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ABSTRACT This paper deals with the class imbalance problem in the context of the automatic selection
of the best storage format for a sparse matrix with the aim of maximizing the performance of the sparse
matrix vector multiplication (SpMV) on GPUs. Our classification method uses convolutional neural net-
works (CNNs) and proposes several solutions to mitigate the bias toward the majority classes when the
data are not balanced. First, the CNNs are trained using images that represent the sparsity pattern of the
matrices, whose pixels are colored according to different matrix features. In addition, we introduce a new
network called SpNet, which achieves better results than a standard network as AlexNet in terms of prediction
accuracy even having a more simple architecture. Finally, sampling techniques and cost-sensitive methods
have been studied to give more emphasis on minority classes. The experiments conducted show that our
classifiers are able to select the best performing format 92.8% of the time, obtaining 98.3% of the maximum
attainable SpMVperformance. A comparison to other state-of-the-art classificationmethods is also provided,
demonstrating the benefits of our proposal.

INDEX TERMS Sparse matrix, classification, imbalance, deep learning, CNN, performance.

I. INTRODUCTION
Sparse matrix-vector multiplication (SpMV) is considered
one of the most important computational kernels lying at
the heart of many scientific and engineering applications.
There is consensus when affirming that SpMV performs
poorly on multicore and manycore architectures since it is
a memory-bound operation. As a consequence, the research
community has devoted numerous efforts to develop efficient
and optimized implementations. Given that the SpMV per-
formance depends on both the target parallel system and the
sparsity structure of thematrix, many existent storage formats
have focused on a particular application domain, sparsity
pattern and/or computer architecture. The compressed sparse
row (CSR) format is the most popular data structure to store
a sparse matrix for multicore systems, while for GPUs we
cannot find a prevailing format. In that case, the multi-
ple goals of maximizing coalesced global memory access,
reducing thread divergence, and increasing warp occupancy
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often conflict with each other [1]. We must take into account
that using an inappropriate format could lead to an important
degradation in the SpMV performance. As a consequence,
the automatic selection of the best performing format is an
important and challenging classification task.

On the other hand, Convolutional Neural Networks (CNNs)
are the most important deep learning networks for image
recognition and classification. The main difference between
CNNs and traditional machine learning approaches is that
they integrate automatic feature extraction and classification
in one model. CNNs have also demonstrated promising
results with other kinds of applications such as Natural
Language Processing (NLP), speech and audio processing,
to name a few. However, dealing with classification problems
related to High Performance Computing (HPC) using CNNs
is an incipient field [2]–[4].

Many times CNNs have to learn from imbalanced data
in such a way that some classes have a significantly
higher number of examples in the training set than others.
This phenomenon is termed as the class imbalance problem.
Most existing learning algorithms produce inductive bias
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towards the majority classes if training data are not balanced,
resulting in poor minority class recognition performance.
However, in many application domains the correct classifi-
cation of a minority class sample is equally important to the
correct classification of a majority class sample. For instance,
in the selection of the best performing format for the SpMV
kernel, where a format (class) does not prevail over the others.
Existing methods for addressing class imbalance work at two
different levels [5]: data-level and algorithm-level. In the first
case, techniques aim to balance the class distribution in the
dataset in order to make standard training algorithms work.
So these techniques change the original dataset. A differ-
ent approach is followed by algorithm-level methods, which
modify existing techniques to give more emphasis on the
minority classes without changing the dataset.

In this paper we address the automatic classification of
sparse matrices to select the best SpMV performing storage
format on GPUs using CNNs. It is important to note that the
problem to deal with is highly imbalanced, with a sample size
ratio between the smallest and largest classes of 1:160. Six
different storage formats have been considered. Our method
generates images from the sparsity pattern of the matrices.
Each pixel in those images represent a submatrix, whose RGB
color is used to code some property or feature of the corre-
sponding matrix. In this way, the produced datasets can suc-
cessfully train a CNN. This approach has been successfully
applied to a more simple classification task with only three
classes and a balanced dataset [3]. The main contributions of
this work are the following:
• To the best of our knowledge, this paper is the first to
deal with the class imbalance problem in the context of
the automatic selection of the best storage format for
sparse matrices. Sampling techniques and cost-sensitive
methods have been studied to specifically overcome the
issues related to training classifiers using imbalanced
data.

• To validate our proposal we have generated a dataset
containing more than 10,000 sparse matrices. In this
way, matrices represent a wide range of features and
sparsity patterns. This dataset is based on matrices
included in the SuiteSparse matrix collection [6], which
come from a variety of real applications.

• Although our methodology is able to generate images
that can successfully train a standard network such as
AlexNet [7], we go a step further introducing SpNet,
a new simplified network architecture which is able
to beat AlexNet in terms of classification and SpMV
performance.

• The new method is evaluated considering two differ-
ent GPUs. It selects the best storage format 92.8% of
the time, obtaining 98.3% of the highest available SpMV
performance.

• A comparison with several state-of-the-art classifica-
tion methods is provided, showing the benefits of our
proposal.

The remainder of this paper is organized as follows.
Section II gives the background and discusses some related
research. Section III summarizes our classification method-
ology. The experimental setup is explained in Section IV.
Performance results are shown and discussed in Section V.
Finally, the main conclusions derived from the work are
explained.

II. BACKGROUND & RELATED WORK
A. SPARSE MATRIX FORMATS
There is not a general storage format that is adequate for all
kind of sparse matrices since their shape, number and distri-
bution of nonzeros, depends on the application domain from
which they come. Over the past few decades, many storage
formats has been proposed (the interested reader can find a
survey in [8]). These formats differ in the storage require-
ments, the accessing methods and how well they adapt to
different application domains or hardware platforms. Some of
them are only well suited for matrices with a particular struc-
ture. For instance, diagonal matrices (DIA) or matrices con-
taining small dense block sub-structures (BELLPACK [9]).
In this paper, we selected storage formats that are appro-
priate for matrices coming from different real problems but
also efficient for sparse matrix computations. In particu-
lar, we have considered the compressed row storage (CSR),
ELLPACK (ELL), hybrid (HYB) [10] and blocked com-
pressed sparse row (BSR) formats, which are implemented
in the NVIDIA cuSPARSE1 library (see Figure 1):
• Compressed Sparse Row (CSR): It is a popular
and general-purpose sparse matrix representation. The
matrix is stored using three arrays: the first one stores
the nonzero values, the second stores the corresponding
column indices, and the last stores the pointers to the
beginning of every row.

• ELLPACK (ELL): For a n×m matrix with a maximum
of k nonzeros per row, this format stores the nonzeros in
a dense n×k array, with another same dimensional array
to store the column index of every element. Rows whose
number of nonzeros are fewer than k are padded with
zeros. ELL is efficient if k is not substantially different
from the average number of nonzeros per row.

• Hybrid (HYB): This format combines the computation
efficiency of ELL with the simplicity and generality of
COO (that stores row and column indices explicitly).
Most of the nonzeros are stored in ELL format, while
rows with a considerably different number of entries are
stored in COO format.

• Blocked Compressed Sparse Row (BSR): It can be con-
sidered a blocked version of the CSR format. Instead of
storing the nonzeros independently, dense submatrices
(blocks) of fixed shape are used instead. Three arrays
are required to store the entries of thematrix in BSR. The
first array stores the column indices of the first elements

1https://developer.nvidia.com/cusparse
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FIGURE 1. An example of CSR, ELL and BSR sparse matrix storage formats.

of all blocks. The row pointers array points to the begin-
ning of each block row in the columns array. Finally,
the elements of each block are stored contiguously in
the values array.

In addition, we have included a new format called
CSR5 [11] which shows a good behavior in terms of per-
formance for both regular and irregular matrices on various
hardware platforms such as multicores, GPUs and Intel Xeon
Phi. This format extends the CSR format, leaving unchanged
one of the three arrays of CSR. It stores the other two arrays
in an in-place tile-transposed order, and adds two extra data
structures containing auxiliary information.

B. CONVOLUTIONAL NEURAL NETWORKS
CNNs are a type of neural networks. Their characteris-
tics make them especially suitable for image classification.
A CNN passes the input image through a series of layers
that progressively learn low-level and high-level features of
the image, these last used for classification. Layers in CNNs
can be classified into three categories: input layers, feature-
extraction layers and classification layers.

Input layers load and store the input data (raw image)
to be processed in the network. This input data specifies
several characteristics of the image: width, height, and num-
ber of channels. Feature-extraction layers perform several
consecutive operations: convolution, nonlinear activation and
pooling. The main goal of a convolution layer is to extract
features from the input image. We can think of convolution
as sliding a small window (filter) across the input image and,
at each location (receptive field), computing the element-wise
matrix multiplication between the weights of the filter and
the receptive field and then summing up all values. As a
result, we obtain a 2D activation map; the filter activates
a specific type of visual feature from the image, such as
edges, curves, etc. Several filters can be used in the same

convolution layer, generating multiple activation maps. It is
common to apply a nonlinear activation function after every
convolution operation. The ReLU (Rectified Linear Unit)
is the most widely used activation function in neural net-
works. It replaces all negative pixel values in the feature
map by zero. In order to reduce the dimensionality of fea-
ture maps, it is also usual to insert a pooling layer between
successive convolution+ReLU layers. The pooling opera-
tion decreases the amount of parameters and computation in
the network while retaining the most important information.
Finally, the classification layers consist of one or more fully-
connected layers at the end of the architecture to produce
class scores. They use the high-level features generated by
the convolutional and pooling layers for estimating the prob-
ability of the image belonging to each class.

Many CNN architectures have been proposed, some of the
most popular are LeNet [12], AlexNet [7], GoogLeNet [13],
VGGNet [14] and ResNet [15].

During the training process, the CNN automatically adjusts
the network parameters. First, all the filter weights and
parameters are initialized (a common practice is random
initialization). Then, the network takes a training input image
(labeled input image) and forward propagates it through
the network along the feature-extraction layers and fully-
connected layers, obtaining a prediction (probability of the
image belonging to each class). A prediction error is cal-
culated through a loss function that compares the output of
the network and the correct output. The training process,
by means of back propagation, adjusts and updates the net-
work parameters iteratively to minimize the overall error
on each training input. The entire image dataset is passed
forward and backward for a given number of times (number
of epochs). Note that the number of epochs, as well as other
hyperparameters such as the learning rate, need also to be
tuned during training to make networks train better and faster.
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Other parameters such as number of filters, filter sizes, archi-
tecture of the network, etc., do not change during the training
process.

C. METHODS FOR ADDRESSING IMBALANCE
A common issue in deep learning applications is that some
classes have a significantly higher number of examples in
the training set than other classes. This is known as the
class imbalance problem. Methods for addressing imbalance
for classical machine learning models have been studied for
many years [5], [16], while recent works are mainly focused
on CNNs [17]. Those methods can be divided into two main
categories: sampling techniques and cost-sensitive methods.
Hybrid methods try to combine those two categories.

Sampling operates on the data itself with the aim of pro-
viding a balanced class distribution to make standard training
algorithms work. The most important methods belonging to
this category are oversampling and undersampling. The basic
version of oversampling simply replicates randomly selected
samples from minority classes, adding them into the original
dataset. It has been demonstrated that oversampling is effec-
tive, but it can lead to overfitting [18]. This method has been
successfully applied in the context of deep learning [19], [20].
On the contrary, undersampling methods randomly remove a
certain number of instances from themajority class to achieve
a balanced dataset [5]. An important issue of this method is
that it may lose some important information when discarding
a portion of the available data.

A different approach to deal with the class imbalance prob-
lem is cost-sensitive learning. Instead of creating balanced
datasets through different sampling strategies, cost-sensitive
learning addresses the imbalanced learning problem by using
different cost matrices that describe the costs for misclassi-
fying any particular data example. For instance, applying a
higher penalty for minority class samples [21]. Another cost-
sensitive approaches propose new weighted loss functions to
give more emphasis on the minority classes [21]–[24]. Unlike
the previous methods, other solutions deal with imbalance
moving the cost-sensitivity to the inference phase [25], [26].

D. SPARSE MATRIX CLASSIFICATION
Many works deal with the identification of the optimal stor-
age format for sparsematrices onGPUs using analytical mod-
els [27]–[29]. Models tend to show a good accuracy but they
are usually evaluated on small datasets. Other authors opt for
using traditional machine learning approaches, but only few
of them consider GPUs as target systems. For example, one
approach consists in building a decision tree based on several
matrix features with the aim of choosing the best performing
storage format [1]. Authors report a global accuracy up to
84% with 95% of the maximum achievable SpMV perfor-
mance. In other work the classification task is addressed using
support vector machines [30]. Their classifiers demonstrate
an accuracy in the interval 73-88.5%, improving the average
SpMV performance to a maximum of 98%. It is worth noting

that our proposal outperforms both works in terms of accu-
racy and performance even they are facing a classification
problem with a smaller number of classes. On the other hand,
best results in both works were obtained using information
from more than three matrix features to train the classifiers.
More recently, researchers deal with the sparse matrix clas-
sification problem using convolutional neural networks [4].
In that work several matrix representations were studied to
train the networks. Their findings point out that the best
solution is a histogram capable of capturing the spatial distri-
bution of the nonzeros in the matrix. This representation leads
to the creation of an ad-hoc CNN architecture. Unlike our
method, they do not take advantage of the color channels of
the images to code relevant information about the considered
matrix. We must highlight that none of the works commented
above have addressed a class imbalance problem.

Other authors apply machine learning techniques consider-
ing only multicore processors as target platform [31]. Finally,
a deep learning based mechanism to choose the most efficient
SpMV code implementation for both CPUs and GPUs was
introduced in [2]. Although it is a conceptually interesting
approach, their performance results are not competitive with
some of the state-of-the-art methodologies mentioned above.

III. CLASSIFICATION METHODOLOGY
This section summarizes the methodology to select the best
performing format for a particular sparse matrix with the aim
of maximizing its SpMV performance [3]. Figure 2 shows an
scheme with the different stages of our approach. We assume
that a large set of sparse matrices coming from different
application domains and representing a variety of sparsity
patterns is available. This dataset is the input of the following
phases: SpMVbenchmarking and image generation. The goal
of the first stage is to evaluate for all thematrices in the dataset
the performance of the SpMV kernel considering different
storage formats. The outcome is the best format in terms
of performance for each matrix. That format associates a
label (class) to each matrix in the dataset, which will be used
later as ground truth in the CNN training phase. Therefore,
there are as many classes as storage formats. It is worth
mentioning that we have considered GPUs as target platforms
to build the ground truth information, but our methodology is
completely agnostic with respect to the underlying parallel
architecture. Shifting to a different system only means to
execute the benchmarking phase on the corresponding target
platform in order to get the new ground truth information.

Building the image dataset from the input sparse matrices
can be considered the most important phase of our method.
In a naive approach, the sparsity pattern of a n × m matrix
can be viewed as a n×m black and white image, where white
pixels correspond to nonzero elements and black pixels repre-
sent zeros. In any case, this simple technique is not enough to
build a valid image dataset since CNNs require input images
of a fixed size. As a consequence, matrices should be scaled
down to the same size. The next procedure explains how
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FIGURE 2. Different stages of the classification methodology.

to do it. Let’s assume that, for simplicity, a square n × n
matrix should be scaled to a p × p matrix, being n > p. The
original matrix is split into p × p submatrices. To build the
new p×p scaledmatrix, we insert a nonzero at position (i, j) if
there is, at least, one nonzero value in the corresponding (i, j)
submatrix. Empty submatrices are represented in the scaled
matrix as zero values. Figure 3(a) illustrates this procedure
showing a 113× 113 black and white image generated from
a 10, 848× 10, 848 sparse matrix.
The previous method allows to generate easily a binary

image dataset that fits a CNN. However, we demonstrated
that datasets of that type do not provide satisfactory classi-
fication results [3]. We must take into account that scaling
down a sparse matrix simplifies the appearance of its spar-
sity pattern, causing a loss in the information provided to
the CNN in the training phase. A single pixel in the image
represents a submatrix in the original matrix. For instance,
one pixel in Figure 3(a) corresponds to a 96 × 96 submatrix
(that is, 10,848/113).

To address that issue it is necessary to provide additional
information to the CNN with the aim of improving the learn-
ing process. With this goal in mind, we will take advantage
of the RGB channels of the image to code information related
to some features of the original sparse matrix. In particular,
we have considered the following global metrics about the
matrices (numbers are used as identifier of the metric):
(0) Matrix size (n): number of rows and columns of the

matrix.
(1) Average number of nonzeros per row of the matrix

(nnzrow).
(2) Standard deviation of the number of nonzeros per row

of the matrix (σrow).
(3) Matrix density (ρ): calculated as the ratio between the

number of nonzeros and the number of rows multiplied
by the number of columns.

(4) Maximum number of nonzeros in a row of the matrix
(maxrow).

In our implementation pixels corresponding to empty subma-
trices are always black, that is, their RGB color is (0, 0, 0).
Only those pixels representing non-empty submatrices have

a different associated RGB color. The color of these pixels is
always the same, whose value for each RGB channel is within
the interval [1, 255]. Metrics should be normalized to fit that
interval. Note that it is possible to use one, two or three color
channels to include the matrix information. When a channel
is not used, its value for all the pixels in the image is 0.

We refer to RxGyBz to specify that metrics x, y and z were
used to calculate the pixel values of the red, green and blue
channels, respectively. There exist multiple combinations of
number of channels and metrics that can be utilized in the
image dataset generation phase. In this work we only focus
on those most relevant in terms of performance. In particular,
datasets were generated using the following configurations:
R1G3B4 and R0G1B4. Figure 3 contains several images gen-
erated from the same input matrix using different metrics
to color the pixels. Figures 3(b), 3(c) and 3(d) use only
one color channel to code the average number of nonzeros
per row (red), matrix density (green) and maximum num-
ber of nonzeros in a row of the matrix (blue), respectively.
Figure 3(e) combines the three color channels of the previous
pictures into a single image. We must highlight that the
assignment of metrics to channels do not affect the results of
the CNN training phase. It means that is irrelevant to consider,
for instance, R1G2B3 or R3G1B2.
Following the scheme of Figure 2, the next stage in our

method involves the training of the network. To do so, it is
necessary to feed the CNN with a set of images labeled
according to the best performing storage format (class of
the matrix). This data was generated in the previous phases.
In particular, labels come from benchmarking the different
SpMV kernels, while the image dataset is the outcome of the
image generation stage. Note that the image dataset is divided
into training and test sets. In this way, the training process
only takes into consideration those images belonging to the
training set. Images in the test set are necessary to assess the
prediction accuracy of the final chosen classification model.
We have used a cross-validation method, which is generally
considered the best method both for model selection and
assessment. In particular, we have opted for a k-fold cross-
validation. This method is used when some hyperparameter
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FIGURE 3. Images of 113 × 113 pixels generated from a 10, 848 × 10, 848 sparse matrix: (a) pattern/binary, (b) R1,
(c) G3, (d) B4 and (e) R1G3B4.

of the network have to be estimated. In our case the hyperpa-
rameter of interest is the optimal number of training epochs.
This validation method divides the training set into k folds.
The first fold is kept for testing (known as validation set)
and the model is trained on the remainder k − 1 folds. This
process is repeated k times in such a way that each time
a different fold is used for validation. After each epoch,
the global accuracy on the corresponding validation set is
recorded. Afterwards the average validation set accuracy is
computed (across the k folds) for each number of epochs.
The chosen number of epochs will be the one that maximizes
this value. Finally, the network is trained using as input the
complete training set until the optimal number of iterations is
reached.

The resulting trained CNNwill be the one used for carrying
out the storage format prediction. Images in the test set, which
were not used in the training process, are utilized to validate
the accuracy of the classifier.

IV. EXPERIMENTAL SETUP
A. HARDWARE PLATFORMS AND SOFTWARE
Since there is not a prevailing storage format for sparse
matrices on GPUs, we have considered those systems as
target platform to evaluate our proposal. Nevertheless, our
classification methodology could be easily applied to other
parallel architectures such as multicore CPUs or accelerators
like the Intel Xeon Phi. The most important features of the
NVIDIA GPUs used in the tests are shown in Table 1. From
now on, we will use TITANX and QUADRO to refer to both
GPU models.

The benchmarking phase was carried out using the SpMV
kernels included in the NVIDIA cuSPARSE library (CUDA
toolkit v8). In particular, we have considered CSR, HYB,
ELL, BSR and COO storage formats. In addition, we have
included results for the CUDA implementation of CSR5

TABLE 1. Main characteristics of the NVIDIA GPUs used in the tests.

format [11]. In this way, we experimented with 6 storage
formats.

The training phase was performed using the most power-
ful GPU (QUADRO) in order to reduce the training times.
We have taken advantage of theNVIDIADeep LearningGPU
Training System2 (DIGITS) which allows to design, train and
visualize CNNs for image classification using Caffe3 as deep
learning framework. Some of the most popular architectures
such as AlexNet and GoogLeNet are predefined and ready to
use in the DIGITS platform.

B. SPARSE MATRIX DATASET
Deep networks demand large datasets to be effective. In our
case, the dataset should include sparse matrices coming from
different application domains with the aim of covering a
broad spectrum of features and sparsity structures. To fulfill
that requirement we have built a dataset consisting of more
than 10k sparse matrices, which was generated applying
several transformations like cropping to 812 square matrices

2https://developer.nvidia.com/digits
3http://caffe.berkeleyvision.org
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FIGURE 4. Characteristics of the sparse matrices in the dataset (values sorted in ascending order, Y axis in log scale).

from the SuiteSparse matrix collection [6]. A similar proce-
dure was performed in [4].

Figure 4 shows the main characteristics, which correspond
to the global metrics enumerated in Section III, for all the
matrices in the dataset. Values in the graphs are sorted in
ascending order. Minimum, maximum, mean and median
values are also shown. It can be observed that ranges for each
matrix feature are wide, which reveal the large diversity of
matrices included in the dataset.

C. SpMV BENCHMARKING AND IMAGE
DATASET GENERATION
Matrices should be labeled attending to their best storage
format (class) before training a network. This goal is achieved
in the SpMV benchmarking phase. Experiments to measure
the performance of the single precision SpMV kernel using
6 storage formats (COO, CSR, HYB, ELL, BSR and CSR5)
were conducted on the target GPUs. For each matrix and
format, the performance value was calculated as the average

TABLE 2. Distribution of the classes in the matrix dataset.

of 1,000 SpMV operations. BSR uses 4×4 block sizes. Each
matrix is then labeled according to the highest performing
format. Table 2 shows the distribution of the classes for all the
matrices in the dataset. The percentage of matrices belonging
to each class is displayed between brackets. Note that COO
never outperforms the other storage formats on both GPUs,
similar to the behavior observed in [4]. According to the
table, we are facing an unbalanced classification problem.
HYB format represents just 0.3% of the examples in the
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dataset (blue text in the table), while more than 51% of
the matrices belong to the CSR5 class (highlighted in red).
In other words, the frequency of the HYB class is 160× less
than the one obtained for CSR5. It has been demonstrated
that class imbalance can have a harmful effect on training
classifiers, so applying methods for addressing imbalance
become necessary (see Section II-C). In the next section we
will compare several approaches to deal with that issue in the
context of the automatic selection of the best storage format
for sparse matrices.

FIGURE 5. Speedup obtained by the best storage format with respect to
the worst one for all the matrices in the dataset (Y axis in log scale).

On the other hand, choosing an inadequate storage format
will impact negatively on the SpMV performance. This phe-
nomenon is illustrated in Figure 5 by measuring the speedup
between the best and the worst performing formats for all the
matrices in the dataset. The boxplot shows that for QUADRO
themedian, first quartile and third quartile speedups are 4.6×,
3.3× and 7×, respectively. For TITANX the corresponding
speedups are 4.8×, 3.3× and 7.2×. It means that, for exam-
ple, selecting the best format for half of the matrices on
TITANX boosts at least 4.8× their SpMV performance. It is
worth noting that for somematrices a bad choice in the format
is critical since it causes huge slowdowns. Those cases are
displayed as points in the boxplots.

Before training the CNN it is also necessary to generate
the images from the sparse matrices. As it was explained
in Section III, the color of the pixels corresponds to dif-
ferent features of the matrices (see Figure 4). Their values
should be in the 1-255 range, so a normalization process is
necessary. Details about that procedure are provided in [3].
There are several combinations of channels and metrics, but
in this work we only consider those which achieve the best
performance results: R1G3B4 and R0G1B4. Datasets consist
of 256×256 images, which corresponds to the input size for
the AlexNet network.

D. NETWORKS AND TRAINING PROCESS
We have analyzed and studied two different CNNs to deal
with the classification task: AlexNet [7] and SpNet. AlexNet
consists of 8 layers: 5 are convolutional layers and other
3 are fully-connected layers (see Figure 6(a)). This network
has about 60 million free parameters. Although AlexNet is
relatively simple with respect to other standard networks,
we demonstrated in [3] that using our methodology it can
successfully classify sparse matrices considering a balanced
dataset and three storage formats (classes). In this paper
we go a step further introducing SpNet, a new simplified
version of AlexNet which is able to achieve better results
than the original network considering a more complex clas-
sification scenario (higher number of classes and an imbal-
anced dataset). Figure 6(b) shows the architecture of SpNet.
It consists of only four convolution layers, corresponding to
AlexNet conv1, conv2, conv3 and conv4 layers. Note that
conv3 and conv4 in SpNet have a few number of filters, 256.
In addition, SpNet has only two fully-connected layers. As a
consequence, the number of free parameters is noticeably
reduced.

In order to train the networks 80% of the matrices in the
dataset are assigned to the training set, while the remainder
20% form the test set. As it was explained in Section III,
we have used a k-fold cross-validationmethod to discover the
optimal number of training epochs. It implies the division of
the training set into 5 folds. We have found that the optimal
number of epochs goes from 30 (R1G3B4 dataset, SpNet
and TITANX labels) to 42 (R1G3B4 dataset, AlexNet and
QUADRO labels). We must highlight that other hyperpa-
rameters take the default values provided by the DIGITS
platform.

After the validation, AlexNet and SpNet networks are
trained using the whole training set until the optimal num-
ber of epochs is reached. We have observed that training
times vary from 492 seconds (R1G3B4 dataset, SpNet and
TITANX labels) to 666 seconds (R1G3B4 dataset, AlexNet
and QUADRO labels).

Since the class of a matrix depends on the target GPU
where the SpMV operation is evaluated, networks should be
trained for each particular platform. However, we have previ-
ously proven that using our methodology is not necessary to
carry out the training process from scratch [3]. The idea is to
consider a pre-trained model as starting point of the training
process. This pre-trainedmodel corresponds to a CNN trained
for a different GPU. In this way, the network inherits many
parameters which captured important characteristics and fea-
tures from the considered storage formats and matrices in the
dataset. In addition, we must take into account that classes of
the matrices differ between GPUs, but not for all the dataset.
As a consequence, very good accuracy results can be obtained
using less training data and, at the same time, training times
decrease. Another important effect of reducing the training
data size is the impact on the SpMV benchmarking phase,
which is greatly shortened.
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FIGURE 6. Layers of the considered networks (number and size of the filters in blue text):
(a) AlexNet and (b) SpNet.

TABLE 3. Prediction accuracy of the trained networks considering the two image datasets on QUADRO (top) and TITANX (down) GPUs. Highlighted best
results for each format.

V. PERFORMANCE ANALYSIS
A. PREDICTION ACCURACY
The evaluation of the trained networks for each dataset and
GPUwas carried out using only the test set. Together with the
global accuracy (i.e. the overall percentage of correct clas-
sified matrices), we have included three additional metrics
to better understand how well the classifier is performing:
precision, recall and F1 score. Precision is the fraction of
positive predictions made by the classifier that are correct.
Recall, also known as sensitivity, quantifies how well the
model avoids false negatives. Let’s assume that there are TA
matrices of class A in the dataset. Our network classifies CA

matrices as class A, where PA has been correctly classified
(true positive). Then, precision and recall for class A can be
calculated as PA/CA and PA/TA , respectively. F1 score takes
into account both precision and recall and is calculated as the
harmonic mean of both metrics: 2× precision×recall

precision+recall .
Table 3 displays the global accuracy, precision, recall and

F1 score of the classifiers for all the datasets on both GPUs
considering AlexNet and SpNet networks. According to the
results, several observations can be made. First, noticeable
accuracies were obtained using our methodology for all the
cases, ranging from 90.9% to 92.8%. Best results overall
correspond to the R0G1B4 dataset, which was generated
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using as metrics the size of the matrix (n), the average
number of nonzeros per row (nnzrow) and the maximum
number of nonzeros in a row of the matrix (maxrow). Sec-
ond, SpNet clearly outperforms AlexNet when considering
R0G1B4 images, while with R1G3B4 the performance is in
several cases lower. AlexNet results for the minority class
HYB are very poor, while SpNet is able to reach acceptable
values on the QUADRO GPU (F1 score is 0.600). Note
that HYB matrices represent only 0.3% of the dataset (see
Table 2). In any case, we will discuss several approaches
to improve the classification performance of the minority
classes in the following section. We can conclude that SpNet
using R0G1B4 images is clearly the best option on both GPUs
since only in a few cases its precision, recall and F1 values are
not the highest among all. In addition, top global accuracies
were obtained using this configuration. We also want to high-
light that regarding the majority classes (BSR and CSR5),
most of the performance metrics are above 0.95. Finally,
it can be observed a slightly better classification results when
training the CNNs for TITANX.

FIGURE 7. Normalized SpMV performance obtained using the storage
format selected by the classifiers.

Since the final goal of the classification task is selecting
the best performing format, it is important to measure how
close to the ideal classifier our trained CNNs are. In this way,
we obtained the SpMV performance for all the matrices in
the test set using the format selected by each classifier. Nor-
malized results for all the configurations analyzed are shown
in Figure 7 in such a way that 1 corresponds to the maxi-
mum achievable performance (i.e., always choosing the best
format). Average performances range from 97.6% to 98.3%.
Best results overall on both GPUs are obtained when con-
sidering SpNet network and R0G1B4 images, which is the

best configuration also in terms of the classification metrics
(see Table 3). However, other configurations with lower accu-
racies perform very well too. For instance, the configuration
using R1G3B4 images and SpNet on the QUADRO GPU
achieve the lowest global accuracy (90.9%), but it reaches
98% of the maximum attainable SpMV performance. There-
fore, considering only the classification metrics in Table 3
is not enough to validate a classification method in this
context because it hides important information regarding per-
formance. In this way, the above analysis has also a great
importance.

B. ADDRESSING CLASS IMBALANCE
There are several approaches to deal with the class imbal-
ance problem (see Section II-C). We have considered three
different methods: oversampling, undersampling and cost-
sensitive learning using a weighted loss function. The first
technique replicates examples from minority classes to build
a more balanced dataset. Afterwards the network is trained
using the new dataset. There are many possible ways of
replicating the samples. After many experiments we have
found that the best configuration replicates 2, 4 and 10 times
the training examples corresponding to CSR, ELL and HYB
classes, respectively.

The second method is undersampling, which randomly
remove examples from the majority classes to balance the
dataset. Several experiments were carried out to find out
the optimal configuration. However, performance results
obtained by this technique were not competitive, so they are
not included in the paper. The problem is relatively obvious
since removing examples from themajority classes causes the
classifier to miss important concepts pertaining to them [5].
This fact is magnified in our case because the dataset is
relatively small with respect to classic image classification
datasets containing millions of images.

The last method analyzed to address class imbalance uses
a weighted loss function. In this way, it is possible to assign
different costs for misclassifying any particular data sample.
In particular, our proposal weights the error rate provided by
the cross entropy loss layer of the network according to the
frequency of each class in the dataset. A similar approach was
applied to classifying malware images in [23]. The weighted
cross entropy loss has the following expression (InfoGain-
Loss layer in Caffe)4:

E = −
1
M

M∑
n=1

K∑
k=1

Hln,k log(p̂n,k ) (1)

being M the batchsize, K is the number of classes, ln is the
correct class of image n, while p̂n,k is the probability of image
n to belong to class k . H is a K × K matrix containing the
weight or contribution to the loss according to the correct
class of the example. Higher values in H indicate more

4http://caffe.berkeleyvision.org/tutorial/layers/infogainloss.html
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TABLE 4. Prediction accuracy of the trained SpNet networks considering different methods to deal with imbalance using R0G1B4 images. Highlighted
those values that improve the corresponding results in Table 3.

TABLE 5. Prediction accuracy of a state-of-the-art technique based on building a decision tree for sparse matrix classification [1]. In brackets differences
in performance with respect to our oversampling approach.

penalty to misclassification. We define H as:

H =

{
Hi,j = 0, if i 6= j
Hi,j = 1− ri, if i = j

(2)

where ri is the ratio of examples of class i in the dataset
(ratios in percentage shown in Table 2). Note that if H is the
identity matrix, the weighted loss becomes a standard cross
entropy loss (also known as multinomial logistic regression
loss).

Table 4 shows the classification metrics obtained when
applying oversampling and the weighted loss approach using
the best performing configuration in Table 3, which corre-
sponds to train the SpNet network using the R0G1B4 dataset.
Highlighted values correspond to improvements in recall,
precision, F1 score and accuracy with respect to the sce-
nario where the imbalance class problem is not specifically
addressed. A better overall behavior is observed, increas-
ing the performance of at least one metric for all the
classes. Both methods, oversampling and the cost-sensitive
approach, obtain similar results. Oversampling does a better
job classifying the minority class HYB. For instance, a recall
of 0.714 is reached on TITANX. Both techniques boost the
classification performance of ELL format, which corresponds
to only 4.9% of the matrices in the dataset (see Table 2).
On the other hand, oversampling on the QUADRO GPU
increases the global accuracy until 92.6%. In the other cases,
a slightly reduction was observed.

In the previous section we measured the difference
between the SpMV performance obtained when using the
storage formats selected by our classifiers and the maximum
attainable performance (that is, choosing always the best
format). Results when considering SpNet and the R0G1B4

dataset obtain an average normalized performance of 98.3%
(see Figure 7). The same experiment was carried out con-
sidering the techniques to deal with the class imbalance on
both GPUs. The corresponding values on the QUADROGPU
were 98.4% and 98.3% when using oversampling and the
weighted loss approach, respectively. On the TITANX the
average normalized performance was 98.3% in both cases.
Therefore, techniques to address with class imbalance, far
from degrading performance, are able to get closer to the
maximum achievable SpMV performance.

C. COMPARISON WITH OTHER STATE-OF-THE-ART
CLASSIFICATION METHODS
We have compared our approach with a state-of-the-art
technique that automatically predicts the best sparse repre-
sentation using decision trees [1]. Trees are based on dif-
ferent features (similar to those described in Section III)
from a set of training matrices. They demonstrate that their
approach outperforms previous methods in classification
accuracies and SpMV performance. Note that this is a tra-
ditional machine learning approach, where no images are
necessary.

Table 5 shows the prediction metrics obtained by the deci-
sion tree method when applying to our dataset. Values in
brackets are the differences with respect to our oversampling
approach, whose results were displayed in Table 4. It can be
observed that our proposal clearly outperforms the decision
tree model. It is especially relevant the fact that in general
differences between both methods increase for the minority
classes (CSR, ELL and HYB formats). As a consequence,
global accuracies of the tree model are reduced to 81.7% and
82.4% on QUADRO and TITANX GPUs, respectively.
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In a recent work authors addressed the classification of
sparse matrices from a deep learning perspective. Matri-
ces are represented through histograms which model the
spatial distribution of nonzeros in the matrix. This repre-
sentation requires to build a customized CNN architecture.
We can highlight the following differences with respect to our
approach:
• They also deal with a six storage formats classification
problem on a GPU (COO, CSR, HYB, ELL, BSR,
CSR5), but their dataset is not highly imbalanced. In our
case, HYB format represents only 0.3% of the matrices.

• Their dataset consists of 4,218 matrices, while we have
considered 10,822. No details about the characteristics
of the matrices in their dataset are provided. In our case
an analysis to demonstrate that our dataset covers a wide
spectrum of matrix features is shown in Figure 4.

• Their methodology was evaluated only considering one
GPU (TITANX).

• Although the results are not directly comparable
(datasets are different), our methodology achieves a
higher performance. In particular, authors report a
90% global accuracy, while our method reaches 92.8%
(without addressing specifically the class imbalance
problem).

VI. CONCLUSIONS
Training CNNs for classification using imbalanced datasets
is a challenging task since an inductive bias towards the
majority classes is produced, resulting in poor minority
class recognition performance. In this work we deal with a
highly imbalanced problem in the context of the automatic
selection of the best SpMV performing storage format for
sparse matrices on GPUs. To overcome the issues caused
by the imbalanced data we made contributions at different
levels.

We used a method to generate the image datasets that
considers the sparsity pattern of the matrices as an image.
Pixels in the images represent submatrices and their RGB
color codes some global matrix property. According to our
experiments, the best combination of matrix features corre-
sponds to the size, average number of nonzeros per row and
the maximum number of nonzeros in a row of the matrix.

Although a standard CNN as AlexNet trained using our
image datasets achieved acceptable results in terms of predic-
tion accuracy, we introduce a new network called SpNet. This
network is a simplified version of AlexNet with only four
convolution and two fully-connected layers. Experimental
results demonstrate that SpNet clearly outperforms AlexNet,
reaching a global accuracy of 92.8% and 98.3% of the high-
est SpMV performance among the considered formats. Our
experiments also show that our approach performs much
better than a state-of-the-art classification method based on
decision trees.

Finally, several methods to specifically overcome the
issues related to training a CNN using imbalance data

were studied. An important overall improvement in the clas-
sification metrics was observed when applying oversampling
or a cost-sensitive method based on a weighted loss function,
especially for the minority classes.
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