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Abstract—In this paper, a new methodology to select the
best storage format for sparse matrices based on deep learning
techniques is introduced. We focus on the selection of the proper
format for the sparse matrix-vector multiplication (SpMV), which
is one of the most important computational kernels in many
scientific and engineering applications. Our approach considers
the sparsity pattern of the matrices as an image, using the
RGB channels to code several of the matrix properties. As a
consequence, we generate image datasets that include enough
information to successfully train a Convolutional Neural Network
(CNN). Considering GPUs as target platforms, the trained CNN
selects the best storage format 90.1% of the time, obtaining 99.4%
of the highest SpMV performance among the tested formats.

Index Terms—Sparse matrix, Classification, Deep Learning,
CNN, Performance

I. INTRODUCTION

Sparse matrix-vector multiplication (SpMV) is a key kernel
at the core of many scientific and engineering applications.
SpMV is notorious for sustaining low fractions of the peak per-
formance on modern parallel architectures. As a consequence,
it has attracted a lot of attention from the research com-
munity to develop efficient and optimized implementations.
The performance of the SpMV depends on both the target
hardware platform and the sparsity structure of the matrix.
For this reason many storage formats have been proposed for
a particular application domain, matrix structure and computer
architecture [1]. It has been demonstrated that the selection
of the proper storage format has a big impact on the SpMV
performance. The compressed sparse row (CSR) format is the
de-facto standard representation for CPUs, while there is no a
dominant format for GPUs. We find the cause in several factors
that often conflict with each other [2]: maximizing coalesced
memory access, minimizing thread divergence and maximizing
warp occupancy.

In this paper we address the problem of the automatic
selection of the best storage format for sparse matrices on
GPUs. With this goal in mind a new methodology based on
deep learning technologies is introduced. In particular, we have
considered Convolutional Neural Networks (CNNs), which
are the most important deep learning networks for image
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recognition and classification. Our goal is to demonstrate that
a simple standard CNN architecture as AlexNet [3] is powerful
enough to provide very good classification results. Therefore,
it is not necessary to build an ad-hoc CNN architecture to
deal with the problem. In this way, our methodology can be
easily adopted by the research community since AlexNet is
available in the most important and common deep learning
frameworks. To train the network the sparsity pattern of the
matrices is considered as an image. Since the input size of
CNNs is fixed, original sparse matrices are scaled down to fit
the CNN in such a way that pixels in the images represent
submatrices. The RGB color of pixels is used to represent
properties of the matrix. In this way, we create image datasets
with enough information to successfully train a CNN. An
exhaustive experimental evaluation has been carried out using
two different GPUs as target platforms. Results show the
benefits of our methodology in terms of the global accuracy
of the resulting classifiers, reaching values above 90%. In
addition, we are able to obtain within 99.4% on average of
the best SpMV performance available. Finally, we demonstrate
that using a pre-trained model speeds up the training process
with respect to training the network for each GPU from
scratch.

The paper is structured as follows. Section II explains the
background of the work. Section III introduces the deep learn-
ing methodology to deal with the sparse matrix classification
problem. Experimental results are shown and discussed in
Section IV. Related work is presented in Section V. Finally, the
main conclusions derived from the work together with some
ideas for future work are explained.

II. BACKGROUND

A. Sparse Matrix Formats

For a sparse matrix, substantial memory requirement re-
ductions can be obtained by storing only the nonzero entries.
There exist many different storage formats (an exhaustive list
can be found in [1]), being ones more appropriate than others
for a particular sparse matrix depending on the number and
distribution of its nonzeros. These formats differ in terms of
the amount of storage required, the accessing methods, and
their adaptability to different applications or parallel architec-
tures such as GPUs. Some of these formats are only well suited
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Fig. 1: CSR and ELL sparse matrix storage formats.

for matrices with a particular sparsity pattern like the diagonal
format (DIA) or block formats such as BELLPACK [4], other
formats support efficient modification but not efficient matrix
operations like for example the coordinate format (COO),
and so on. In this work, we focus on those formats that are
suitable for matrices with arbitrary structure and, at the same
time, efficient for matrix operations such as sparse matrix-
vector multiplication. More precisely, we have considered the
compressed row storage (CSR), ELLPACK (ELL), and hybrid
(HYB) formats [5], which are implemented in the NVIDIA
cuSPARSE1 library (see Figure 1):

• Compressed Sparse Row (CSR): It is a general-purpose
sparse matrix format. No assumptions are needed about
the sparsity structure of the matrix. CSR allocates sub-
sequent nonzeros in each row in contiguous memory
locations and stores column indices and nonzero entries
in two arrays, indices and values respectively. Besides, it
needs another array of pointers that indicates the offset
for each row.

• ELLPACK (ELL): This storage scheme compresses the
original sparse n × m matrix in a dense n × k matrix,
where k is the maximum number of nonzeros per row
of the original matrix. It also needs another n× k array
of indices which stores the position (column) of each
nonzero in the original matrix. This format cannot be
considered a general-purpose matrix format because it
needs that the number of nonzeros in each row do not
vary greatly through all the rows. In other case, a lot of
storage space will be wasted and also the computational
efficiency will decrease. However, it is suitable for a va-
riety of matrices and the performance results it produces
are generally good.

• Hybrid (HYB): This is a combination of two storage for-
mats: COO and ELL. It tries to combine the computation
efficiency of ELL with the simplicity and generality of
COO (that stores row and column indices explicitly). The
majority of the matrix entries are stored in ELL format,
and those rows with a substantially different number of
nonzeros are stored in COO format.

1https://developer.nvidia.com/cusparse

B. Convolutional Neural Networks
CNNs consist of a sequence of layers which transform

the original image layer by layer from the original pixel
values to the final class scores. We can classify these layers
into three groups: input layers, feature-extraction layers and
classification layers. A simple CNN architecture is shown
in Figure 2. Input layers load and store the raw input data
of the image for processing in the network. This input data
specifies the width, height, and number of channels. Typically,
the number of channels is three, corresponding to the RGB
values for each pixel.

The feature-extraction layers have a general repeating pat-
tern of the following operations: convolution, non linearity
(ReLU) and pooling or sub sampling. The main goal of a
convolution layer is to extract features from the input image.
Convolution shifts a small window (filter) across the input,
and at each position, it computes the dot product between
the filter and the input elements covered by the filter. As we
slide the filter over the image we will produce a 2D activation
map that gives the responses of that filter at every spatial
position. In this way, the network will learn filters that activate
when they detect some type of visual feature such as edges,
curves, etc. Note that several filters can be used in the same
convolution layer, which will generate multiple activation
maps. An additional operation called ReLU (Rectified Linear
Unit) has been used after every convolution operation. It is a
non-linear operation that replaces all negative pixel values in
the feature map by zero. In addition, it is common to insert a
pooling layer in-between successive convolution+ReLU layers
in a CNN architecture. Its function is to progressively reduce
the spatial size of the representation (sub sampling) to decrease
the amount of parameters and computation in the network
while retaining the most important information.

Finally, we have the classification layers in which we have
one or more fully-connected layers to produce class scores.
Fully-connected means that neurons in this layer have full
connections to all activations in the previous one. This layer
uses the high level features generated by the convolutional
and pooling layers for classifying the input image into several
classes based on the training dataset.

The training process of a CNN is iterative. First, all the
filters and parameters in the network are initialized to random
values. Afterwards the network takes a training input image,
whose class/label is known a priori, and gives a prediction
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Fig. 2: A simple Convolutional Neural Network (CNN) archi-
tecture.

after the forward propagation step (convolution, ReLU and
pooling operations along with forward propagation in the
fully-connected layers). A prediction error is calculated com-
paring the output of the network and the expected result. The
training process (by means of back propagation) revises the
network parameters iteratively to minimize the overall error on
each training input. The network will be trained on the input
dataset for a given number of epochs (that is, passes over
the entire image dataset). Note that parameters like number
of filters, filter sizes, architecture of the network, etc., do
not change during the training process. There are additional
parameters in the training process known as hyperparameters
such as the learning rate or number of epochs that should be
tuned to make networks train better and faster.

Many CNN architectures have been proposed, some of the
most popular are LeNet [6], AlexNet [3], GoogLeNet [7],
VGGNet [8] and ResNet [9]. In this paper we have used
AlexNet, which has five convolution layers of decreasing filter
size, three pooling layers, and three fully-connected layers
with approximately 60 million free parameters. Although
AlexNet is relatively simple with respect to other standard
networks, we demonstrate in the following sections that it
is powerful enough to deal with the sparse matrix format
selection problem.

III. METHODOLOGY

In this section a new methodology to select the best storage
format for sparse matrices based on deep learning techniques
is introduced. In particular, we have focused on the selection of
the proper format for the sparse matrix-vector multiplication
(SpMV), which is one of the most important computational
kernels in scientific and engineering applications.

Figure 3 shows the different phases of our approach. We
assume that a large set of sparse matrices coming from differ-
ent real problems and representing a variety of characteristics
and nonzero patterns is available. This dataset will be used
as input of the SpMV benchmarking and image generation
phase. The goal of the first step is to evaluate for all the
matrices in the dataset the performance of the SpMV kernel
when different storage formats are considered. As a result we
obtain the best format in terms of performance for each matrix.
That format associates a label (class) to each matrix in the
dataset, which will be used later as ground truth in the CNN
training phase. Therefore, there are as many classes as storage
formats. Note that in this work we have considered GPUs as

hardware platforms to build the ground truth information, but
our methodology is completely agnostic with respect to the
underlying parallel system and can be applied, for example,
to multicore CPUs or accelerators as the Intel Xeon Phi.

The image dataset generation is the core of our method-
ology. To build the dataset we consider the sparsity pattern
of the matrices as an image. As a first approach, a n × m
matrix is equivalent to a n ×m binary image where a white
pixel at location (i, j) represents a nonzero in row i and
column j. Black pixels correspond to zeros in the sparsity
pattern. However, the size of the input to a CNN is fixed,
so matrices of different sizes should be scaled to the same
size. The following method explains how to scale a matrix.
Let’s assume that the size of the input image should be p× p
pixels and, for simplicity, the considered sparse matrix is n×n
(i.e., it is a square matrix), where n > p. We split the matrix
into p× p submatrices. To build the new p× p scaled matrix,
we insert a nonzero at position (i, j) if there is, at least, one
nonzero value in the corresponding submatrix (i, j). If the
submatrix only contains zeros then the corresponding entry in
the scaled matrix will be zero. In this way, creating a p × p
binary image from the scaled matrix is straightforward. Figure
4(a) illustrates this procedure showing a 63× 63 pixels image
generated from a 71, 505× 71, 505 sparse matrix.

The above method is a simple and easy way to generate a
binary image dataset that fits a CNN. However, scaling down a
sparse matrix simplifies the appearance of its sparsity pattern,
which could cause a loss in the information provided to the
CNN in the training phase. Recall that a single pixel in the
image represents a submatrix in the original matrix. For in-
stance, one pixel in Figure 4(a) corresponds to a 1, 135×1, 135
submatrix (that is, 71,505/63). As we demonstrate in Section
IV, training the network using the binary image dataset do
not provide competitive results. In this way, it is necessary to
provide additional information to the CNN with the aim of
improving the global accuracy of the classifier. With this goal
in mind, we propose to use the RGB channels of the image to
code information related to some characteristics and properties
of the original sparse matrix. In particular, we have considered
the following global metrics about the matrices (numbers are
used as identifier of the metric):

(0) Matrix size (n): number of rows and columns of the
matrix.

(1) Average number of nonzeros per row of the matrix
(nnzrow).

(2) Standard deviation of the number of nonzeros per row of
the matrix (σrow).

(3) Matrix density (ρ): calculated as the ratio between the
number of nonzeros and the number of rows multiplied
by the number of columns.

(4) Maximum number of nonzeros in a row of the matrix
(maxrow).

In our implementation pixels corresponding to empty subma-
trices are always black, that is, their RGB color is (0, 0, 0).
Only those pixels representing non-empty submatrices have



Fig. 3: Scheme of the new classification methodology.
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(c) R1G2B3 (d) R2G3B4
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Fig. 4: Images of 63× 63 pixels generated from a 71, 505×
71, 505 sparse matrix using different number of channels and
metrics.

a different associated RGB color. The color of these pixels
is always the same, whose value for each RGB channel is
within the interval [1, 255]. Metrics should be normalized to
fit that interval (details about the normalization of our dataset
are provided in Section IV). Note that it is possible to use one,
two or three color channels to include the matrix information.
When a channel is not used, its value for all the pixels in the
image is 0.

From now on the notation RxGyBz is used to indicate
that metrics x, y and z were selected to calculate the R, G
and B values of an image, respectively. There are multiple
combinations of number of channels and metrics that can be
utilized in the image dataset generation phase. In this paper we
only show results for the most relevant combinations in terms
of performance. In particular, datasets were generated using
the following configurations: R1G2B3, R2G3B4, R1G3B4 and
R0G1B4. In addition, for illustrative purposes, we have also
included results for a binary image dataset (black and white
pixels, without metrics) and R1 (using only the red channel to
code the average number of nonzeros per row of the matrix).
Therefore, six different image datasets have been generated
and analyzed in the paper. An example is shown in Figure 4
that displays the resulting images obtained for the same input
sparse matrix when considering different configurations. We
must highlight that the assignment of metrics to channels do
not affect the results of the CNN training phase. It means that
is irrelevant to consider, for instance, R1G2B3 or R3G1B2.

The next stage in our method involves the training of the
CNN. To do so, it is necessary to feed the CNN with a set of
images labeled with their class (best storage format). This data
was generated in the previous phases: SpMV benchmarking
and image generation. Note that the image dataset is divided
into training and test sets (see Figure 3). In this way, the
training process is performed only considering images in the
training set, while images in the test set are necessary to assess
the error of the final chosen classification model. We have
used a cross-validation method, which is generally considered
the best method both for model selection and assessment. In
particular, we have opted for a k-fold cross-validation. This
method is used when some hyperparameter of the network
have to be estimated. In our case the hyperparameter of interest
is the optimal number of training epochs. This validation



TABLE I: Main characteristics of the NVIDIA GPUs used in
the tests.

Model GeForce GTX TITAN TITAN X
Architecture Kepler Pascal
CUDA capability 3.5 6.1
Multiprocessors (MP) 14 28
CUDA Cores/MP 192 128
GPU Max Clock rate (GHz) 0.88 1.53
Global memory (MBytes) 6,082 12,190
L2 Cache Size (MBytes) 1.5 3

method divides the training set into k folds. For each fold k
(known as validation set), the network is trained with all the
folds but k (e.g., up to some maximum number of epochs).
After each epoch, the global accuracy on the corresponding
validation set is recorded. Afterwards the average validation
set accuracy is computed (across the k folds) for each number
of epochs. The chosen number of epochs will be the one that
maximizes this value. The CNN is then trained using as input
the complete training set until the number of iterations reaches
the selected value.

Finally, the resulting trained CNN will be the one used for
the storage format prediction. The image test set, which was
part of the complete image dataset but it was not used in the
training process, is utilized as input of the CNN to validate
the accuracy of our classifier.

IV. EXPERIMENTAL EVALUATION

A. Hardware platforms and software

In this work we have considered GPUs as hardware plat-
forms to evaluate our methodology for the prediction of the
best storage format when the SpMV operation is performed.
However, as we commented previously, our proposal could
be applied to other parallel systems. Table I shows the main
characteristics of the NVIDIA GPUs used in the experimental
evaluation. From now on, we use GTX and TITANX to refer
to GPUs with Kepler and Pascal architecture, respectively.

For the SpMV benchmarking, we use the kernels imple-
mented by the NVIDIA cuSPARSE library included in the
CUDA toolkit version 8. CSR, HYB and ELL storage formats
were studied (see Section II for details). Training the CNN was
also performed using a GPU. In particular, the most powerful
GPU (TITANX) was utilized with the aim of reducing the
training times. NVIDIA Deep Learning GPU Training System2

(DIGITS) was the selected software platform to carry out the
training phase. DIGITS allows to design, train and visualize
deep neural networks for image classification taking advantage
of the deep learning framework Caffe3. Several of the most
important CNN architectures such as LeNet, AlexNet and
GoogLeNet are predefined and ready to use in the platform.

2https://developer.nvidia.com/digits
3http://caffe.berkeleyvision.org

B. Sparse matrix dataset

As we point out in Section III, it is necessary to have a large
set of sparse matrices in order to train the network. This dataset
should contain matrices coming from different real problems
and applications. In this way, we expect that these matrices
cover a wide range of characteristics and nonzero patterns. We
have created a dataset that fulfills those assumptions consisting
of 8,111 sparse matrices. The dataset was generated using
as basis 812 square matrices from the SuiteSparse matrix
collection [10] and applying to them some transformations
like cropping (similar to [11]). The main characteristics of
the dataset in terms of the average, minimum and maximum
values are displayed in Table II.

C. SpMV benchmarking

To train the CNN, a class (best storage format) should
be assigned to matrices in the dataset. This is the goal of
the SpMV benchmarking phase. We conducted experiments
by measuring the performance of the single precision SpMV
kernel using different storage formats (CSR, HYB and ELL)
on the considered GPUs (see Table I). For each matrix and
format, the performance was calculated as the average of
1,000 SpMV operations. Each matrix is then labeled according
to the highest performing format. The classification results
expressed as the number and percentage of matrices belonging
to each class are displayed in Table III. Note that there are
noticeable differences in the classification depending on the
considered GPU. For example, we observe that the largest
class is different on the two GPUs (ELL for the GTX and CSR
for the TITANX). This dependence on the hardware platform
confirms the importance and difficulty of the issue addressed
in this work.

On the other hand, a bad choice of the storage format will
have a negative effect on the SpMV performance. Figure 5
illustrates this behavior measuring the speedup between the
best and the worst performing formats for all the matrices in
the dataset. Considering the GTX platform, the boxplot shows
that the median, first quartile and third quartile speedups are
1.81×, 1.51× and 2.25×, respectively. It means that for 50%
of the matrices choosing the best storage format accelerates the
SpMV operation more than 1.81×. The median, first quartile
and third quartile speedups for the TITANX are 1.47×, 2.05×
and 2.66×. In addition, we have detected some outliers (points
in the plots) where the SpMV is performed from tenths to
hundreds of times faster when choosing the proper format.
Therefore, a misprediction in the classification may lead to
important performance degradations.

D. Image dataset generation & Network training

Several of the characteristics in Table II correspond to
the global metrics detailed in Section III. Metrics should be
normalized to fit the interval [1,255] since their values will
be assigned to a RGB color channel in the images. The way
this normalization is performed has an impact on the results of
the classifier. As a consequence, many experiments have been
carried out in order to find out the best normalization method.



TABLE II: Global metrics of the sparse matrices in the dataset.

Avg. Min. Max.
Number of rows/columns (n) 153.3K 1.9K 21.2M
Nonzeros (nnz) 1.4M 120K 89.3M
Nonzeros per row (nnzrow) 29.03 0.08 1.26K
Std. Dev. nonzeros per row (σrow) 27.02 0 1.81K
Density (ρ) 4.35×10−3 4.08×10−8 2.82×10−1

Maximum nonzeros in a row (maxrow) 1.84K 1 2.31M

TABLE III: Classes of the matrices in the complete dataset (left), and only considering matrices for training (middle) and tests
(right).

Dataset Training set Test set
Class GTX TITANX GTX TITANX GTX TITANX
CSR 2,661 [32.8%] 4,612 [56.9%] 2,128 [32.8%] 3,689 [56.9%] 533 [32.8%] 923 [56.9%]
HYB 1,882 [23.2%] 1,455 [17.9%] 1,505 [23.2%] 1,164 [17.9%] 377 [23.2%] 291 [17.9%]
ELL 3,568 [44.0%] 2,044 [25.2%] 2,855 [44.0%] 1,635 [25.2%] 713 [44.0%] 409 [25.2%]
Total 8,111 6,488 1,623
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Fig. 5: Speedup obtained considering the best storage format
with respect to the worst one for all the matrices in the dataset.

Next, we detail how the RGB values were calculated for the
image datasets used in the evaluation (numbers identify the
corresponding metric):
(0) b n

4000c+ 1
(1) nnzrow = nnz

n (no normalization is required)
(2) σrow (no normalization is required)
(3) b100000× nnz

n×nc+ 1
(4) bmaxrow

4 c+ 1

In case some of the previous values exceeds 255 for a
particular matrix, the corresponding color in the image will
be automatically fixed to 255.

We have generated and studied six different image datasets:
binary image dataset (no metrics), R1,R1G2B3, R2G3B4,
R1G3B4 and R0G1B4. The size of the images is always
256×256 pixels, which corresponds to the input size for the
AlexNet network. To train the AlexNet network we have used
a k-fold cross-validation (see Section III). In particular, the
dataset is split into a training set (80% of the matrices) and
a test set (20% of the matrices). Table III shows the number
and classes of the matrices in each set. Recall that the test set
is not used in the training process. In addition, the training set
was divided into 5 folds. The goal of this validation method
is to figure out the optimal number of training epochs. This
procedure was applied to the six image datasets and two GPUs.
We have found that the optimal number of epochs ranges from
20 (binary dataset, GTX) to 42 (R0G1B4 dataset, TITANX).
We must highlight that other hyperparameters take the default
values provided by the DIGITS platform.

The AlexNet network is then trained using the complete
training set until the iterations reach the optimal number
of epochs. Training times on the TITANX GPU vary from
6.3 minutes (binary-GTX dataset) to 14.5 minutes (R0G1B4-
TITANX dataset).

E. Prediction accuracy and performance analysis

Next, the trained CNNs for each dataset and GPU will be
evaluated using only the test set. In addition to the global
accuracy of the classifier (overall percentage of correct clas-
sified matrices), we provide two metrics to better understand
how well the classifier is performing: precision and recall.
The degree to which repeated measurements under the same
conditions give us the same results is called precision. Recall
or sensitivity is also known as the true positive rate, and
quantifies how well the model avoids false negatives. Let’s
assume that there are TA matrices of class A in the dataset.
Our network classifies CA matrices as class A, where PA

has been correctly classified (true positive). Then, precision



TABLE IV: Prediction accuracy of the trained network considering different image datasets on the GTX (top) and TITANX
(down) platforms.

GTX Binary R1 R1G2B3 R2G3B4 R1G3B4 R0G1B4

Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec.
CSR 0.62 0.70 0.79 0.73 0.84 0.81 0.87 0.86 0.89 0.86 0.90 0.90
HYB 0.63 0.72 0.53 0.80 0.73 0.90 0.82 0.91 0.82 0.92 0.82 0.90
ELL 0.80 0.69 0.84 0.75 0.89 0.83 0.91 0.88 0.92 0.90 0.95 0.90

Global Accuracy 0.702 0.750 0.836 0.876 0.888 0.901

TITANX Binary R1 R1G2B3 R2G3B4 R1G3B4 R0G1B4

Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec.
CSR 0.85 0.75 0.86 0.62 0.91 0.91 0.94 0.91 0.95 0.91 0.94 0.93
HYB 0.43 0.78 0.46 0.69 0.68 0.65 0.72 0.92 0.71 0.93 0.71 0.95
ELL 0.61 0.60 0.74 0.66 0.87 0.77 0.86 0.80 0.87 0.80 0.91 0.78

Global Accuracy 0.713 0.758 0.861 0.879 0.885 0.890

and recall for class A can be calculated as PA/CA
and PA/TA

,
respectively.

Table IV shows the global accuracy, precision and recall of
the classifiers for all the datasets on both GPUs. A noticeable
accuracy of 90.1% and 89% was obtained for GTX and
TITANX GPUs training the network with images whose RGB
channels code information about the matrix size, the average
number of nonzeros per row and the maximum number of
nonzeros in a row (R0G1B4). Good results were also observed
when considering other configurations, especially R2G3B4 and
R1G3B4. Since there are less matrices of classes HYB and
ELL on the TITANX dataset (see Table III), precision and
recall are lower with respect to CSR values. Finally, we must
highlight that our methodology is very robust since consistent
results were obtained in terms of accuracy, precision and recall
for the same image datasets on both GPUs.

Another way to prove the benefits of our approach consists
in measuring how close to the maximum achievable SpMV
performance are the classifiers. In this way, we measure the
SpMV performance for all the matrices in the test set using
the format selected by each classifier. Normalized results are
shown in Figure 6 in such a way that 1 corresponds to
the maximum achievable performance (always choosing the
best format). For instance, considering the R0G1B4 classifier,
average performances higher than 0.99 are achieved for both
GPUs. It means that the difference in the SpMV performance
between the best possible classification and the one obtained
by our classifier is less than 1%. Therefore, considering
only the global accuracy, precision and recall to evaluate
the quality of classifiers for sparse matrix classification hide
important information regarding the performance. Since the
final objective of choosing the proper storage format is obtain
the maximum SpMV performance, the above analysis is of
great importance.

F. Speeding up the training process

As we pointed out previously the classes of the matrices
depend on the hardware platform considered in the SpMV
benchmarking phase. As a consequence networks should be
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Fig. 6: Average SpMV performance obtained using the storage
format selected by the classifiers.

trained for each particular GPU. However, next we will
demonstrate that it is not necessary to carry out the training
process from scratch.

The idea is to consider a pre-trained model as starting point
of the training process instead of considering the AlexNet
network initialized with random values (i.e., training from
scratch). This pre-trained model corresponds to a CNN trained
for a different GPU. In this way, the network inherits many
parameters which captured important characteristics and fea-
tures from the considered storage formats and matrices in the
dataset. In addition, we must take into account that classes of
the matrices differ between GPUs, but not for all the dataset.

As a result of using this methodology very good accuracy
results are obtained with less training data in comparison
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Fig. 7: Global accuracy (blue line) and times (green line)
required to train a GTX classifier using as basis a pre-trained
TITANX model.

to training from scratch. Therefore, since the data required
to train the network decrease, training times are also lower.
Figure 7 illustrates this behavior training a classifier for GTX
using a pre-trained TITANX model. In this example we have
considered the R0G1B4 image dataset. For instance, we get
a 88.1% and 89% accuracies training the network using only
30% and 50% of the training data, respectively.

Another important consequence of reducing the training
data size is the impact on the SpMV benchmarking phase (see
Figure 3). This is the most time consuming phase, requiring
several hours to obtain the best storage format (class) for all
the dataset on each GPU. Note that it requires to perform the
SpMV operation 1,000 times for each matrix and format. In
this way, it is possible to reduce noticeably the benchmarking
times while achieving very good performance in terms of
accuracy.

V. RELATED WORK

We can find in the literature many analytical approaches that
deal with the identification of the optimal sparse matrix format
for GPUs based on performance models [12]–[14]. They show
a good accuracy but models are usually tested considering a
small set of matrices. Other authors use traditional machine
learning approaches to select automatically the best storage
format for sparse matrices. Only some of them focus on
GPUs as target platforms. In [2], the authors build a decision
tree to choose the best representation for a given sparse
matrix based on a several matrix structure features. Their
classifiers report a global accuracy in the range 64.6-83.8%,
obtaining a 95% of the maximum achievable SpMV perfor-
mance. A similar approach that takes advantage of support
vector machines to deal with the classification problem was
published in [15]. They demonstrated accuracies in the range
73-88.5%, increasing the obtained average SpMV performance
up to 98%. We must highlight that the best results in both

works are below the numbers obtained using our approach.
In addition, the maximum accuracy observed in both works
was always obtained training the classifiers using feature sets
with more than three matrix properties. None of the works
commented above have considered deep learning technologies.
In a recent paper [11] the authors deal with the sparse matrix
format selection problem using CNNs. They propose several
ways to represent the matrices to train the network. Best
results are achieved using histograms that capture the spatial
distribution of nonzero elements in the matrix. Unlike our
approach, they do not take advantage of the RGB channels
of the images to code some features of the matrices. Using
their representation leads the authors to create an ad-hoc
CNN architecture. Our approach demonstrates that a simple
standard CNN architecture as AlexNet is enough to provide
good classification results. In this way, our methodology can
be easily adopted by the research community since AlexNet
is available in the most important and common deep learning
frameworks. In addition, AlexNet could be easily replaced in
the future by other standard architectures such as VGGNet [8]
and ResNet [9] in order to improve the accuracy results or
speed up the learning process.

Other papers focus only on applying machine learning
techniques to multicore processors [16]. Finally, in [17] the
authors propose a mechanism to select the best SpMV code
implementation for both CPUs and GPUs using deep learning
technologies. It is an interesting work conceptually but their
approach obtains low accuracy results (only 54%) with 75%
of the maximum attainable performance.

VI. CONCLUSIONS

In this work we demonstrated that deep learning technolo-
gies can be successfully applied to classification problems dif-
ferent from the traditional machine learning tasks. We focused
on the selection of the best storage format for the SpMV
kernel on GPUs. A new methodology is introduced based on
the idea of considering the sparsity pattern of the matrices as
an image. Coding several matrix characteristics as the RGB
color of the pixels in the images, we are able to generate image
datasets with enough information to successfully train a CNN.
We prove that a simple trained CNN architecture as AlexNet,
without any fine-tuning, achieves very good results in terms of
accuracy, precision, recall and average SpMV performance. In
particular, we observed a maximum global accuracy of 90.1%,
obtaining within 99.4% on average of the best performance
available. In addition, we demonstrate that it is possible to
speed up the training process using a pre-trained model as
starting point instead of training from scratch. Using a pre-
trained model reduces the requirements of training data to
obtain high global accuracies.

As future work we will deal with the classification problem
on GPUs and other parallel architectures adding specialized
storage formats [18]–[20]. In addition, we will apply dimen-
sionality reduction techniques such as Principal Component
Analysis (PCA) to code more than three matrix properties in



the RGB channels of the images with the aim of improving
the global accuracy of the classifiers.
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