eXtream: a System for Real-time Monitoring of Dynamic Web Sources
Marcos Fernández-Pichel
Rodrigo Martínez-Castaño
David E. Losada
Juan C. Pichel
marcosfernandez.pichel@usc.es
rodrigo.martinez@usc.es
david.losada@usc.es
juancarlos.pichel@usc.es
Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santiago de Compostela
15782 Santiago de Compostela, Spain

ABSTRACT
In this work, we introduce eXtream, a Big Data platform whose main goal is to deploy modular and customisable processing topologies for massive analysis of web data in real time. The system offers a reduced group of pre-installed modules that can be easily combined in a visual way. Additionally, an advanced user can upload new modules and extend an existing topology. This tool facilitates the development of many Information Retrieval and Big Data applications, such as query-based real-time filtering or topic analysis services on Social Media data. To demonstrate it, we have also developed an initial web-based demonstrator.

CCS CONCEPTS
• Information Retrieval → Real-time; • Text Mining → Social Media Analytics.

KEYWORDS
Big Data, Real Time, Web Streams, Datasets

1 INTRODUCTION
Processing Social Media data is a challenge and doing it in real time is critical for many added-value applications. For example, according to Twitter1, the number of daily posted tweets is higher than 500 million (around 5,787 tweets per second).
eXtream is a Big Data platform for building topologies oriented to real-time processing of web or stream data. It has many potential use cases, such as doing a reputation analysis about a company, its products or its competitors from social media data. It can also be used by Information Retrieval (IR) experts to collect social media texts and create their own datasets.

This tool is built with the Python framework CATENAE [1], which has several advantages over other existing technologies (e.g., inherent horizontal scalability and inter-module communication through RPC). However, eXtream goes a step further offering a set of text mining modules which can be easily interconnected using the GUI provided by our web-based demonstrator. As a consequence, users are able to construct data processing topologies avoiding the low level details such as manually deploying Docker containers. Moreover, eXtream has several important differences with respect to other existing frameworks (see Table 1 for details). For instance, our system can combine real-time processing with the capability of doing batch tasks. It also supports Python natively and allows defining cycles among the topology modules.

As said before, eXtream offers a reduced group of pre-installed modules. Among them, we can highlight a query-based filter or a topic analysis module. Note that, in addition, advanced users can easily extend the processing pipelines adding new user-defined modules.

2 SYSTEM OVERVIEW AND IMPLEMENTATION
A topology example that interconnects all the current available pre-installed modules of eXtream is displayed in Figure 1 (top). This is just a simple example of the countless possible configurations. All the topology modules and sources are interconnected using Apache Kafka2 topics, and the system state is kept in a MongoDB database. It is worth noting that all the implementation and deploying details

2https://kafka.apache.org/
Table 1: Main features of eXtream and other related technologies and frameworks.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Streaming</th>
<th>Python-native</th>
<th>Execution cycles</th>
<th>Easy deployment management</th>
<th>Graphical definition of topologies</th>
<th>Docker oriented</th>
<th>Resource assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadoop MR</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Spark</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Storm</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Stream Parse</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Kafka</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Kafka Streams</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>eXtream</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

are completely hidden to the users of our platform. In particular, the available modules are:

- A Reddit crawler [2] and a Twitter crawler [3] that inject text streams into the topologies built with eXtream.
- A real-time filtering module is essential since it acts as a first distilling step of the data that eXtream receives in real time. It is a query-based filter where the current implementation supports exact and inexact\(^3\) matching. This module can be easily customised to implement any IR filter and it can help IR experts create their own collections.
- A dynamic tag cloud generator represents a primitive form of summary. It removes stopwords and normalises the words to build a tag cloud from the resulting bag of words.
- A topic analysis module attempts to discover the hidden topics in the texts. We have used Gensim [4] and LDA [5], which perform unsupervised learning over a corpus.
- A stats module that returns the number of distinct users and texts that are currently being analyzed by the platform.
- eXtream also supports batch tasks. As a first example, we provide a module that counts the number of recovered texts over a certain period.

Furthermore, a module placed at the end of every topology receives the output data (see Figure 1 at the bottom). It also implements a RESTful API in order to visualize results. Figure 2 displays the GUI main view and a possible topology example. It should be noticed that each kind of module has its own dashboard or view. For instance, Figure 3 shows the result of searching the exact query Amazon in Reddit. Finally, we provide a demonstration video showing eXtream in operation\(^4\).

3 CONCLUSIONS

Flexibility is a core strength of this system, which can be customisable for other IR or related purposes with little effort. This tool is available for the research community to expand it and employ it for numerous Information Access tasks\(^5\).

ACKNOWLEDGMENTS

This work was funded by FEDER/Ministerio de Ciencia, Innovación y Universidades – Agencia Estatal de Investigación/ Project (RTI2018-093336-B-C21). This work has received financial support from the Conselleria de Educación, Universidade e Formación Profesional (accreditation 2019-2022 ED431G-2019/04, ED431C 2018/29, ED431C 2018/19) and the European Regional Development Fund (ERDF), which acknowledges

\(^3\)Stopwords are removed and the remaining words can appear in any order.

\(^4\)https://youtu.be/5Aw4mAc91Tc

\(^5\)https://github.com/MarcosFP97/eXtream

REFERENCES

