big Data
framework with native multi-language support includ-
ing both JVM and non-JVM-based languages. In this
way, users might combine in the same application the
benefits of implementing each computational task in
the best suited programming language.

— Ignis outperforms the state-of-the-art framework Spark
in terms of performance and scalability running ap-
plications that represent the most typical algorithmic
patterns in Big Data and scientific computing. As a
consequence, Ignis facilitates the convergence of HPC
and Big Data since data and compute-intensive tasks
can be executed efficiently in the same framework.

— Contrary to the developers community belief, we show
that Python is not natively supported by Spark since
data transfers between the JVM and external processes
degrade noticeably the overall performance.

— Ignis provides a simple and powerful user API to de-
velop applications. To facilitate the adoption from the
Big Data community, the Ignis API was inspired by

C. Pifieiro et al.: Preprint submitted to Elsevier

Page 1 of 14

Ignis: an efficient and scalable multi-language Big Data framework

the Spark API in such a way that Ignis codes are easily
understandable by users who are familiar with Spark.

— Finally, Ignis is fully developed inside Docker [10]
containers, which isolates the execution environment
from the physical system and avoids dependency prob-
lems. It includes a custom resource manager to assign
hardware resources and launch containers.

The remainder of this paper is organized as follows. Sec-
tion 2 gives the background and discusses some related work.
Section 3 describes the architecture and the modules of Ig-
nis. The different ways to storage data in Ignis are explained
in Section 4. Section 5 details the Ignis API. Section 6 shows
the experimental results. Finally, the main conclusions de-
rived from this work are explained.

2. Background & Related Work

2.1. Big Data Frameworks

MapReduce [8] is a programming model introduced by
Google for processing and generating large data sets on a
huge number of computing nodes. A MapReduce program
execution is divided into two main phases: map and reduce.
The input and output of a MapReduce computation is a list of
key-value pairs. Users only need to focus on implementing
map and reduce functions. In the map phase, map workers
take as input a list of key-value pairs and generate a set of
intermediate output key-value pairs, which are stored in the
intermediate storage (i.e., files or in-memory buffers). The
reduce function processes each intermediate key and its as-
sociated list of values to produce a final dataset of key-value
pairs. In this way, map tasks achieve data parallelism, while
reduce tasks perform parallel reduction. Currently, several
processing frameworks support this programming model such
as Hadoop [31], Spark [35], Flink [5] and Tez [28].

In particular, Apache Hadoop is the most successful open-

source implementation of the MapReduce programming model.

Hadoop consists of three main layers: a data storage layer
(HDFS), a resource manager layer (YARN), and a data pro-
cessing layer (Hadoop MapReduce Framework). HDFS is a
block-oriented distributed file system based on the idea that
the most efficient data processing pattern is a write-once,
read-many-times pattern.

Apache Spark was designed to overcome some of the
Hadoop limitations, especially when considering iterative
jobs. It supports both in-memory and on-disk computations
in a fault tolerant manner by introducing the idea of Resilient
Distributed Datasets (RDDs). An RDD represents a read-
only collection of objects partitioned across the cluster nodes
that can be rebuilt if a partition is lost. Users can explic-
itly cache an RDD in memory across machines and reuse
it in multiple MapReduce-like parallel operations. By us-
ing RDDs, programmers can perform iterative operations on
their data without writing intermediary results to disk. Apart
from running interactively using Python, Scala and R, Spark
can also be linked into applications in either Java, Python,
Scala or R.

Hadoop and Spark are the de facto standards for Big Data
processing. Jobs on both frameworks are composed by a
driver and a number of executors. The driver is a high-level
process that controls the workflow, and executors are a set
of independent processes distributed on a cluster that run
the work in parallel. The vast majority of the applications
developed for these frameworks are written in Java, Scala
or Python. However, there are some situations where it is
not reasonable to port an application to one of the previous
languages (e.g., performance issues). Note that Python is a
non-JVM language, so it is not natively supported by Spark.
However, Spark takes advantage of Jython [15], which al-
lows a driver implemented in Python to be executed within
the JVM. This causes a misunderstanding in the Spark users
community. By contrast, executors are directly executed with
the available Python interpreter. Hadoop and Spark use sys-
tem pipes to share data outside of the Java Virtual Machine in
order to run non-JVM codes, which introduces an additional
overhead that negatively affects performance [9]. Both Hadoop
and Spark deal with non-JVM codes in a similar way. Next
the process followed by Spark is explained:

— The user application (non-JVM code) must read data
from the standard input and write results to the stan-
dard output. Therefore, input and output must be rep-
resented in a string format.

— An executor containing the input data is created inside
aJVM.

— Each executor launches a subprocess with the user ap-
plication, connecting the JVM to the subprocess using

pipes.

— The executor converts each object stored inside an RDD
to its string representation, writing the result to the
standard input of the subprocess. At the same time,
another thread is reading from the standard output of
the subprocess to generate the resulting RDD with the
output data.

As we mentioned, the above process requires that input
and output data must be represented as a string. As a conse-
quence, the user application is responsible to parse this string
data to a native format supported by the considered non-JVM
language. Note that this process becomes complicated when
more complex data structures such as trees or maps are con-
sidered. Another important drawback is that non-JVM pro-
cesses are not allowed to access Spark and Hadoop functions
such as the context.

2.2. Bridging the Gap between HPC and Big Data

There is unanimity in the research community about the
importance of approaching HPC and Big Data worlds. We
can find in the literature several works dealing with this chal-
lenge from different points of view. We can categorized
those works depending on if the path of convergence goes
from Big Data to HPC or in the opposite direction. In this
way, the first category includes solutions that try to boost

C. Pifieiro et al.: Preprint submitted to Elsevier

Page 2 of 14

Ignis: an efficient and scalable multi-language Big Data framework

the performance of well-established Big Data technologies
when running on HPC systems. For example, taking ad-
vantage of the fast interconnection networks such as Infini-
band [19, 21], introducing new solutions for data analyt-
ics based on classical HPC programming languages [24],
or implementing highly optimized libraries to run on HPC
systems but using JVM-based languages [11]. In the sec-
ond category we find works that extend HPC technologies
in order to support Big Data tasks. For instance, extend-
ing MPI to improve the processing and communication of
large numbers of key-value pairs [20]. Note that, unlike pre-
vious works, our framework covers both categories since its
final goal is that applications belonging to HPC and Big Data
worlds can be executed efficiently in a unique framework.

Finally, there is an interesting paper that do not fit in the
previous categories that analyzes and compares in depth the
Big Data and HPC software stacks [12]. It identifies several
architecture layers where there is synergy, which can facili-
tate the integration of both stacks.

2.3. Apache Thrift

Apache Thrift [1] is an RPC (Remote Procedure Call)
system whose main functionality is the invocation of remote
methods between different programming languages. Apache
Thrift has its own IDL (Interface Definition Language) to de-
fine multiple services. In the first place, each service exports
series of functions with parameters, returns and exceptions.
Second, Thrift generates the corresponding skeleton inter-
face and stub class for the user selected language. A client
uses the stab to make remote calls and the server defines the
methods implementing the skelefon.

Thrift is composed of a set of protocols and transports.
Protocols define how data types are serialized, while trans-
ports indicate the medium through which the data is sent.
There is also the possibility of use intermediate transports
such as Zlib [16] to apply compression in streaming when
data is sent.

Spark and Ignis use Thrift for the communication be-
tween modules, but Ignis uses a modified version to add data
transfer without defining an IDL.

2.4. Docker

Docker [10] containers provide the benefits of virtualiza-
tion (isolation, flexibility, portability, agility, etc.) without
penalizing the I/O performance considerably. Docker makes
use of resource isolation characteristics of the Linux kernel,
so independent containers can be executed on the same host
using different assigned resources without interfering among
them. Containers supply a virtual environment with their
own space of processes and networks. The containers are
built with stacked layers. When a container is in execution,
a new writable layer is created over a set of read-only layers
which define a Docker image. The Docker images are always
built from a base image, usually a root filesystem coming
from a GNU/Linux distribution. These images can be eas-
ily distributed via the official registry, with our own registry
or with tarballs. Images can be built with a custom script-

Docker Resource Manager

: Manager []! !
: Backend / i
: : : < |
: I ! ; Executor 1 L
5 i S e
| I P
' Driver i i b
: : I Executorn |« ..

Driver container Executor containers

Figure 1: Scheme of the Ignis architecture.

ing language (dockerfiles) or by saving the state of a running
container.

Big data processing engines such as Spark have been suc-
cessfully integrated in a Docker environment [17, 32], show-
ing that performance differences between non-containerized
and containerized versions are small. However, while Docker
is widely used in the industry, its adoption in the HPC world
is not very common. There are important efforts in the re-
search community to deal with some of its limitations. For
example, authors in [2] developed a secure way of running
Docker containers on a HPC environment avoiding the priv-
ilege scalation problems. To improve the bandwidth and
throughput of HPC jobs when using containers, other re-
searchers [7] propose a method to allow Docker contain-
ers to take advantage of a Infiniband network when running
HPC applications. Finally, in a recent work [29], the authors
demonstrate how Docker containers can be integrated with
HPC environments and run MPI applications with cloud-
enabled schedulers.

3. Architecture of the Ignis Framework

Ignis is divided into four independent main modules which
run inside Docker containers: BACKEND, MANAGER, DRIVER
and EXECUTOR (see Figure 1). They are coded in different
languages, using Apache Thrift for the inter-module com-
munications. We can summarize the interactions and main
goals of the different Ignis modules as follows. The DOCKER
RESOURCE MANAGER is responsible of launching and de-
stroying containers and also of assigning the required re-
sources to them. Since it can be used outside of the context
of Ignis, the interaction is performed through an HTTP API
instead. The DRIVER and the BACKEND share the same con-
tainer. Users access all the available features of Ignis through
a user API defined by the DRIVER. Note that this module is
only an interface to the BACKEND, where services that define
the logic of the API operations are specified. The BACKEND
is responsible of interacting with the DOCKER RESOURCE
MANAGER to build a cluster of containers according to the

C. Pifieiro et al.: Preprint submitted to Elsevier

Page 3 of 14

Ignis: an efficient and scalable multi-language Big Data framework

r Check resources —l

L]
L X]
o °e « Master API

Py |
3 g x
2 c | s 3
onsu o 2
u 8 5
2 g
7] s £
k] 2 = .
2 @’ o [0}
2 > 2 £
% o @ g
= s 8 9
o} T s o
2 = 2 g
R L o %)
4 e 0 =
(2]
i S °
n: ~
| | =
[$]
L c
Slave API - 3
-
Docker

Figure 2: DoCKER RESOURCE MANAGER architecture.

instructions specified in the driver user code. This module
also handles the distribution and exchange of data among
executors through the MANAGER. In case some data is lost
due to a failure of a cluster node or some of the executors, the
BACKEND is able to recompute the corresponding portion of
data without requiring a costly replication. Finally, the EX-
ECUTOR MODULE implements for the supported program-
ming languages the operations defined by the BACKEND.

Next, a more detailed description of each module is pro-
vided.

3.1. Docker Resource Manager

The DOCKER RESOURCE MANAGER executes itself in-
side Docker containers and is composed of two types of in-
stances: masters and slaves. Master instances manage the
available resources in a cluster and they are responsible of
launching the containers with the assigned resources through
the slave interfaces. Slaves expose the resources of their host
when they are deployed. Both client requests and internal
calls from masters to slaves are done through HTTP APIs.

The DOCKER RESOURCE MANAGER uses Consul!, which
is adistributed, highly available system that provides a frame-
work for discovering and configuring services within a clus-
ter. Among its main functionalities are service discovery
(find new providers of a given service), health checking (check
the status of the registered services) and hierarchical key/-
value storage. The basic communications between Consul,
masters and slaves are illustrated in Figure 2.

When a slave is initialized, the configured resources of
that machine are registered in the key-value store provided
by Consul. The resources are defined in a granular way so
a client can request different types of devices of the same
family (e.g., hard disks, GPUs) and even choose a particu-
lar device. One important attribute is the CPU normalizer,
whose goal is to represent the relative performance of a phys-

Thttps://www.consul.io

"image": "test”,
"resources”: {
"cores": 2,
"memory”: "2GB",

"volumes": [{

"size": "50MiB",

"rw-ro”,

1

2

3

4

5 "swap”: "0",
6

7

8 "mode” :
9

"type”: "tmpfs”

10 A

11 "mode”: "rw-rw",

12 "type": "glusterfs”
13 31,

14 "devices”: [],

15 # RPC and data ports

16 "ports”: [2013, 1963]

17 3,

18 "opts": {

19 "prefered_hosts”: ["nodel”, "node2"],
20 "swappiness”: @

21 Y,

22 "events": {

23 "on_exit": {

24 "restart”: false,
25 "destroy”: true

2 }
27 3,
28 "args": ["manager”, "2013", "6000"]

Figure 3: Example of a DOCKER RESOURCE MANAGER re-
quest.

ical/hyperthread core on a cluster of heterogeneous nodes.
For instance, a less powerful CPU could specify a normal-
izer factor of 1.0, whereas another node with a CPU twice
as powerful would specify 2.0. In this way, the second node
would double the number of virtual cores.

Tasks (in the context of our resource manager) represent
containers with assigned resources. They can be included
into an existing task group. Otherwise, a new task group
would be automatically created for the new task. This fea-
ture allows the user to take actions on all the tasks under
the same group at the same time. When launching a task,
the following parameters can be provided: number of vir-
tual cores, memory, Docker image, arguments for the image,
on-exit behaviors, ports to be opened and volumes. A pref-
erence node list can be also supplied in such a way that the
first node of the list with enough available resources will be
selected to execute the container on. Otherwise, the selec-
tion process will follow a round-robin scheduling. In Con-
sul, tasks are registered as services and a health check end-
point is provided so Consul can be used to observe the status
of the existing tasks. An example of task request is shown in
Figure 3. The master is responsible for checking the request
and finding a slave node for it. If succeeds, it will interact
with the chosen slave node in order to launch the task with
the required resources.

Currently, there are three types of supported volumes:
local, in-memory and distributed. Local volumes are disk
images mounted as loop devices and stored in local disks.
When volumes are not in use, they are compressed. In-memory
volumes are local volumes whose content is copied to a tmpfs,
so memory is used instead of disk during the execution of a
task. Finally, distributed volumes are symbolic links to di-
rectories within a distributed filesystem such as GlusterFS [13].

C. Pifieiro et al.: Preprint submitted to Elsevier

Page 4 of 14

Ignis: an efficient and scalable multi-language Big Data framework

Job Node 1

Cluster 1 _‘_)ﬁ

Worker 1

DOCKER CONTAINER

Node 2

&

DOCKER CONTAINER

&

DOCKER CONTAINER

Cluster n

Figure 4: Job hierarchy in the Ignis framework.

Volumes can be created with custom permissions (ro, rw) for
the first task that mounts it and, optionally, for the same vol-
ume group. Group-shared volumes will be available for all
the tasks with mounted volumes in the same group. Local
volumes will only be available for the group if tasks are in
the same host.

All the containers receive the IP address of their host.
The requested ports are mapped to random available ports
in the host machine.

3.2. Driver Module

The DRIVER MODULE is a user API through which users
can access all the available functionalities of the Ignis frame-
work. Driver code can be programmed in any of the sup-
ported languages (Java, Python and C/C++). This module
does not perform any heavy computation and uses Thrift
RPC to delegate its work to the BACKEND MODULE. The
DRIVER MODULE was designed as a mere interface so the
logic has not to be reimplemented for every programming
language.

Figure 4 shows the hierarchy of the components of a
job in Ignis. A cluster is a group of Docker containers dis-
tributed in multiple computing nodes. In order to build multi-
language applications, at least one worker has to be created
for each programming language. Each worker contains fasks,
which are the parallel operations that compose a job. Tasks
are instantiated as executor processes inside Docker contain-
ers.

Figure 5 shows an example of a driver implemented in
two different programming languages, Python and C++, for
the well-known Wordcount application. Note that both drivers
show a similar behavior and syntax. After initializing the
Ignis framework, a cluster of Docker containers is config-
ured and built (lines 4-10, driver code). Several parame-
ters such as Docker image, number of containers, number of
cores and memory per container are established. Wordcount
has two phases. The first stage consists of a map operation
that takes as input a text file and is tokenized into key-value
pairs (word, 1). This task in the example of Figure 5 was

implemented in Python. As a consequence it is necessary to
create a Python worker in the cluster (line 13, driver code).
Note that the worker is mandatory and it is not related to the
programming language in which the driver code is written.
Once the worker is created, the map task is defined indicating
the file and class paths where the function to be applied can
be found (line 16, driver code). We must highlight that for
languages that support source code serialization as Python or
Java, references to functions can be used instead. Resulting
key-value pairs are stored in words.

In the following phase of the Wordcount job all the keys
are grouped together and the values for similar keys are added
up to find the occurrences for a particular word. To illustrate
the multi-language support of Ignis that reduction task in the
example was implemented in C++. As a consequence, it
is necessary to create a C++ worker (line 19, driver code).

Data can be shared between different workers using the importData

function (line 22, driver code). It is worth noting that this
function is only necessary when a task requires data gener-
ated by a previous one that belongs to a different worker. The
driver code ends storing the final results in a file.

Lazy evaluation is performed so tasks in the driver code
are only executed when a result is required explicitly. In
Figure 5 the trigger that causes the tasks to be launched is
writing the final result to file (line 26, driver code). This ap-
proach is also followed by Spark where RDDs are computed
lazily the first time they are used in an action [34].

3.3. Backend Module

The BACKEND MODULE and the DRIVER MODULE are
executed in the same Docker container (see Figure 1). The
BACKEND MODULE has the services which defines the logic
of the DRIVER MODULE. For instance, reduceByKey consists
of three steps: searching and grouping the keys, and accu-
mulating values with the same key. These operations are
defined in the BACKEND MODULE, but their implementa-
tions for a particular programming language are done in the
EXECUTOR MODULE.

The BACKEND MODULE is also in charge of making the
requests to the DOCKER RESOURCE MANAGER with the aim
of building the cluster following the properties specified in
the driver code. Tasks are stored by the BACKEND MODULE,
which are instantiated as executor processes inside the clus-
ter containers. Therefore, each task uses several executors to
apply in parallel the same operation to multiple data items.
Performance optimizations can be done such as placing ex-
ecutors with high interaction together in the same host.

The distribution and exchange of data among executors
is also handled by this module. Data exchange is an asyn-
chronous operation required by functions such as sort, shuffle
or reduce. The BACKEND MODULE determines the data to
be sent, and the addresses of the source and destination ex-
ecutors for each communication. Once the exchange ser-
vice is initiated all the messages are sent from the executor
processes following the directives of the BACKEND MOD-
ULE. The service is the responsible of building connections
among executors and allocating a buffer to write and read

C. Pifieiro et al.: Preprint submitted to Elsevier

Page 5 of 14

Ignis: an efficient and scalable multi-language Big Data framework

1| # Initialization of the framework

2| ignis.Ignis.start()

3| # Resources/Configuration of the cluster
4| prop = ignis.IProperties()

5| prop[”ignis.executor.image"] = "wordcount”
6| prop[”ignis.executor.instances”] = "2"

7| prop[”ignis.executor.cores”"] = "4"

8| prop["ignis.executor.memory”] = "2GB"

9| # Construction of the cluster

10| cluster = ignis.ICluster(prop)

12| # Initialization of a Python Worker in the cluster

13| worker_python = ignis.IWorker(cluster, "python")

14| # Task 1 - Python: tokenize text into pairs ('word', 1)
15| text = worker_python.readFile("text.txt")

16| words = text.flatMap("wordcount/wd.py:Split")

18| # Initialization of a C++ Worker in the cluster

19| worker_cpp = ignis.IWorker(cluster, "cpp")

20| # Task 2 - C++: reduce pairs with same word and obtain totals
21| # Transfer data from Task 1 - Python

22| words_cpp = worker_cpp.importData(words)

23| count = words_cpp.reduceBykey("wordcount/libwd.so:Join")

25| # Print results to file
26| count.saveAsFile("wordcount.txt”)

28| # Stop the framework
29| ignis.Ignis.stop()

// Initialization of the framework
Ignis::start();

// Resources/Configuration of the cluster
prop = std::make_shared<IProperties>();
(*prop)["ignis.executor.image”] = "wordcount”;
(*prop)["ignis.executor.instances"] = "2";
(*prop)["ignis.executor.cores”] = "
(*prop)["ignis.executor.memory”] =
// Construction of the cluster
cluster = make_shared<ICluster>(prop);

"2GB";

// Initialization of a Python Worker in the cluster
worker_python = make_shared<IWorker>(cluster, "python");
// Task 1 - Python: tokenize text into pairs ('word', 1)
text = worker_python.readFile("text.txt");

words = text.flatMap("wordcount/wd.py:Split");

// Initialization of a C++ Worker in the cluster

worker_cpp = make_shared<IWorker>(cluster, "cpp");

// Task 2 - C++: reduce pairs with same word and obtain totals
// Transfer data from Task 1 - Python

words_cpp = worker_cpp.importData(words);

count = words_cpp.reduceBykey("wordcount/libwd.so:Join");

// Print results to file
count.saveAsFile("wordcount.txt");

// Stop the framework
Ignis::stop();

Figure 5: Wordcount driver code example using Python (left) and its equivalent C++ code (right).

data in the connections. Once all the messages are sent, the
exchange service stops. Note that for efficiency reasons ex-
ecutors in the same host exchange data through the shared
memory.

Finally, we must highlight that Ignis is able to recover af-
ter a failure of a cluster node or some of the executors. The
BACKEND MODULE is able to follow the task trace of the
affected executors in such a way that only those executors
are reallocated and recomputed. It means that even if the in-
put data of an executor is lost, only the tasks necessary to
recompute that portion of data are performed. This process
is done without the intervention of the user. An experimen-
tal evaluation of the fault tolerance mechanisms of Ignis is
shown in Section 6.

3.4. Manager Module

The MANAGER MODULE is the connection point between
the BACKEND MODULE and the executor processes (see Fig-
ure 1). Any command from the BACKEND MODULE to the
executor processes goes through this module, which includes
launching the executors in the containers. In the scenario of
no answer from an executor process, the MANAGER MOD-
ULE kills the corresponding executor and informs the BACK-
END MODULE in order to start the recovery process.

3.5. Executor Module

The operations defined in the BACKEND MODULE are
implemented for each supported programming language in
the EXECUTOR MODULE. Therefore, adding a new language
to Ignis only requires to implement those operations in the
corresponding language.

Most of the driver functions such as map or reduceByKey
are meta-functions. That is, generic functions that require
another function to perform an internal operation. For ex-
ample, flatMap in the codes of Figure 5 apply the Split func-
tion to the input text (line 16, driver code). Those functions
in Ignis are defined using a common interface based on the
number of input and output parameters. Figure 6 shows as
example the Split and Join functions of the Wordcount ap-
plication in Python and C4++. sSplit tokenizes a text into
key-value pairs (word, 1). Therefore, it is a typical flat oper-
ation that produces an arbitrary number (zero or more) val-
ues for each input value. The difference with a map operation
is that it must produce one output value for each input. In the
Ignis API, IFlatFunction represents a flat operation, where
the call method always contains the implementation of the
function.

Join takes two count values for the same word and ac-
cumulates them. Consequently, multiple values are reduced
iteratively to a single value. In this case, [Function2 repre-
sents an operation that takes two arguments and generates
only one result. Note that in the C++ code data types of the
input and output parameters should be specified.

The context object is also passed as argument to Split
and Join (Python - lines 4 and 10, C++ - lines 4 and 19),
which allows the user to access more information such as
the properties defined in the driver code.

On the other hand, some applications may need to per-
form certain specific tasks for each executor process. For in-
stance, opening a database connection, reading a particular
file or preparing the environment before processing. To fa-
cilitate this task all the interfaces to the functions in the Ignis

C. Pifieiro et al.: Preprint submitted to Elsevier

Page 6 of 14

Ignis: an efficient and scalable multi-language Big Data framework

Tokenize text into pairs ('word', 1) 1
class Split(IFlatFunction): 2
31 {

def call(self, elem, context): 4
return [(word, 1) for word in elem.split()] 5
6

7

8

Reduce pairs with same word and obtain totals
class Join(IFunction2):

1 def call(self, eleml, elem2, context): 10 istream_iterator<string> begin(words), end;

1 return eleml + elem2 11
12 for(it = begin; it != end; it++) pairs.emplace_back(*it, 1);
13 return(pairs); }
14| };

16| // Reduce pairs with same word and obtain totals

17| class Join : public api::function::IFunction2<int64_t, int64_t, int64_t>

18 {

19 size_t call(int64_t& countl, int64_t& count2, api::IContext& context) {
20 return countl + count2; }

21| 3

// Tokenize text into pairs ('word', 1)
class Split : public api::function::IFlatFunction<string, pair<string,int64_t>>
api::Iterable<pair<string,int64_t>> call(string& line, api::IContext& context) {
// Vector to accumulate pairs
vector<pair<string,int64_t>> pairs;
// String stream tokenizer
stringstream words(line);
9 // Iterator

Figure 6: split and Join functions for the Wordcount application using Python (left) and its equivalent C++ code (right).

API provide a before method, which is called at the begin-
ning of the executor, and an after method, which is called
once at the end of the processing. This functionality is simi-
lar to the setup and cleanup methods in Hadoop, but it is not
supported by Spark.

4. Data Storage

Ignis provides several options for data storage thanks to
its common storage interface. In this way, it is possible to
create different representations of the data without modify-
ing the operations. Users can choose the type of storage that
best fits their application taking into account the limitations
of their particular execution environment. Only it is neces-
sary to specify the selection as a property in the driver code.
Next we explain the different storage options supported by
Ignis:

— In-Memory: This is the Ignis default option and pro-
vides the fastest performance since all data is stored
in memory.

— Raw memory storage: A serialized representation in
memory that allows to remove extra space introduced
by objects at the expense of an additional overhead.
Serialization protocols are the same used for data ex-
change between executors. The memory buffer is com-
pressed by Zlib [16], which has 9 compression levels
that can be changed when defining the properties in
the driver code. By default, level 6 is applied. The dis-
advantage of serializing data and applying compres-
sion is that elements are not indexed and must be ac-
cessed sequentially.

— Index Raw memory storage: This is a special Python
storage method to overcome the Global Interpreter Lock
(GIL) limitations, which causes only one thread to ex-
ecute at a time [26]. This type of storage uses a binary

representation, uncompressed, with a table to index
the data elements. Data and the index table are stored
in shared memory, so they can be accessed by multiple
Python processes. This storage replaces the default in-
memory storage when using a Python worker and the
number of cores per container is greater than one (see
the Wordcount driver code of Figure 5).

— Raw Disk storage: This is a variation of the raw mem-
ory method where the buffer uses a file mapping ap-
proach. In this way, while a portion of the data is in
memory, the remaining is stored in disk. This storage
option allows to work with large amounts of data that
can not be completely stored in memory.

Data in Ignis is ephemeral. It means that when data pre-
viously computed is used as input of a new task, it is dis-
carded after use. But, what happens when multiple tasks
have the same input data?. In this case, the best solution
in terms of efficiency is not discarding the data to avoid ex-
tra computations for each task. To deal with this issue, Ig-
nis provides two mechanisms to alter the persistence of data:
cache and persist. In particular, the cache method hints that
data should be kept in memory after the first time is com-
puted, because it will be reused. The persist method allows
users to choose a different storage option for the data: in-
memory, raw memory storage or raw disk storage. When
data is no longer needed, it must be explicitly removed by
users with uncache or unpersist indistinctly.

5. Ignis API

To use Ignis, developers should write a driver program
that implements their application at high-level (see the ex-
ample of Figure 5). As we explained in Section 3.5, some
of the driver functions such as map require another one to ex-
ecute. In that case it is also necessary to implement those

C. Pifieiro et al.: Preprint submitted to Elsevier

Page 7 of 14

Ignis: an efficient and scalable multi-language Big Data framework

functions. We must highlight that although the Ignis code
uses a sequential notation, operations on data are performed
in parallel. In order to facilitate the adoption from the Big
Data community, the Ignis API was inspired by the Spark
API in such a way that Ignis codes are easily understand-
able by users who are familiar with Spark. Next we provide
details about the current functions supported by Ignis:

— Managing files: Ignis is able to load and save data
from/to any location in a (distributed) file system. Cur-

rently data can only be read from text files using readFile.

Data can be saved to a file in plain text (saveAsFile) or
JSON format (saveAsJSON). It is possible to save dis-
tributed data into one single file or several files (one
file per executor that owns a portion of the data).

— Map functions: The common characteristic to func-
tions belonging to this type is that they apply the same
function to each element in the data. As aresult of the
transformation, the output could be of different size
with respect to the input. The available functions are:
map, flatMap, filter, keyBy and values. The first two
are very similar. While map applies a one-to-one trans-
formation to the input data, flatMap generates an arbi-
trary number of results. filter is a map operation that
pick elements from the input data matching a predi-
cate. keyBy returns a (key, value) pair after applying a
function to the value argument with the aim of calcu-
lating the key. values does not need an extra function,
it only returns value from a (key, value) pair.

— Reduce functions: The reduction method aggregates
all the elements in the input data using a function.
aggregation is a sort of reduction where the type of
the input and output data is different. Two functions
are necessary, the first one is applied to each element
in a data partition, and the second one combines the
partial results obtained for each partition. reduceByKey
and aggregateByKey are variations where the operation
is performed only among elements with the same key
in such a way that the final result is a set of unique
pairs with values calculated using reduce or aggregate
operations, respectively.

— Sort functions: In order to sort elements Ignis pro-
vides two functions: sort and sortBy. The first method
uses the natural order and does not need any additional
function. sortBy allows to use a user-defined function
to specify the order of the elements. If the result of
applying that function to two elements is true, then
the first element should precede the second one. Both
methods support ascending and descending order.

— Shuffle functions: The shuffle method balances the
number of elements to be processed by each executor,
keeping the same order. This operation is useful to
preserve performance after an operation that greatly
unbalances the data. It should be invoked by the user.

The function importData, which allows different work-
ers to share data, performs an internal shuffle opera-
tion if the number of executors for each worker is dif-
ferent.

— Other functions: Ignis implements several operations
that return a value to the driver code, but they do not
modify or generate new stored data. Spark refers to
this type of operations as actions. In particular, Ig-
nis supports count, take, takeSample and collect. The
most basic operation is count that returns the number
of elements of a stored data collection. collect re-
turns a collection with all the elements stored in the
executors of a task. take applies a collect operation
but obtains only the first n elements, where n is cho-
sen by the user. takeSample returns a random sample
of n elements from the distributed data, with or with-
out replacement. Finally, parallelize distributes the
elements of a collection among the executors to form
a distributed dataset. In this case new stored data is
created.

As we mentioned, the above functions exchange data
with the driver. With the aim of improving overall per-
formance, Ignis also implements optimized versions
for scenarios where data to be exchanged is of small
size.

6. Experimental Results

In this section we evaluate Ignis using several applica-
tions in terms of performance, scalability and fault tolerance.
A comparison with Spark is also provided.

6.1. Hardware Platform and Software
The experiments shown in this section were carried out
on an 8-node cluster, where each node consists of:

CPU: 2 x Intel Xeon E5-2630v4 (2.2Ghz, 10 cores)

Memory: 384 GB of RAM
— Storage: 8 x 4TB 7.2k SATA
Network: 2 x 10GbE

It is a Linux cluster running CentOS 7 (kernel 3.10.0),
Docker 18.09.1-ce and Spark 2.2.0 (with YARN [30] as clus-
ter manager). GlusterFS on XFS was used by Ignis as dis-
tributed file system.

In order to illustrate the benefits of our proposal we have
considered four applications: Minebench”, K-Means, Sort
and Conjugate Gradient. The first three represent differ-
ent types of application patterns for which Spark is consid-
ered the best performing Big Data framework with respect to
other approaches such as Hadoop. For instance, Minebench
can be considered a chain of map operations, while K-Means
uses an iterative MapReduce model. For completeness we

2Do not confuse with the data mining benchmark suite NU-
MineBench.

C. Pifieiro et al.: Preprint submitted to Elsevier

Page 8 of 14

Ignis: an efficient and scalable multi-language Big Data framework

have also analyzed the Conjugate Gradient, which is one
of the most relevant iterative solvers for systems of linear
equations in the HPC world. Using these applications we
will compare the performance of Ignis and Spark. On the
one hand, we will demonstrate that, while Python is natively
supported by Ignis, an important overhead is caused by using
system pipes for data transferring among executors in Spark.
As a consequence, Spark degrades both performance and
scalability since Python is treated as an external language.
On the other hand, we will show the benefits of our approach
when running applications coded using several programming
languages.

Instead of considering only speedup to assess the scala-
bility, we will consider a better alternative based on plotting
the raw execution time when using different number of cores
on a cluster [14]:

— Strong scaling: for a fixed problem, a straight line with
slope -1 indicates good scalability, whereas any up-
ward curvature away from that line indicates limited
scalability.

— Weak scaling: for a sequence of problems with a fixed
amount of work per core, a horizontal straight line in-
dicates good scalability, whereas any upward trend of
that line indicates limited scalability.

6.2. Minebench

Minebench? performs the calculation of SHA-256 hashes
imitating the Proof-of-Work algorithm used in the Bitcoin
protocol [25]. This algorithm has two phases which are im-
plemented using two chained map operations. The first map
is data-intensive, while the second is a compute-intensive
task. In particular, in the first stage a set of Bitcoin transac-
tions are grouped together forming a block proposal. A bi-
nary Merkle tree [23] is calculated for those transactions and
its Merkle root hash is added to a block header in addition
to other attributes such as protocol version, hash of the pre-
vious block header, the current timestamp and the difficulty,
through which is calculated the network target. The network
target determines the threshold under which the hash of the
proposed block header must be considered valid. The sec-
ond stage calculates the hash of the block header iteratively
while the condition is not met. In order to obtain different
results, another attribute is present in the block header: the
nonce. It is an integer that is changed in every iteration so
the resulting hash also changes with it.

Two different implementations of the application were
considered in the tests. The first one was programmed using
only Python. In the second version, two different program-
ming languages were used: Python and C++. In this case,
the first phase of the application uses Python since it requires
handling data, while the compute-intensive tasks use C++
to achieve the best results in terms of performance.

Figure 7 shows the scalability results obtained by Ignis
and Spark when running the Proof-of-Work algorithm us-
ing both implementations (i.e., only Python and Python &

3Publicly available at: https://github.com/brunneis/minebench

C++) on our cluster. The strong scaling tests were obtained
using a 120MB input file containing 300k blocks, while the
weak scaling experiments start from a 120MB input file (one
core) to reach 4.2GB and 9,600k blocks (32 cores). A least-
squares fit is also provided to estimate the scalability results
using up to 256 cores. In addition, graphs show a line cor-
responding to the ideal scalability.

First, we analyze the strong scaling results. When con-
sidering the Python application (Figure 7(a)), Spark and Ig-
nis obtain similar results with a small number of cores. How-
ever, as the number of executors increases, the cost of start-
ing JVMs and transferring data through system pipes to the
Python processes degrades the Spark global performance.
Therefore, running Python applications on Spark prevents
from reaching high levels of parallelism. For example, Ig-
nis is 1.3X faster than Spark using 32 cores. This behavior
is even more clear running the multi-language application
(Figure 7(b)). Since Spark sends data from Python to C++
processes through the JVM, the number of pipe operations
increases. In this way, the overhead is greater than the one
observed for the Python implementation. In this case, Ignis
is 2.2X faster than Spark using 32 cores. The least-square fits
point out that execution times diverge and, as a consequence,
the performance difference between Ignis and Spark will in-
crease when considering more cores. We can conclude that
our framework shows a very good behavior in terms of strong
scalability, always close to the ideal case (red line). On the
other hand, the multi-language implementation clearly out-
performs the Python benchmark.

Weak scaling results are displayed in Figures 7(c) and
7(d). In those tests we keep constant the amount of work
performed for each core. The overhead detected in the re-
sults considering the Python code demonstrates that Python
is not natively supported in Spark like Java or Scala. Note
how the Spark scalability is getting away from the ideal case
(horizontal red line) as the number of cores increases. It can
be observed that Ignis shows a better behavior. When con-
sidering the multi-language code, the overhead of Spark be-
comes even more noticeable. That overhead is due to the
exchange of data between processes. Pipes use the hard disk
for those exchanges, causing an important bottleneck in the
performance. However, Ignis still keeps a good scalability.

6.3. K-means

K-Means is a classical machine learning algorithm for
data clustering, and it is a good example of an iterative MapRe-
duce application pattern. The goal of this algorithm is to
classify a given data set through a certain number of clus-
ters (K clusters). Each cluster has a centroid. The algo-
rithm works iteratively in such a way that every iteration
each data point is assigned to the nearest centroid, and the
K centroids are recalculated as barycenters of the clusters
resulting from the previous assignment step. These oper-
ations are compute-intensive tasks. The algorithm iterates
until the centroids do not change their location or other crite-
rion is fulfilled. The final goal of the algorithm is that points
within the same cluster are as similar as possible (i.e., high

C. Pifieiro et al.: Preprint submitted to Elsevier

Page 9 of 14

https://github.com/brunneis/minebench

Ignis: an efficient and scalable multi-language Big Data framework

® Spark
= |gnis
Spark (least-squares fit)
— Ignis (least-squares fit)
— — Ideal Scalabilit;
7 10°% eal Scalability
©
c
o
[S]
Q
L
[
E
[
s
= 10%
35
[S]
Q
>
[}
1
10 - -
1 10 100
Cores
(a) Python, strong scaling
10
w
©
s
o
[$]
H T .
(]
E
[
c
h=}
5
[S]
Q
i
® Spark
= [gnis
Spark (least-squares fit)
— Ignis (least-squares fit)
3 — Ideal Scalability
10
1 10 100
Cores

(c) Python, weak scaling

Figure 7: Study of the scalability of Ignis and Apache Spark runni

intra-class similarity), while points from different clusters
are as dissimilar as possible (i.e., low inter-class similarity).

Spark provides its own implementation of K-means in
MLIib (Machine Learning Library) [22]. We have imple-
mented a pure Python version for Spark and Ignis of the algo-
rithm described in [3]. A Python-C++ multi-language ver-
sion of that algorithm was also executed on the Ignis frame-
work. In that version compute-intensive tasks were imple-
mented in C++, while the K-means algorithm was speci-
fied in Python. For fair comparison we also included the
Spark performance results for the MLIib version. Exper-
iments were conducted using the NUS-WIDE dataset [6],
which contains 269,648 images with 500 attributes per im-
age.

Figure 8 shows the strong scalability of the K-Means
application. Results were obtained after 10 iterations us-
ing different number of clusters: K = 12 (top graph) and
K = 81 (bottom graph). As we noted above, Spark (Python)
and Ignis (Python) execute the same K-means code on both

10
® Spark
1 = gnis
Spark (least-squares fit)
— Ignis (least-squares fit)
P — Ideal Scalability
o 10
(]
[}
<
®
E
[
e
h=l
310"
(3]
X
[}
0
10 - -
10 100
Cores
(b) Python & C++, strong scaling
10°
w
=}
c
o
[$]
Q
L
[
3
,E 10 F
g 77777.77777.7777.7,_,_.——7****"’777
E
[$]
Q
i
® Spark
= |gnis
Spark (least-squares fit)
— Ignis (least-squares fit)
102 — Ideal Scalability
1 10 100

Cores
(d) Python & C++, weak scaling

ng the Minebench application. Axis are in log scale.

platforms. Tests point out that the continuous exchange of
data between the Python processes and the JVM degrades
the Spark performance when running an iterative application
like K-Means. Performance differences between Ignis and
Python grow as the parallelism increases. On the other hand,
the Spark implementation that uses MLIib outperforms Spark
(Python) and Ignis (Python) even though the driver code was
also programmed in Python. This behavior indicates that
the KMeans method in a Python Spark driver code is just a
wrapper of the most efficient Scala implementation of the
algorithm. In this way, the overhead caused by the pipe
operations disappears. In any case, the Python-C++ multi-
language code on Ignis is the fastest implementation.

To summarize the benefits of using Ignis with respect to
Spark when running iterative MapReduce applications we
show in Figure 9 the previous K-Means results expressed in
terms of speedup. The top graph illustrates how Python is
considered a non-native language by Spark. To do so, the
speedup between the pure Python K-Means versions run-

C. Pifieiro et al.: Preprint submitted to Elsevier

Page 10 of 14

Ignis: an efficient and scalable multi-language Big Data framework

10 : T
15 - ®- Spark (MLIib)
v Spark (Python)
A 4 --= - Ignis (Python)
- v ——Ignis (C++)
’UT v
=] v
& 10° b
8 9 L L 4
0
Py . .
= K
= .
c ~ ~
o© -
3 10% \\“ e
9 T T
L% B S - -0
1 2 4 8 16 32 64
Cores
- ®- Spark (MLib)
v Spark (Python)
v - = - |gnis (Python)
. N N I H
4 gnis (C++)
’UT 10 [v TS SEE SIS HTT
2
3
a2 v
; o - v
E - - v
= - KN T
c o N
S 10° e
|_|><_| - \\\\1»77741
T >
2
10 1 2 4 8 16 32 64
Cores

Figure 8: Study of the scalability of Ignis and Apache Spark
running the K-Means application: K = 12 (top) and K = 81
(bottom). Axis are in log scale.

ning on Spark and Ignis for each number of cores is calcu-
lated. According to the results, Ignis is on average 1.94x
and 1.25x faster than Spark with K = 12 and K = 81,
respectively. Speedups up to 2.4x were reached. The bot-
tom graph displays the speedup between the best performing
Spark version (MLIib) and the Ignis multi-language code for
a particular number of cores. In this case, Ignis is on aver-
age 1.58% and 2.06X faster than Spark with K = 12 and
K = 81, respectively. Therefore, Ignis is able to handle effi-
ciently the combination of different programming languages
in one iterative MapReduce application, extracting the max-
imum performance from the considered parallel system.

On the other hand, one of the main features of Ignis is
that it provides fault tolerance efficiently. As we pointed out
in Section 3.3, if some data is lost, Ignis has enough infor-
mation about how it was derived. In this way, only those
operations needed to recompute the corresponding portion
of data are performed. Therefore, lost data can be recovered
without requiring costly replication. Next we will evaluate
the cost of reconstructing a data partition after a node failure
in the K-Means application.

Figure 10 compares the running times for 15 iterations

N
3

K =12
K=81

N

=
3}
]

[
[
|

o
2]

Speedup Ignis (Python) with respect to Spark (Python)
o
[
[

Cores

w
3

w

N
3]

N

g
[}

[

o
3]

Speedup Ignis (C++) with respect to Spark (MLIlib)

o

Cores

Figure 9: Speedup of Ignis with respect to Apache Spark run-
ning the K-Means application.

of K-Means, with one where a node fails at the start of the
10th iteration. We also included the Spark times for the same
scenario. Tests were performed considering the Python im-
plementation using 16 cores on a 4 nodes cluster. Until the
end of the 9th iteration, the Ignis iteration times were about
3 seconds. In the 10th iteration, one of the nodes is killed,
resulting in the loss of the tasks running on that machine
and the data partitions stored there. As a consequence, Ig-
nis reruns these tasks on other machine nodes, rebuilding
the data, which increases the iteration time to 15s. Once the
lost data is reconstructed, the Ignis iteration time goes back
down to 3s. Spark behaves similarly, increasing the 10th it-
eration time from about 7s to 19s, going back to the normal
iteration time afterwards.

Note that with a checkpoint-based fault recovery mecha-
nism, recovery would likely require rerunning at least several
iterations, depending on the frequency of checkpoints.

6.4. Sort Benchmark

Sorting is a very common and useful data-intensive op-
eration, thus it is supported by Spark and Ignis. Elements in
Ignis are sorted by means of the MergeSort algorithm where
elements are distributed by a regular sampling among the ex-

C. Pifieiro et al.: Preprint submitted to Elsevier

Page 11 of 14

Ignis: an efficient and scalable multi-language Big Data framework

Il spark
18 Bl ignis |
16}
12
©
cl4r
o
3
\912’
g10f
=
c 8h
o
© 6
Q
=,
ol

0
1 2 3 456 7 8 9 101112131415
Iteration

Figure 10: Iteration times for K-Means in presence of a failure.
One node failed at the start of the 10th iteration.

ecutors [18]. This task requires that executors exchange data.
In both platforms the user can define a comparison function
to be used together with sort, but the algorithm itself can not
be modified. In contrast to the map operation, Spark does not
allow to implement that user-defined function in a program-
ming language different than the one used in the driver. That
limitation does not appear in Ignis since any combination of
programming languages for the driver and tasks is permit-
ted. In this way, a Ignis driver written in Python could use a
Java or C++ comparison function.

Performance tests were carried out sorting in ascending
order 35GB of text data, which contains about two billion
lines. Each line has from 10 to 30 bytes of random text. We
have compared the sort built-in capability of Spark with Ig-
nis. Two different implementations in Ignis were analyzed.
In the first one, the code was completely programmed in
Python, while the second has a Python driver and the sort
operation uses a user-defined C++ function for comparison
purposes. Results are displayed in Figure 11. The top graph
shows the execution times up to 64 cores. We can observe
that while the behavior of the strong scalability is similar
for all the cases, Ignis outperforms Spark in terms of ex-
ecution time even for the Python implementation. Using
a Python-C++ multi-language application is again the best
option. Speedups, which are displayed in the bottom graph,
were calculated using as reference the Spark execution with
one core. Results confirm the previous observations regard-
ing computing times. For instance, Ignis sorts data 1.14X
and 1.72x faster than Spark using 64 cores when consider-
ing the Python and the multi-language versions, respectively.

6.5. Conjugate Gradient (CG)

The Conjugate Gradient (CG) is an iterative method for
solving sparse, large systems of linear equations. It is con-
sidered one of the most important computational kernels ly-
ing at the heart of many HPC scientific and engineering ap-
plications. A CG iteration involves the following compute-
intensive linear algebra operations [4]: one sparse matrix-

5

10 T T
-® - Spark
- = -|gnis (Python)
'S —+— Ignis (C++)
R S
c .4 N T
g 107} TR
8 < i
< R
g NG T
F I S
c TR
g ~ e
2 10°t TR
b3 ~
& -
2
10 2 4 8 16 32 64
Cores
80— T
I Spark
70 [1gnis (Python) _
[ignis (C++)

Cores

Figure 11: Study of the scalability of Ignis and Apache Spark
sorting 35GB of text data.

vector product, three vector updates, and two inner products.

We have implemented the CG method for Spark and Ig-
nis using Python. BLAS routines were carried out using the
Intel MKL library. Our tests were conducted considering as
input a 100k x 100k sparse matrix with 900M nonzeros. The
method was executed until 100 iterations were reached. The
experimental results are shown in Figure 12. The top graph
illustrates the strong scalability of CG using up to 64 cores.
Although the scalability results are not very good, Ignis has
been proven to be clearly faster than Spark running this typ-
ical HPC application. For example, as it is displayed in the
figure at the bottom, Ignis is 1.43X faster than Spark with
64 cores. In that graph speedups were computed taking as
reference the Spark execution time with one core.

7. Conclusions

In this work we introduced Ignis, a new Big Data frame-
work whose main contribution is twofold. First, unlike stan-
dard Big Data engines such as Hadoop and Spark, the new
system allows to execute natively applications implemented
using non-JVM languages. Second, it facilitates the devel-
opment of multi-language applications in such a way that

C. Pifieiro et al.: Preprint submitted to Elsevier

Page 12 of 14

Ignis: an efficient and scalable multi-language Big Data framework

10
v - - Spark
v - = -|gnis

Execution Time (seconds)

10 1 2 4 8 16 32 64
Cores
5
I Spark
4.5{C Jignis x5l 1
(¥
<@
ab ~8| |1
35 R

16 32 64

Figure 12: Study of the scalability of Ignis and Apache Spark
running the CG application. Axis are in log scale.

different computing tasks could be implemented in the pro-
gramming language that best fits each of them. In this way, it
is possible to exploit efficiently the capabilities of different
programming languages in the same application. The sys-
tem runs completely inside Docker containers isolating the
execution environment from the physical machine.

The experimental evaluation was carried out using four
different applications with the aim of covering some of the
most representative algorithmic patterns in Big Data and sci-
entific computing. First, an application that performs the
Proof-of-Work algorithm used in the Bitcoin protocol, which
corresponds to chain several map operations. Second, an it-
erative MapReduce algorithm such as K-Means. Third, a
Sort operation, which is one of the most important kernels
at the core of many other parallel applications. And finally,
the Conjugate Gradient, a very well-known HPC method
to deal with systems of linear equations. Spark and Ignis
frameworks have been compared. According to the results
several global conclusions can be made. Spark does not na-
tively support Python applications since an important degra-
dation in performance and scalability was observed. We
find the cause in the exchange of data between Python pro-
cesses and the JVM through system pipes. These pipe oper-

ations were completely removed in Ignis, which clearly out-
performs Spark when running Python applications. For in-
stance, running K-Means is up to 2.4X faster than Spark. A
slowdown in the Spark performance was also detected when
running multi-language applications due to the same causes.
On the contrary, Ignis allows to execute efficiently an appli-
cation written in several programming languages without ad-
ditional overhead. In this way, it is possible, for example, use
Python for handling data while in the same application C++
code deals with compute-intensive tasks. Finally, in addition
to Java and Python, Ignis currently supports C/C++, which
is probably the most important programming language in
HPC. As a consequence, Ignis allows to execute applications
belonging to HPC and Big Data worlds in the same frame-
work. Therefore, Ignis means a new step forward towards
the real convergence of HPC and Big Data.

References

[1] Apache Thrift, .
April, 2019].

[2] Azab, A., 2017. Enabling Docker Containers for High-Performance
and Many-Task Computing, in: IEEE Int. Conference on Cloud En-
gineering (IC2E), pp. 279-285.

[3] Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S.,
2012. Scalable K-means++. Proceedings of the VLDB Endowment
5, 622-633.

[4] Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongarra,
J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H., 1994. Tem-
plates for the Solution of Linear Systems: Building Blocks for Itera-
tive Methods. Society for Industrial and Applied Mathematics.

[5] Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S.,
Tzoumas, K., 2015. Apache Flink: Stream and Batch Processing in a
Single Engine. IEEE Data Eng. Bull. 38, 28-38.

[6] Chua, T.S., Tang,J., Hong, R, Li, H., Luo, Z., Zheng, Y., 2009. NUS-
WIDE: A Real-world Web Image Database from National University
of Singapore, in: Proc. of the ACM Int. Conference on Image and
Video Retrieval (CIVR), pp. 48:1-48:9.

[7] Chung, M.T., Le, A., Quang-Hung, N., Nguyen, D., Thoai, N., 2016.
Provision of Docker and InfiniBand in High Performance Comput-
ing, in: Int. Conference on Advanced Computing and Applications
(ACOMP), pp. 127-134.

[8] Dean,J., Ghemawat, S., 2004. MapReduce: Simplified Data Process-
ing on Large Clusters, in: Symposium on Operating System Design
and Implementation, pp. 10-10.

[9] Ding, M., Zheng, L., Lu, Y., Li, L., Guo, S., Guo, M., 2011. More
Convenient More Overhead: The Performance Evaluation of Hadoop
Streaming, in: Proc. of the ACM Symposium on Research in Applied
Computation, pp. 307-313.

[10] Docker, . https://www.docker.com/. [Online; accessed April, 2019].

[11] Ekanayake, S., Kamburugamuve, S., Fox, G.C., 2016. SPIDAL Java:
High Performance Data Analytics with Java and MPI on Large Multi-
core HPC Clusters, in: Proc. of the 24th High Performance Comput-
ing Symposium, pp. 3:1-3:8.

[12] Fox, G.C., Qiu, J., Kamburugamuve, S., Jha, S., Luckow, A., 2015.
HPC-ABDS High Performance Computing Enhanced Apache Big
Data Stack, in: 15th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, pp. 1057-1066.

[13] GlusterFS, . https://www.gluster.org/. [Online; accessed April,
2019].

[14] Heath, M.T., 2015. A tale of two laws. The International Journal of
High Performance Computing Applications 29, 320-330.

[15] Jython, . http://www.jython.org/. [Online; accessed April, 2019].

[16] Kukunas, J.T., Gopal, V., Guilford, J., Gulley, S., van de Ven, A.,
Feghali, W., 2014. High Performance ZLIB Compression on Intel

https://thrift.apache.org/. [Online; accessed

C. Pifieiro et al.: Preprint submitted to Elsevier

Page 13 of 14

https://thrift.apache.org/
https://www.docker.com/
https://www.gluster.org/
http://www.jython.org/

Ignis: an efficient and scalable multi-language Big Data framework

Architecture Processors. Technical Report. Intel.

[17] Lei, Z., Du, H., Chen, S., Zhu, C., Liu, X., 2016. DCSPARK: Virtu-
alizing Spark using Docker containers, in: Int, Conference on Audio,
Language and Image Processing (ICALIP), pp. 13-18.

[18] Li, X., Lu, P., Schaeffer, J., Shillington, J., Wong, P.S., Shi, H., 1993.
On the Versatility of Parallel Sorting by Regular Sampling. Parallel
Computing 19, 1079-1103.

[19] Lu, X., Islam, N.S., Wasi-Ur-Rahman, M., Jose, J., Subramoni, H.,
Wang, H., Panda, D.K., 2013. High-Performance Design of Hadoop
RPC with RDMA over InfiniBand, in: 42nd Int. Conference on Par-
allel Processing, pp. 641-650.

[20] Lu, X., Liang, F., Wang, B., Zha, L., Xu, Z., 2014. DataMPI: Extend-
ing MPI to Hadoop-Like Big Data Computing, in: IEEE 28th Int.
Parallel and Distributed Processing Symposium, pp. 829-838.

[21] Malitsky, N., Chaudhary, A., Jourdain, S., Cowan, M., O’Leary, P.,
Hanwell, M., Van Dam, K.K., 2017. Building near-real-time process-
ing pipelines with the Spark-MPI platform, in: New York Scientific
Data Summit (NYSDS), pp. 1-8.

[22] Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu,
D., Freeman, J., Tsai, D., Amde, M., Owen, S., Xin, D., Xin, R.,
Franklin, M.J., Zadeh, R., Zaharia, M., Talwalkar, A., 2016. MLlIib:
Machine Learning in Apache Spark. The Journal of Machine Learn-
ing Research 17, 1235-1241.

[23] Merkle, R.C., 1980. Protocols for public key cryptosystems, in: IEEE
Symposium on Security and Privacy, pp. 122-122.

[24] Misale, C., Drocco, M., Tremblay, G., Martinelli, A.R., Aldinucci,
M., 2018. PiCo: High-performance data analytics pipelines in mod-
ern C++. Future Generation Computer Systems 87, 392 — 403.

[25] Nakamoto, S., 2008. Bitcoin: A Peer-to-Peer Electronic Cash System.
URL: http://bitcoin.org/bitcoin.pdf.

[26] Palach, J., 2014. Parallel Programming with Python. Packt Publish-
ing.

[27] Pideiro, C., Abuin, J.M., Pichel, J.C., 2017. Perldoop2: A Big Data-
Oriented Source-to-Source Perl-Java Compiler, in: Proc. of the IEEE
Intl. Conf. on Big Data Intelligence and Computing (DataCom), pp.
933-940.

[28] Saha, B., Shah, H., Seth, S., Vijayaraghavan, G., Murthy, A., Curino,
C., 2015. Apache Tez: A Unifying Framework for Modeling and
Building Data Processing Applications, in: Proc. of the ACM SIG-
MOD Int. Conference on Management of Data, ACM. pp. 1357-1369.

[29] Saha, P., Beltre, A., Govindaraju, M., 2019. Scylla: A mesos
framework for container based MPI jobs. CoRR abs/1905.08386.
arXiv:1905.08386.

[30] Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar,
M., Evans, R., Graves, T., Lowe, J., Shah, H., Seth, S., Saha, B.,
Curino, C., O’Malley, O., Radia, S., Reed, B., Baldeschwieler, E.,
2013. Apache Hadoop YARN: Yet Another Resource Negotiator, in:
Proc. of the 4th Annual Symposium on Cloud Computing, ACM. pp.
5:1-5:16.

[31] White, T., 2015. Hadoop: The Definitive Guide. 4th ed., O’Reilly
Media, Inc.

[32] Ye, K., Ji, Y., 2017. Performance Tuning and Modeling for Big Data
Applications in Docker Containers, in: Int. Conference on Network-
ing, Architecture, and Storage (NAS), pp. 1-6.

[33] Yildiz, O., Zhou, A.C., Ibrahim, S., 2018. Improving the Effective-
ness of Burst Buffers for Big Data Processing in HPC Systems with
Eley. Future Generation Computer Systems 86, 308 — 318.

[34] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley,
M., Franklin, M.J., Shenker, S., Stoica, 1., 2012. Resilient Distributed
Datasets: A Fault-tolerant Abstraction for In-memory Cluster Com-
puting, in: Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, USENIX Association. pp. 2-2.

[35] Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.,
2010. Spark: Cluster Computing with Working Sets, in: Proc. of the
2nd USENIX Conf. on Hot Topics in Cloud Computing (HotCloud),
pp. 10-10.

C. Pifieiro et al.: Preprint submitted to Elsevier Page 14 of 14

http://bitcoin.org/bitcoin.pdf
http://arxiv.org/abs/1905.08386

	Introduction
	Background & Related Work
	Big Data Frameworks
	Bridging the Gap between HPC and Big Data
	Apache Thrift
	Docker

	Architecture of the Ignis Framework
	Docker Resource Manager
	Driver Module
	Backend Module
	Manager Module
	Executor Module

	Data Storage
	Ignis API
	Experimental Results
	Hardware Platform and Software
	Minebench
	K-means
	Sort Benchmark
	Conjugate Gradient (CG)

	Conclusions

