
Boosting Performance of a Statistical Machine Translation System Using
Dynamic Parallelism

M. Fernández, Juan C. Pichel, José C. Cabaleiro, Tomás F. Pena

Centro Singular de Investigación en Tecnoloxı́as da Información (CITIUS)
Universidade de Santiago de Compostela, Spain

Abstract

In this work we introduce a new Statistical Machine Translation (SMT) system whose main objective is to reduce
the translation times exploiting efficiently the computing power of the current processors and servers. Our system
processes each individual job in parallel using different number of cores in such a way that the level of parallelism
for each job changes dynamically according to the load of the translation server. In addition, the system is able to
adapt to the particularities of any hardware platform used as server thanks to an autotuning module. An exhaustive
performance evaluation considering different scenarios and hardware configurations demonstrates the benefits and
flexibility of our proposal.

1. Introduction1

In the modern digital society, we estimate that each2

day are created around 2.5 exabytes of data, in such a3

way that 90% of the data all over the world were created4

just only in the last two years [1]. Most of these data are5

text information written in languages we do not (fully)6

understand. In this way, the role of the Machine Trans-7

lation (MT) in the Big Data era becomes even more rel-8

evant than years ago. However, we must take into ac-9

count that an automatic translation does not have to be10

perfect to be useful. Depending on the use or purpose11

of the translation the requirements of speed and qual-12

ity are different. We distinguish three categories of use13

of machine translation [2]: assimilation, the translation14

of foreign material for the purpose of understanding the15

content; dissemination, translating text for publication16

in other languages; and communication, for example the17

translation of emails, chats, and so on.18

Nowadays the Statistical Machine Translation (SMT)19

dominates the field of machine translation. Compa-20

nies like Google or Microsoft adopted this model for21

their online translation systems. SMT is an approach to22

machine translation that is characterized by the use of23

Email addresses: marcos.fernandez.lopez@usc.es (M.
Fernández), juancarlos.pichel@usc.es (Juan C. Pichel),
jc.cabaleiro@usc.es (José C. Cabaleiro), tf.pena@usc.es
(Tomás F. Pena)

machine learning methods [3]. It is a paradigm where24

translations are generated on the basis of statistical mod-25

els whose parameters are derived from the analysis of26

bilingual text (parallel) corpora and also with monolin-27

gual data. From the first ones, the system learns to trans-28

late small segments of text (translation model), and from29

the latter it learns how to organize the text to be fluent30

(language model). Once trained, an efficient search al-31

gorithm quickly finds the translation with highest prob-32

ability among a large number of choices taking into ac-33

count both translation and language models. In partic-34

ular, considering f as the source sentence and e any of35

its translations into the target language, the best (most36

probable) translation of f is given by the following ex-37

pression:38

ê = arg max
e∈E

p(f |e)p(e)

where E is the set of all sentences in the target language,39

p(f |e) is the probability that the source sentence is the40

translation of the target sentence (translation model),41

and p(e) is the probability of appearance of that target42

language sentence (language model). Note that the main43

benefits of SMT over traditional rule-based paradigms44

are that the engines produce more appropriate and natu-45

ral sounding translations, and the technology is not cus-46

tomized to any specific pair of languages.47

It is worth to mention that the larger the corpora used48

in the training of a SMT system, the better and more49

Preprint submitted to Journal of Computational Science January 12, 2016

complete translation tables and language models will be50

created. This leads to higher quality translations, but it51

comes at the cost of a significant increase in the transla-52

tion times because of the greater number of translation53

possibilities to be evaluated. Therefore, it is important54

for the SMT system to make an efficient use of the hard-55

ware to extract all its computing power. In case the sys-56

tem accepts requests from different users, as in an on-57

line translation system, another factor that impacts the58

performance is the load of the translation server. Trans-59

lation times will increase dramatically in case the sys-60

tem does not distribute the requests in a balanced way.61

For all these reasons it is convenient to develop solu-62

tions that take advantage of the parallelism capabilities63

of current computers in order to improve the overall per-64

formance of a SMT system.65

In this paper we introduce a new solution for an on-66

line SMT system with the main goal of reducing the67

translation times exploiting efficiently the computing68

power of the current processors. With this objective69

in mind, our system processes the translation requests70

in parallel, translating each job using a different num-71

ber of cores. We must highlight that the level of par-72

allelism changes dynamically depending on the load of73

the server. This decision is also influenced by the infor-74

mation provided by an autotuning module, which allows75

our system to adapt to the particularities of the hard-76

ware platform beneath. Our translation system is based77

on Moses [4], which is probably the most widely used78

open-source implementation of the SMT paradigm. A79

thorough performance evaluation considering different80

scenarios shows the benefits and flexibility of our pro-81

posal.82

Note that most of the efforts of the SMT community83

have been devoted to the research of various statistical84

methods to construct language and translation models85

with higher translation quality. Only few works have86

focused on the performance of the translation systems87

from a parallelism and/or load balancing perspective.88

To the best of our knowledge, none of those propos-89

als present the characteristics of the SMT system intro-90

duced in this work.91

The rest of the paper is organized as follows. Sec-92

tion 2 describes Moses focusing on some of its perfor-93

mance issues that our translation system should over-94

come. Section 3 details the architecture and operation95

of the new translation system. Section 4 presents the ex-96

periments carried out to evaluate the performance of our97

proposal. Section 5 discusses about the related work.98

Finally, the main conclusions derived from the work are99

explained in Section 6.100

2. Background on Moses101

Moses [4] is one of the most successful open-source102

implementation of the Statistical Machine Translation103

model. Moses consists of two main components: the104

training pipeline and the decoder. The training pro-105

cess uses as input large quantities of parallel text in106

such a way that each sentence in the source language107

is matched with its corresponding translation in the tar-108

get language. Data typically needs to be preprocessed109

before it is used in training. Once the parallel data is110

ready, Moses uses occurrences of words and segments111

to infer translation correspondences between the two112

languages considered, building this way a translation113

model. Another important part of the system is the lan-114

guage model, which is a statistical model created using115

text in the target language and utilized afterwards by the116

decoder to improve the fluency of the output.117

The core of Moses is the decoder, whose goal is to118

find the sentence in the target language with the highest119

score according to the translation and language models120

corresponding to a particular source sentence. Note that121

decoding is an enormous search problem, generally too122

big for exact search, so Moses provides different strate-123

gies to deal with this search.124

Moses presents two modes of execution: Stand-alone125

and Server mode. In both cases the input (translation126

job) must be plain text and be formatted in a way that127

Moses can interpret it correctly. For instance, it should128

not contain capital letters, punctuation marks must be129

separated from any word by a space, etc. In the machine130

translation field this process is known as tokenization.131

The Stand-alone mode runs directly from command132

line. It requires the file to translate (already tokenized)133

and the path to the configuration file of Moses, which134

contains the translation tables, language model, weights135

for some parameters, etc. This mode of execution ad-136

mits multithreading (adding the flag -threads) [5]. If137

multithreading is enabled, Moses will use a pool of138

threads to translate the paragraphs (translation units/re-139

quests) in the input file.140

The Server mode adds the possibility of running the141

translation engine as a process that listens to XML-RPC142

requests. XML-RPC is a remote procedure call proto-143

col which uses XML to encode its requests and HTTP144

as transport mechanism. Therefore, it can attend trans-145

lation requests from distributed clients written in any146

programming language with support for XML-RPC li-147

braries. As the goal of our work is to develop an efficient148

online SMT service, we must highlight that our system149

is based on the operation of Moses in Server mode.150

In this mode of execution, several translation jobs151

2

reaching the server at the same time are translated152

in a parallel way by default. However, there is a153

significant difference between the parallel processing154

used by Moses Server and Stand-alone. In particular,155

Moses Stand-alone automatically distributes the para-156

graphs (translation units) of an input file (translation157

job) among several threads (if the threads option is158

enabled). However, a single job is always processed159

sequentially in Moses Server, that is, dealing with one160

translation unit at a time and using only one thread. It161

means that a large translation job (a book, for example)162

will not take advantage of the parallel capabilities of the163

computer even when this is the only job running on the164

system. Consequently, Moses Server only ensures the165

maximum use of the computational resources when the166

number of simultaneous jobs sent by clients is at least167

equal to the number of cores available in the translation168

server. If we want to take advantage of the parallel pro-169

cessing power of the server, as we will explain in Sec-170

tion 3, the job must be preprocessed in order to split it171

up into several translation units (sentences, paragraphs,172

etc.) with the aim of sending them concurrently as dif-173

ferent translation requests.174

2.1. Additional limitations of Moses Server175

Moses uses translation caches to store useful infor-176

mation that can be reused for future translations, speed-177

ing up the translation process. The way these caches178

are managed has changed in version 2.1 (released on179

January, 2014), which is the version considered in this180

work. Previous versions of Moses used a global cache181

for all the threads, so the utilization of expensive (in182

terms of performance) locks was mandatory to have183

access to it. In versions 2.1.x, Moses uses a distinct184

translation cache for each thread, so these locks are185

not needed anymore. This behavior improves the per-186

formance of Stand-alone Moses, but it affects badly to187

Moses Server.188

As Moses uses per-thread caches, the reason of this189

bad behavior is related to how Moses Server handle190

threads. In particular, Moses Server attends each trans-191

lation request using a new thread that is destroyed after192

completion, thus losing all the information stored in the193

cache. However, in Stand-alone mode a pool of threads194

is created in such a way that threads processing a job195

are always the same ones. In this way, those threads196

can maintain useful information in the caches and take197

advantage of it for each translation unit they have to pro-198

cess.199

After several tests we have observed that, when200

Stand-alone mode is considered, the best performance is201

generally obtained using individual sentences as trans-202

2 4 6 8 10 12 14 16 18 20 22 24
500

1000

1500

2000

2500

3000

3500

4000

Simultaneous requests

T
im

e
 (

s
e

c
o

n
d

s
)

Figure 1: Moses decoding times for Spanish-English on a 24-cores
machine.

lation units. However, the problem detailed above about203

Moses Server and the thread caches entails that for ver-204

sions 2.1.x, perhaps sending requests consisting of in-205

dividual sentences is not the best strategy for this mode206

of operation. The reason is that each sentence would be207

translated without taking advantage of cache informa-208

tion, thus incurring in overhead every time.209

Two possible solutions have been evaluated to over-210

come this limitation. In the first approach, we discov-211

ered that it could be found an optimal size of the trans-212

lation unit so it was large enough to benefit from infor-213

mation stored in the caches but, at the same time, small214

enough to not produce memory consumption problems.215

Our second solution allows Moses Server to reuse the216

information stored in the caches, so we could use indi-217

vidual sentences as the translation unit. Note that the218

first approach yielded good results but it has also some219

disadvantages with respect to the second proposal. For220

this reason, the latter one is the solution adopted by our221

translation system. Details are provided in the following222

section.223

Another important issue of Moses Server is caused224

by some unknown problem related to the locking mech-225

anisms [6]. For this reason Moses is not capable of scal-226

ing when using more than 16 threads, although the scal-227

ability is already poor from 8 threads on, as Figure 1228

illustrates. To avoid this restraint we could use several229

instances of Moses Server running on the same machine230

in such a way that each instance attend a maximum of 16231

translation requests at a time. In this way, the translation232

system could scale with more than 16 threads and be-233

sides the server would support a larger workload with-234

out saturation. The counterpart is that more memory is235

required, so this should be considered to avoid running236

an excessive number of instances. In addition, as we237

will show later, to implement this solution it would be238

also necessary a new load balancer module to distribute239

3

Parser 1

Parser n

Parser 2

Job n

Job 1

Job 2

... ...

LOAD

BALANCER

AUTOTUNING

Moses Server

Instance 2

Moses Server

Instance 1

16

16

XML-RPC

XML-RPC

XML-RPC

Figure 2: Architecture of the proposed translation system using two Moses Server instances.

the translation requests among the different instances.240

3. Architecture of the Machine Translation System241

In this section we describe the architecture of the new242

SMT system. As we have mentioned previously, its243

main goal is to decrease the translation times exploit-244

ing efficiently the parallelism capabilities of the current245

processors and servers. Each translation job will be pro-246

cessed in parallel in such a way that the level of paral-247

lelism (number of cores used) is adjusted dynamically248

depending on the load of the server and the particular-249

ities of the hardware used. We must highlight that the250

system is designed to be used as a part of a more com-251

plex infrastructure. For example, it could be the core of252

a complete translation web service or it could be used253

to carry out the translation of webpages on the fly. So254

these more complex systems will be the sources of our255

incoming translation jobs.256

As noted previously, the system is based on Moses257

Server. However, it is worth to mention that no mod-258

ifications or changes to the Moses source code are re-259

quired. Therefore, our proposal allows the system to260

work with future (and also legacy) releases of Moses.261

In addition, it is also compatible with other SMT frame-262

works different than Moses, the only requirement is that263

they should accept XML-RPC requests.264

A global view of the architecture of the proposed265

SMT system is shown in Figure 2. It consists of three266

modules, namely: parser, load balancer and autotun-267

ing. All of them were implemented in Python. We can268

summarize how the system works as follows. First, the269

incoming translation jobs from the clients are prepro-270

cessed by the parser (a different parser instance for each271

job). This preprocessing phase includes sentence split-272

ting and tokenization. It is also responsible for the ini-273

tialization of the pool of processes which will be used to274

send the translation requests to the load balancer. The275

load balancer then distributes these requests among the276

different instances of Moses Server that are active on277

the system. The autotuning module is a separate appli-278

cation which should be executed just one time after the279

installation of Moses. It provides useful information to280

set the appropriate level of parallelism at any given mo-281

ment for the particular hardware considered.282

We must highlight that these components may be run-283

ning on the same server or reside in completely different284

machines. It means that the system has great scalability285

in such a way that if more computing power is needed,286

it is only necessary to add new hardware running more287

Moses Server instances. Next, a detailed description of288

the three modules (parser, autotuning and load balancer)289

is shown.290

3.1. Parser module291

When a translation job reaches the system it is sent292

to an instance of the parser module, starting the pre-293

processing phase. Preprocessing is quite standard and294

consists mainly in the tokenization of the input text and295

splitting the text into translation units. In the case of296

webpages or documents it also maintains information297

about how to recover the original aspect of the text af-298

ter the translation procedure. Once the text is correctly299

preprocessed it is possible to start sending translation300

requests to the load balancer module.301

Regarding the granularity of the translation units, the302

usual strategy is to split the text into individual sen-303

tences. But, as it was stated in Section 2.1, maybe using304

4

individual sentences is not the best strategy for Moses305

Server in case the information in the translation caches306

cannot be reused among requests. As it is explained307

in Section 3.3, we found a way in which Moses Server308

can make use of this information instead of discarding309

it after a translation request is completed. In this way,310

translation units in our translation system are always in-311

dividual sentences of the text.312

The parser module sends requests to the load balancer313

using XML-RPC. The usual way to make these requests314

is serially. But, what would happen if a large document315

is sent to translation when the load of the server is low?316

In that case, we would be wasting computing power be-317

cause most of the processors of the server would be idle,318

waiting for new jobs to process. In this way, the client319

would not get the best possible response time. The solu-320

tion is to send several translation requests (of the same321

job) simultaneously. In other words, the translation of322

the document will be performed using various proces-323

sors (cores) at the same time.324

To attain this goal the parser creates a pool of pro-325

cesses which iterates over a list containing all the tok-326

enized translation units of the input text, sending a trans-327

lation request per unit in that list. Thus, the number of328

processes of the pool will determine the maximum num-329

ber of simultaneous requests belonging to that job that330

could be processed in parallel by Moses. The optimal331

number of simultaneous requests at any given time is332

automatically provided by the load balancer module, as333

we will further see. Once the pool of processes is cre-334

ated, it starts sending parallel XML-RPC requests to the335

load balancer until all the translation units of the job are336

returned correctly translated. Finally, the parser module337

will recover the original aspect of the document.338

3.2. Autotuning module339

This module is an independent application executed340

only once after the installation of Moses. Its execution341

can last up to several hours, depending mainly on the342

speed and number of processors of the nodes used as343

server. The mission of this module is to define the dif-344

ferent levels of parallelism (number of cores) that the345

system will use depending on the incoming rate of trans-346

lation jobs and the size of the input text. It means that347

the number of cores used in the translation of a small348

document and a book, under the same load conditions349

in the server, could be different. It is worth to mention350

that the load balancer module will be the responsible351

for measuring the server load and dynamically adjust352

the degree of parallelism accordingly.353

The output of the autotuning module consists of sev-354

eral files with information regarding the permitted lev-355

1 1

2 1

3 1 *

4 1

xsmall -levels

1 1 8.4

2 1 4.5

3 1 3.8

4 1 3.2

6 1 3.4

8 1 3.5

12 1 4.2

xsmall -times

(a)

1 1

2 1

3 1

4 1

6 1 *

8 1

12 1

large -levels

1 1 436.8

2 1 220.1

3 1 157.8

4 1 125.4

6 1 94.1

8 1 76.6

12 1 55.5

large -times

(b)

Figure 3: Files generated by the autotuning module for very small (a)
and large (b) input texts on the ctserv01 system.

els of parallelism to process the input text of a particular356

size. In all the experiments shown in this paper we have357

classified the text size into four categories based on our358

experience:359

• xsmall: less than 400 words360

• small: 400 – 1,300 words361

• medium: 1,300 – 5,000 words362

• large: more than 5,000 words363

In this way, the autotuning module will generate four364

files. We must highlight that our system is flexible365

enough to allow any categorization of the input text366

sizes.367

Examples of output files for very small and large text368

sizes are shown in Figure 3 (labeled as levels). To ob-369

tain these values the autotuning module was executed370

on a 12-core system (ctserv01, see Section 4.1 for de-371

tails). Each line of the files contains a permitted config-372

uration defined as a pair level of parallelism – optimal373

size of the translation unit, sorted from lower to higher374

level of parallelism. The load balancer module will se-375

lect one of these configurations to process the incoming376

jobs depending on the load of the server at a specific377

time. In particular, the first digit of each line indicates378

the number of translation requests from an individual379

job that will be sent simultaneously to Moses Server380

(level of parallelism). That is, the number of cores that381

will process the job in parallel. In this way, in the ex-382

5

amples of Figure 3, very small texts could be translated383

using from 1 to 4 cores (xsmall-levels), while large384

documents could be processed using up to 12 cores at385

the same time (large-levels).386

In the examples of Figure 3, the size of the optimal387

translation unit (expressed in number of words) is al-388

ways 1 for all the levels of parallelism. Note that a sen-389

tence will never be divided into smaller units, so size 1390

means that the translation unit size is equal to one sen-391

tence. As noted previously, this is the default unit size392

used by our SMT system.393

On the other hand, we have also considered a different394

solution that takes advantage of larger translation units395

to alleviate the thread caches issue explained in Section396

2.1, and thus it requires to find the optimal sizes. Al-397

though this is no longer needed because its performance398

is lower than the solution that reuses the information of399

the thread caches, the autotuning module maintains the400

ability to find the optimal translation unit size if it was401

necessary.402

The “*” symbol beside one of the configurations403

means that it is the current configuration selected by the404

load balancer module for a particular input size. In this405

way, considering the example of Figure 3a, if a very406

small text job just arrives to the translation system, it407

will be assigned to a translation pool of 3 processes. In408

other words, the maximum number of sentences belong-409

ing to this job being translated concurrently by Moses410

Server is 3.411

In order to generate the configuration files, the auto-412

tuning module uses a testbed which contains hundreds413

of input texts of different sizes. It calculates the average414

translation time for each text size category (that is, xs-415

mall, small, medium and large texts in our case) using416

a set of predefined configuration pairs level of paral-417

lelism - translation unit size. The number of config-418

urations evaluated by the autotuning module depends419

on the number of available processing cores in the sys-420

tem. Figure 3 shows the configuration pairs evaluated421

and its corresponding average translation time for very422

small and large input texts on the ctserv01 system423

(xsmall-times and large-times, respectively).424

For each text size category, a configuration pair is in-425

cluded in its corresponding levels file only if the av-426

erage translation time using this configuration is at least427

10% lower than the obtained by the selected configura-428

tion of the preceding level. If none of the configurations429

for a particular level fulfill that condition, the preceding430

level is considered the maximum level permitted. This431

is done because increasing the level of parallelism im-432

plies using more resources (cores), but this is not wor-433

thy if there is not a perceptible improvement in the per-434

formance. We illustrate this behavior using the exam-435

ple of Figure 3a. In this case the average translation436

time using 4 and 6 cores (xsmall-times file) does not437

reach the 10% threshold. In fact, translation times do438

not scale using more than 4 cores. Therefore, the max-439

imum level of parallelism for very small texts will be 4440

(see xsmall-levels file). On the other hand, only the441

best configuration pair for each level of parallelism can442

be selected to be part of the levels files.443

3.3. Load balancer module444

The load balancer module is a XML-RPC server and445

it is responsible for:446

• Distributing the translation requests among the dif-447

ferent instances of Moses Server.448

• Monitoring the system load.449

• Modifying dynamically the level of parallelism.450

The communication with the Moses Server instances451

is made through the XML-RPC protocol. The first task452

to make XML-RPC requests is to initialize a connection453

object that, among other information, contains the ad-454

dress and port where the server is listening. Then the455

remote method is called using that object. These con-456

nection objects cannot be used simultaneously by two457

requests, so the usual way of making a XML-RPC call458

is to initialize a new object each time a remote call is459

made. This was our first approach, and it resulted in the460

aforementioned overhead because the information in the461

translation caches cannot be reused between requests.462

To overcome that limitation we used a different ap-463

proach. Instead of creating a new object for each re-464

quest, a pool of connection objects is created. In this465

way, each object in the pool is used sequentially, but466

the global operation will be performed in parallel. The467

idea behind this strategy is to be able to reuse the same468

connection objects among requests, instead of creating469

a new object for each one. This implementation shows a470

good behavior as it takes profit of the information stored471

in the translation caches while that connection is open.472

As stated in Section 2.1, Moses does not scale be-473

yond 16 threads, so a pool of 16 connection objects474

per instance is enough. This pool is created, initial-475

ized and updated by the load balancer module. It also476

maintains the state information about each connection477

object (busy or free). In order to distribute the requests478

among the different instances the load balancer checks479

if there is an object available for each translation request480

that reaches the system. If this is the case, it sends the481

request using that object. If no connection objects are482

available, the load balancer puts that request on hold for483

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

4

6

8

P
ro

ce
ss

es

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

4

6

8

P
ro

ce
ss

es

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

4

6

8

P
ro

ce
ss

es

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

4

6

8

Job Number

P
ro

ce
ss

es

xsmall

small

medium

large

Max. Level
Min. Level

Max. Level

Min. Level

Min. Level

Min. Level

Figure 4: Example of how the SMT system changes dynamically the level of parallelism assigned to each job request according to the load on the
server.

some random amount of time, trying again until even-484

tually the request is successfully sent to an instance of485

Moses Server. When the load balancer receives the re-486

sponse, it is redirected to the parser so the original text487

can be reconstructed.488

The other two functionalities of the load balancer489

module, monitoring the server load and adjusting the490

level of parallelism, are interrelated tasks. A high level491

of parallelism is beneficial in situations where the load492

of the server is low, but it could provoke saturation if a493

high number of translation jobs are being received. And494

vice versa, a low level of parallelism would be desir-495

able when the load is high, but it would imply wasting496

computing resources in the opposite situation.497

To attain this goal of dynamically adjusting the level498

of parallelism depending on the server load, the load499

balancer keeps count of all the requests it receives for a500

certain period of time. With this information and using501

some predefined thresholds, the load balancer decides if502

the level of parallelism should be increased, maintained503

or decreased. Only the configurations determined by the504

autotuning module (included in the levels files) can be505

selected. In this way, the load balancer must take a de-506

cision regarding the level of parallelism periodically. It507

may be noteworthy that if the level is modified, it only508

applies to the new jobs reaching the system. Those jobs509

that are already being translated maintain the level pre-510

viously assigned to them.511

Therefore, the level of parallelism will fluctuate dy-512

namically depending upon the load of the server in such513

a way that more resources will be assigned to jobs that514

reach the server in a moment of low load with respect to515

jobs arriving to a high loaded server.516

3.4. Example of the translation system operation517

Next we will illustrate how the translation system518

works. In this example one job is sent every 20 seconds519

to the system (ctserv01 server, see Section 4.1 for de-520

tails). The size of these jobs alternates cyclically using521

the sequence: very small, small, medium and large. It522

means that the first job is very small, next one is small523

and arrives 20 seconds later, and so on. In the end 30524

jobs of each size are sent to the system for a total of 120525

jobs. Figure 4 shows the level of parallelism assigned by526

the load balancer to each job and how it changes dynam-527

ically through time according to the load of the server.528

Only the first 20 jobs for each size are represented in the529

graphics because the situation remains stationary until530

job 30.531

The autotuning module resolved that, for this test532

server and configuration, a translation pool of more than533

4 processes is never beneficial for very small jobs. In534

other words, the maximum level of parallelism allowed535

for very small jobs is 4 (”Max. Level” line in the fig-536

ure). For the same reason, small jobs should never ex-537

ceed 8 processes, while medium and large jobs could538

potentially use up to 12 processes. Note that in this ex-539

ample the highest level of parallelism reached is 8 for540

some jobs of small, medium and large sizes. We found541

that generally it was better in terms of performance not542

7

allowing serial processing, so two processes is the min-543

imum level of parallelism permitted.544

At the beginning the system was idle. By default,545

translation pools are initialized with 3 processes (see546

Job #1 of xsmall, small and medium sizes). However,547

the level of parallelism of the first large job increases548

between the arrivals of the third job (Job #1 - medium,549

t = 40 seconds) and the fourth one (Job #1 - large,550

t = 60 seconds). Afterwards we observe that the level551

increases quickly because the rate of incoming jobs is552

not very high. At some point the number of concurrent553

requests being processed by the system (that is, the load554

of the server) is high. This is caused by the higher num-555

ber of simultaneous requests sent to the system per job556

(level of parallelism), and also by some medium and557

large jobs whose translations are unfinished (some of558

them last several minutes to complete). As a result the559

load balancer detects that the maximum load threshold560

has been reached and it decides that the level of paral-561

lelism should be reduced. We must highlight that incre-562

ments are done in steps of one level and decrements in563

steps of two levels, as experimentally was determined564

to be the best strategy. This is a conservative strategy565

which tries to avoid the saturation of the system as soon566

as any evidence of high load in the server is detected by567

the load balancer. The level of parallelism keeps fluc-568

tuating according to the guidelines of the load balancer569

until it reaches a stationary state. Note that, depend-570

ing on the incoming rate of jobs, the system could reach571

a totally different stationary state. Of course it is also572

possible that the levels change dynamically during the573

entire test with no stationary states.574

4. Performance Evaluation575

In this section we will show the performance results576

obtained using our SMT system.577

4.1. Configuration578

The translation system was tested on two different579

hardware platforms:580

• Server ctserv01: It consists of 2 CPUs Intel581

Xeon E5-2630L at 2.4 GHz (2×6 cores, Ivy Bridge582

microarchitecture), 32 GB RAM, and Hyper-583

threading disabled.584

• Server ctserv02: It consists of 2 CPUs In-585

tel Xeon E5-2650L at 1.8 GHz (2×8 cores,586

Sandy Bridge microarchitecture), 64 GB RAM and587

Hyper-threading enabled.588

For these tests all the modules (parser, load balancer589

and Moses instances) reside in the same machine. The590

translation system is based on Moses 2.1.1. We used a591

Text Size Sentences Words per sentence Size (KB)
xsmall 10.5 23.1 1.4
small 45.4 16.6 4.7

medium 164.8 13.6 13.8
large 809.7 11.2 56.8

Table 1: Characteristics of the input texts used in the performance
evaluation (average values).

binarized language model and the compact representa-592

tion for phrase and reordering tables, resulting in a total593

size for all the models of 4.5 GB. Models are for the594

Spanish-English pair, which is our only translation di-595

rection in all the tests. The system was trained using596

corpora from the European Union documentation, Eu-597

ropean Parliament Proceedings and other international598

organization and universities. In particular, 217 million599

words in English and 243 million words in Spanish were600

used.601

Transparent huge pages are enabled on both servers,602

as recommended in the Moses documentation. In this603

way, the operating system will always attempt to sat-604

isfy a memory allocation using huge pages (2 MB). If605

no huge pages are available (due to non availability of606

physically continuous memory, for example) the kernel607

will fall back to the regular page size (4 KB).608

Extracts of different sizes from some well-known609

books in Spanish were used as input texts in our exper-610

iments. In particular, the dataset consists of 120 texts611

whose main characteristics are summarized in Table 1.612

4.2. Methodology613

Two case studies were considered: a scenario where614

a server is constantly receiving translation requests, and615

another in which the server is idle for a certain period616

of time (it could happen at night, for example) and it617

receives a single request. In more detail:618

• Case A: Jobs are sent periodically to the transla-619

tion server, starting from a very small job, then a620

small one, medium, large, and start over again un-621

til we have sent 120 texts. The time interval be-622

tween jobs can be shorter or longer depending on623

the level of stress we want to simulate. Three types624

of stress (low, medium and high) were studied. For625

simulating a low stressed server a job is sent every626

30 seconds, for medium stress every 20 seconds,627

and finally for high stress, jobs arrive at the sys-628

tem every 10 seconds. It could be argued that an629

actual translation server could receive translation630

requests at a rate higher than one request each 10631

seconds, but it must be considered that half of the632

translation requests are of several pages size (even633

dozens for the larger jobs), which are way bigger634

8

than a typical translation request. So this rate of635

incoming requests ensures a high occupancy of the636

server.637

• Case B: This case simulates when a single isolated638

translation job is received by the translation server.639

In this scenario our system would evolve to a state640

where the maximum level of parallelism is selected641

for all the incoming jobs. For this reason all the642

texts in the dataset are translated using the maxi-643

mum level of parallelism allowed for each job size.644

We compare these translation times with those ob-645

tained by the serial translation of individual jobs646

used by Moses.647

In both cases we will show results considering differ-648

ent number of instances of Moses Server to demonstrate649

the improvements achievable by using more than one in-650

stance for each translation direction.651

In order to illustrate the performance results in terms652

of translation times we present some boxplot graphs,653

where the top and bottom of the boxes represent the654

third and first quartile of the obtained results respec-655

tively. The line that crosses the boxes is the median656

time, whose numeric value is displayed at the top of the657

graph for an easier comparison. Note that considering658

only one estimator (such as the average execution time,659

for example) is not the best choice to compare the per-660

formance results because of the variability in the mea-661

surements. Boxes provide a better idea of the overall662

performance of the system.663

4.3. Reusing the information of translation caches664

Before analyzing the two case studies commented665

above, we will focus on showing the differences in terms666

of performance between using a new connection object667

per translation request and using a pool of preexisting668

connection objects.669

Moses Server (by default) is not capable of reusing670

the information stored in the translation caches between671

requests. Using larger translation units could alleviate672

this lack of cache information reuse but, as we show673

next, it is not the best option. As explained in Section674

3.3, we found a solution by initializing a pool of pre-675

existing connection objects and sending the translation676

requests through them instead of creating a new connec-677

tion object for each request.678

Figure 5 shows the difference between using a new679

connection object per translation request and using a680

pool of connection objects. In particular, these graph-681

ics correspond to a situation of high stress using differ-682

ent number of Moses instances to attend the translation683

requests on the ctserv01 system.684

XSM
ALL

XSM
ALL

SM
ALL

SM
ALL

M
ED

IU
M

M
ED

IU
M

LA
RGE

LA
RGE

Text Size

0

500

1000

1500

2000

2500

3000

3500

T
ra

n
s
la

ti
o
n

 t
im

e
 (

s
e
c
o
n

d
s
)

95 44 400 190 1262 626 3050 1817

Pool of connection objects
New object per request

(a)

XSM
ALL

XSM
ALL

SM
ALL

SM
ALL

M
ED

IU
M

M
ED

IU
M

LA
RGE

LA
RGE

Text Size

0

500

1000

1500

2000

2500

3000

T
ra

n
s
la

ti
o
n

 t
im

e
 (

s
e
c
o
n

d
s
)

83 28 280 83 972 274 2260 946

Pool of connection objects
New object per request

(b)
Figure 5: Translation times using a new connection object per trans-
lation request and a pool of connection objects. Measurements were
performed running one (a) and two (b) Moses instances on ctserv01.

The size of the translation units used for this test is685

the most beneficial for each case. It means that, when686

a new connection object per request is created, transla-687

tion units are portions of text of the optimal granularity688

calculated by the autotuning module. This corresponds689

to our first approach, explained in Section 2.1, with the690

aim of mitigating the effect of not reusing the transla-691

tion caches. However, once the cache information can692

be reused by introducing the pool of connection objects,693

individual sentences become again the best translation694

unit size. As both figures show, the benefits of using the695

pool of connection objects are evident for all text sizes,696

with improvements superior to 2× in most of the cases.697

When using two instances the difference is even more698

noticeable, with improvements greater than 3×.699

It can also be observed the improvement that comes700

from using several instances of Moses Server to per-701

form the translation, even residing in the same machine.702

Approximately, a doubling of the performance can be703

observed when using the pool of connection objects. It704

proves to be a successful way of avoiding, or at least al-705

leviating, the problems that Moses has with the locking706

9

XSM
ALL

XSM
ALL

SM
ALL

SM
ALL

M
ED

IU
M

M
ED

IU
M

LA
RGE

LA
RGE

Text Size

0

100

200

300

400

500

600

700

800

900

T
ra

n
s
la

ti
o
n

 t
im

e
 (

s
e
c
o
n

d
s
)

11 9 47 17 176 33 697 105

Dynamic parallelism
Serial execution

(a)

XSM
ALL

XSM
ALL

SM
ALL

SM
ALL

M
ED

IU
M

M
ED

IU
M

LA
RGE

LA
RGE

Text Size

0

200

400

600

800

1000

1200

1400

T
ra

n
s
la

ti
o
n

 t
im

e
 (

s
e
c
o
n

d
s
)

19 26 72 52 258 165 1086 730

Serial execution
Dynamic parallelism

(b)
Figure 6: Translation times processing each job serially (Moses de-
fault) and using dynamic parallelism under different load conditions
on ctserv01 when running one instance: low (a) and medium (b)
stress.

mechanism.707

From now on, all the performance results were ob-708

tained making use of the pool of preexisting connection709

objects and, consequently, the translation unit will al-710

ways be an individual sentence.711

4.4. Case A: experimental results712

Next, a comparison between our translation system,713

which has the capability of translating in parallel both714

a single job and multiple jobs, and the default Moses715

strategy where concurrency only affects to multiple in-716

coming jobs is shown. We also demonstrate the benefits717

of our dynamic parallelism strategy against a fixed par-718

allelism approach.719

4.4.1. Dynamic parallelism vs. serial execution of indi-720

vidual jobs721

As we have stated previously, Moses Server pro-722

cesses sequentially each individual job but it has the723

capability of performing concurrently the translation of724

several job requests. However, our system exploits the725

XSM
ALL

XSM
ALL

SM
ALL

SM
ALL

M
ED

IU
M

M
ED

IU
M

LA
RGE

LA
RGE

Text Size

0

100

200

300

400

500

600

700

T
ra

n
s
la

ti
o
n

 t
im

e
 (

s
e
c
o
n

d
s
)

10 5 39 11 145 21 565 68

Dynamic parallelism
Serial execution

Figure 7: Translation times processing each job serially (Moses de-
fault) and using dynamic parallelism under medium stress load condi-
tions on ctserv01 when running two instances.

parallelism of a server in two levels. First, processing726

a single job in parallel using different number of cores,727

and second, allowing the concurrent translation of sev-728

eral jobs in the system. A comparison in terms of perfor-729

mance between our proposal and the usual Moses strat-730

egy is shown.731

An example considering different stress conditions on732

the ctserv01 platform is displayed in Figure 6. First,733

we focus on a situation of low stress in such a way that734

one translation job reaches the server every 30 seconds735

(see Figure 6a). If Moses processes each job sequen-736

tially, all the cores will be busy only if the same number737

of jobs are running on the system. Therefore, consid-738

ering ctserv01, a minimum of 12 jobs are required739

to occupy all the cores available in the system. As a740

consequence there is an important waste of computing741

power for the first incoming jobs as many cores are un-742

used waiting to process new jobs. On the other hand,743

with this rate of incoming jobs, many of the smaller744

texts get translated before the next job arrives at the sys-745

tem, releasing the resources which attended those jobs.746

Therefore, more jobs than cores are necessary to fill the747

system when they are processed sequentially.748

However, the waste of computing power is reduced749

to the minimum when each individual job is processed750

in parallel. For example, let us consider that the trans-751

lation system determines that three parallel requests per752

job is the initial configuration for the levels of paral-753

lelism. After only four jobs reach the system, up to 12754

cores could be executing translation tasks, occupying all755

the resources available. As explained above, some jobs756

might have finished before the fourth job arrives, so the757

occupation would be actually lower, but the difference758

is still obvious.759

Results in Figure 6a reflect noticeable improvements760

10

XSM
ALL

XSM
ALL

SM
ALL

SM
ALL

M
ED

IU
M

M
ED

IU
M

LA
RGE

LA
RGE

Text Size

0

20

40

60

80

100

120

140

160

180

T
ra

n
s
la

ti
o
n

 t
im

e
 (

s
e
c
o
n

d
s
)

 5 5 11 8 37 16 138 58

Dynamic parallelism
Fixed parallelism

(a)

XSM
ALL

XSM
ALL

SM
ALL

SM
ALL

M
ED

IU
M

M
ED

IU
M

LA
RGE

LA
RGE

Text Size

0

50

100

150

200

T
ra

n
s
la

ti
o
n

 t
im

e
 (

s
e
c
o
n

d
s
)

 7 5 13 11 42 21 154 68

Dynamic parallelism
Fixed parallelism

(b)

XSM
ALL

XSM
ALL

SM
ALL

SM
ALL

M
ED

IU
M

M
ED

IU
M

LA
RGE

LA
RGE

Text Size

0

200

400

600

800

1000

1200

1400

T
ra

n
s
la

ti
o
n

 t
im

e
 (

s
e
c
o
n

d
s
)

29 28 81 83 235 274 1023 946

Dynamic parallelism
Fixed parallelism

(c)
Figure 8: Translation times considering fixed and dynamic parallelism using two instances on ctserv01 under different load conditions: low (a),
medium (b) and high (c) stress.

for all text sizes when using our approach. For instance,761

speedups up to 7× for the larger jobs are achieved. In762

this example, the autotuning module decided that for763

smaller texts more than 4 parallel requests were not ben-764

eficial, while for medium and large texts up to 12 paral-765

lel requests could be used if the system evolves to that766

level of parallelism (see Figure 3). It means that when767

a similar number of small and large texts are reaching768

the system, smaller jobs are slightly penalized because769

their chances of getting a free connection object from770

the pool to send a translation request are lower.771

Figure 6b shows the same comparison but under a sit-772

uation of medium stress. Here we can see that our sys-773

tem decrease significantly the translation times for all774

text sizes except for the smaller ones. As expected, im-775

provements are not as good as in a low stress scenario as776

the higher rate of incoming jobs ensures a better use of777

computational resources in the case of serial execution.778

Both strategies tend to converge for a high stress sce-779

nario. In that case, the rate of jobs arriving to the system780

is enough to maintain all the resources busy even with781

serial processing of each job. On the other hand, our782

system will gradually decrease the level of parallelism783

until it reaches the minimum. Therefore, if enough784

time goes by, both strategies will basically behave in785

the same way.786

Finally, Figure 7 shows the same situation of medium787

stress than in Figure 6b but using two instances of788

Moses Server instead. Moses does not scale very well789

from 8 threads on (see Figure 1). Using more than790

one instance greatly improves the performance as each791

instance will enter the poor scalability zone less fre-792

quently. It must be noted that for the system using se-793

rial processing for each job, two Moses Server instances794

approximately duplicates performance. However, our795

system gets speedups higher than 5× for all the cases796

considered. This behavior is due to the static nature of797

the sequential system which does not have the flexibil-798

ity to increase the number of simultaneous translation799

requests to avoid wasting computing power.800

4.4.2. Dynamic parallelism vs. fixed parallelism801

Until now, we have demonstrated that processing in-802

dividual jobs serially leads to a waste of computational803

11

XSM
ALL

XSM
ALL

SM
ALL

SM
ALL

M
ED

IU
M

M
ED

IU
M

LA
RGE

LA
RGE

Text Size

0

50

100

150

200

250

300

T
ra

n
s
la

ti
o
n

 t
im

e
 (

s
e
c
o
n

d
s
)

 9 9 20 19 59 41 231 125

Dynamic parallelism
Fixed parallelism

(a)

XSM
ALL

XSM
ALL

SM
ALL

SM
ALL

M
ED

IU
M

M
ED

IU
M

LA
RGE

LA
RGE

Text Size

0

200

400

600

800

1000

1200

1400

1600

1800

T
ra

n
s
la

ti
o
n

 t
im

e
 (

s
e
c
o
n

d
s
)

29 32 88 106 294 367 1338 1357

Dynamic parallelism
Fixed parallelism

(b)

XSM
ALL

XSM
ALL

SM
ALL

SM
ALL

M
ED

IU
M

M
ED

IU
M

LA
RGE

LA
RGE

Text Size

0

500

1000

1500

2000

2500

3000

T
ra

n
s
la

ti
o
n

 t
im

e
 (

s
e
c
o
n

d
s
)

55 61 245 332 892 1029 2561 2393

Dynamic parallelism
Fixed parallelism

(c)
Figure 9: Translation times considering fixed and dynamic parallelism using two instances on ctserv02 under different load conditions: low (a),
medium (b) and high (c) stress.

resources when the rate of incoming jobs is not enough804

to completely occupy the translation server. Our pro-805

posed system solves this issue by dynamically changing806

the level of parallelism depending on the server load.807

But we wanted to check if a simpler strategy with a fixed808

level of parallelism could lead to similar results. Af-809

ter some experimentation we determined that assigning810

always a pool of four processes to each incoming job811

would be a good compromise between load and speed812

for our test servers. So now we will show some results813

comparing both strategies.814

Figure 8 displays the performance of both approaches815

using two instances of Moses Server on ctserv01 un-816

der situations of low, medium and high stress. Consid-817

ering two instances, this test server is capable of attend-818

ing much more requests than those generated in low and819

medium stress scenarios. So in these two situations, our820

system clearly outperforms the fixed parallelism strat-821

egy by elevating the degree of parallelism and, as a con-822

sequence, it exploits efficiently the computational re-823

sources.824

In the high stress situation, however, the fixed paral-825

lelism strategy generates sufficient translation requests826

to keep the translation server busy. In this way, the827

performance is comparable to the dynamic parallelism828

strategy, which never uses the highest levels of paral-829

lelism. In particular, our system evolves to a state of830

minimum parallelism where two processes are used to831

handle each job (serial processing was discarded, as ex-832

plained in Section 3.4).833

Figure 9 shows the same comparison between fixed834

and dynamic parallelism but on the ctserv02 server.835

This server consists of processors with a different mi-836

croarchitecture and lower clock frequency with respect837

to the ones installed in the ctserv01 system, which838

means it is a slower performer. As a consequence less839

simultaneous requests are needed to completely occupy840

its processing resources. If, in the previous case, our841

translation system clearly outperformed the fixed paral-842

lelism strategy in situations of low and medium stress,843

here it can be observed how a situation of medium stress844

is enough to completely load the system and both strate-845

gies show a similar performance.846

A question that could arise is why not use a higher847

12

Text Size Serial Parallel, one instance Parallel, two instances
Time Speedup Time Speedup

xsmall 8.5 4.1 (4) 2.1× 3.4 (4) 2.5×
small 31.7 7.9 (8) 4.0× 7.2 (8) 4.4×

medium 121.0 22.2 (12) 5.5× 16.1 (12) 7.5×
large 454.5 82.1 (12) 5.5× 54.4 (12) 8.4×

Table 2: Average translation times (in seconds) of one single job on the ctserv01 system.

Text Size Serial Parallel, one instance Parallel, four instances
Time Speedup Time Speedup

xsmall 14.9 5.1 (4) 2.9× 5.5 (4) 2.7×
small 56.7 11.9 (8) 4.8× 9.8 (8) 5.8×

medium 213.4 37.2 (12) 5.7× 19.8 (16) 10.8×
large 819.5 139.2 (12) 5.9× 65.04 (16) 12.6×

Table 3: Average translation times (in seconds) of one single job on the ctserv02 system.

level of fixed parallelism, with 8 or 12 processes for ex-848

ample. The reason is that, on the one hand, it could849

potentially cause saturation problems by an excessive850

memory consumption of the load balancer or even net-851

work congestion if the parser and the load balancer re-852

side in different servers. On the other hand, as our ex-853

periments supported, using more processes only would854

help during low load situations, while for medium and855

high load scenarios we would observe a very important856

degradation in the performance.857

4.5. Case B: experimental results858

For this scenario a summary of the performance re-859

sults obtained is shown in Tables 2 and 3. For compar-860

ison purposes those tables include the average transla-861

tion times achieved by a system which uses the default862

Moses serial processing for each translation job and also863

by our system. All times are expressed in seconds. Be-864

tween brackets it is also displayed the number of pro-865

cesses used in the initialization of the translation pool866

for each job. This number corresponds to the maximum867

level of parallelism indicated by the autotuning module868

for that particular text size.869

Results for our first test server using one and two870

Moses Server instances are shown in Table 2. In this871

system there is enough memory to easily run more in-872

stances, but as the number of processing cores avail-873

able is not really high (12), running more than two in-874

stances does not suppose a noticeable improvement in875

scalability. For the second server (Table 3), one and876

four instances were considered. In this case the num-877

ber of simultaneous processes is 32 (16 physical cores,878

32 threads with hyper-threading enabled) so it greatly879

benefits of a higher number of instances.880

Both tables confirm the good behavior of our solution881

with respect to the serial implementation. In this way,882

users of the translation system will get a much faster re-883

sponse time for all the text sizes when the load of the884

server is minimum. Note that speedups are never lower885

than 2×, reaching values up to 12×. The sequential sys-886

tem could also benefit of using more than one instance,887

but it should implement a way of load balancing as our888

system does.889

5. Related Work890

Machine Translation (MT) is a subfield of compu-891

tational linguistics that investigates the use of soft-892

ware applications to translate text from a source lan-893

guage to another target language. There are two main894

types of machine translation to consider, attending to895

its core methodology: Rule-Based Machine Translation896

(RBMT) and Statistical Machine Translation (SMT).897

Rule-based Machine Translation uses linguistic rules898

to analyze the input text content in the source language899

to generate text in the target language. This process re-900

quires extensive lexicons with morphological, syntactic,901

and semantic information, and large sets of rules. The902

software uses these complex rule sets and then transfers903

the grammatical structure of the source language into904

the target language. These rules must be carefully de-905

signed and implemented by human experts.906

RBMT is specially suitable for building online dic-907

tionaries, as its output is consistent and predictable. It908

usually also works well for translations between closely909

related languages. GramTrans [7] and Apertium [8] are910

two examples of machine translation platforms which911

use this model.912

On the other hand, Statistical Machine Translation913

is characterized by the use of machine learning meth-914

ods. It generates translations using statistical transla-915

tion models obtained from the analysis of both bilingual916

and monolingual text corpora. From these data it auto-917

matically learns to translate small segments of text and918

13

also to organize them in a way that is fluent in the target919

language. As we have mentioned previously, the main920

advantage of SMT over traditional RBMT methods is921

that more appropriate and natural sounding translations922

are produced by the translation engines. In addition, the923

technology is not customized to any specific pair of lan-924

guages and training is automated and cheaper when the925

desired corpora exist and it is good.926

Our translation system is based on Moses [4], which927

is probably the most important open-source toolkit928

for SMT, but there are other relevant SMT tools929

such as Jane [9], UCAM-SMT [10], Phrasal [11] and930

Joshua [12], among others. In addition, some of the931

most well-known machine translation web services,932

as Google Translate [13] and Microsoft’s Bing Trans-933

lator [14], use the statistical approach in their plat-934

forms [15, 16].935

However, SMT is not exempt of drawbacks as paral-936

lel corpora of good quality are not always available. Be-937

sides, it also has high CPU, disk space and memory re-938

quirements to build and manage large translation mod-939

els. Precisely, the fact that SMT techniques are very940

CPU intensive and time consuming make them very941

good candidates to take advantage of parallel comput-942

ing techniques for increasing their performance. How-943

ever, most of the research in the SMT field has been944

devoted to obtain language and translation models with945

higher quality instead of focusing on the performance of946

the translation systems from a parallelism and/or load947

balancing point of view. In any case, we can find in948

the literature some examples of the latter category of949

works. For instance, in [5] the author describes the950

extension of Moses to support multi-threaded decod-951

ing. Chen et al. [17] show how to parallelize a MT952

decoder using a method called functional task paral-953

lelism, which tries to overcome some limitations posed954

by traditional thread-based methods. Some researchers955

try to exploit the massive parallelism of GPUs in or-956

der to boost the performance of the machine transla-957

tion process and other natural language processing ap-958

plications [18, 19]. Some implementations are based959

on the Map-Reduce paradigm, but they deal with the960

stages of training and the construction of the statistical961

model [20, 21]. In a more recent work, authors use Big962

Data technologies to process huge amounts of text us-963

ing several natural language modules [22], but machine964

translation is not considered in the paper.965

Note that most of the works commented above966

change the decoder or other fundamental parts of the967

translation system, creating an ad hoc implementation968

for a particular parallel architecture. However, our ap-969

proach improves the performance of Moses without ap-970

plying any kind of modification to the original Moses971

source code. In this way, we assure the compatibility of972

our solution to any release of Moses (future or legacy).973

Finally, ScaleMT [23], MT Server Land [24] and MT-974

Monkey [25] are infrastructures for machine translation975

that are similar in concept to the approach explained in976

this paper. However, they lack the fundamental feature977

of allowing the parallel translation of single jobs, which978

permits to take advantage of all the computational re-979

sources of a server even in situations of low load. In ad-980

dition, unlike these solutions, our system is able to adapt981

to the particularities of any hardware platform thanks to982

the autotuning module.983

6. Conclusions984

We have developed a new Statistical Machine Trans-985

lation (SMT) system based on Moses that efficiently ex-986

ploits the computational resources of modern servers.987

In addition, it is able to adapt to the particularities of988

the considered hardware platform and to the rate of in-989

coming jobs. The capability of processing a single job990

in parallel allows our system to be much faster than991

other machine translation services in scenarios with few992

clients generating translation jobs. Besides, the dy-993

namic nature of our system ensures that the computing994

power is not underused in those situations and, at the995

same time, minimizes memory consumption and net-996

work usage when the system is heavily loaded. It is997

also easily scalable thanks to its modular conception,998

so performance can be increased without difficulty just999

by adding new Moses server instances. An exhaustive1000

performance evaluation considering different scenarios1001

has demonstrated the benefits and flexibility of our pro-1002

posal.1003

Our solution also avoids or mitigates some of the1004

shortcomings that we encountered in Moses. First, by1005

using the load balancer and several instances to perform1006

the translations we can circumvent to some extent the1007

locking problems which produce bad scalability from1008

certain number of threads on. And second, introducing1009

the pool of connection objects we also solve the prob-1010

lem which did not allow to take advantage of the infor-1011

mation stored in the translation caches among different1012

translation requests.1013

Acknowledgments1014

This work was part of the CELTIC research project1015

(ITC-20113031) and it was developed in collabora-1016

tion with Imaxin|Software. Authors are also sup-1017

ported by MINECO (Spain) grants TIN2013-41129-P1018

and TIN2014-54565-JIN.1019

14

References1020

[1] IBM, Big Data at the speed of business, http://www-01.ibm.1021

com/software/data/bigdata, accessed April 6, 2015.1022

[2] P. Koehn, Statistical Machine Translation, 1st Edition, Cam-1023

bridge University Press, New York, NY, USA, 2010.1024

[3] A. Lopez, Statistical machine translation, ACM Computing Sur-1025

veys 40 (3) (2008) 8:1–8:49.1026

[4] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico,1027

N. Bertoldi, B. Cowan, W. Shen, C. Moran, R. Zens, C. Dyer,1028

O. Bojar, A. Constantin, E. Herbst, Moses: Open source toolkit1029

for statistical machine translation, in: Proc. of the 45th Annual1030

Meeting of the ACL on Interactive Poster and Demonstration1031

Sessions, 2007, pp. 177–180.1032

[5] B. Haddow, Adding multi-threaded decoding to Moses, Prague1033

Bulletin of Mathematical Linguistics 93 (2010) 57–66.1034

[6] Moses Support Forum, Multithreading is broken for hierarchical1035

Moses, https://github.com/moses-smt/mosesdecoder/1036

issues/39, accessed February 9, 2015.1037

[7] GrammarSoft ApS and Kaldera Språkteknologi AS, GramTrans,1038

http://gramtrans.com, accessed April 6, 2015.1039

[8] Apertium, https://www.apertium.org, accessed April 6,1040

2015.1041

[9] J. Wuebker, M. Huck, S. Peitz, M. Nuhn, M. Freitag, J. Peter,1042

S. Mansour, H. Ney, Jane 2: Open source phrase-based and hi-1043

erarchical statistical machine translation, in: International Con-1044

ference on Computational Linguistics (CoLing), 2012, pp. 483–1045

491.1046

[10] University of Cambridge, UCAM-SMT: the Cambridge statisti-1047

cal machine translation system, http://ucam-smt.github.1048

io, accessed April 6, 2015.1049

[11] S. Green, D. Cer, C. D. Manning, Phrasal: A toolkit for new1050

directions in statistical machine translation, in: Proc. of the 9th1051

Workshop on Statistical Machine Translation, 2014, pp. 114–1052

121.1053

[12] Johns Hopkins University, Joshua machine translation toolkit,1054

http://joshua-decoder.org, accessed April 6, 2015.1055

[13] Google, Google Translate, https://translate.google.1056

com, accessed April 6, 2015.1057

[14] Microsoft, Bing Translator, http://www.bing.com/1058

translator, accessed April 6, 2015.1059

[15] Google, Machine translation - Research at Google, http:1060

//research.google.com/pubs/MachineTranslation.1061

html, accessed April 6, 2015.1062

[16] Microsoft, Automatic translation and Microsoft Trans-1063

lator, http://www.microsoft.com/translator/1064

automatic-translation.aspx, accessed April 6, 2015.1065

[17] L. Chen, W. Huo, H. Mi, Z. Zhang, X. Feng, Z. Li, Parallelizing1066

a machine translation decoder for multicore computer, in: Proc.1067

of the 7th Int. Conference on Natural Computation, 2011, pp.1068

2220–2225.1069

[18] C.-Y. Lai, Efficient parallelization of natural language applica-1070

tions using GPUs, Master’s thesis, EECS Department, Univer-1071

sity of California, Berkeley (2012).1072

[19] S. Gupta, M. R. Babu, Generating performance analysis of GPU1073

compared to single-core and multi-core CPU for natural lan-1074

guage applications, International Journal of Advanced Com-1075

puter Science and Applications (IJACSA) 2 (2011) 50–53.1076

[20] C. Dyer, A. Cordova, A. Mont, J. Lin, Fast, easy, and cheap:1077

Construction of statistical machine translation models with1078

MapReduce, in: Proc. of the 3rd Workshop on Statistical Ma-1079

chine Translation, 2008, pp. 199–207.1080

[21] C. T. Chu, S. K. Kim, Y. A. Lin, Y. Yu, G. R. Bradski, A. Y. Ng,1081

K. Olukotun, Map-Reduce for machine learning on multicore,1082

in: Neural Information Processing Systems (NIPS), MIT Press,1083

2006, pp. 281–288.1084

[22] R. Agerri, X. Artola, Z. Beloki, G. Rigau, A. Soroa, Big1085

data for natural language processing: A streaming approach,1086

Knowledge-Based Systems 79 (2015) 36–42.1087

[23] V. M. Sánchez-Cartagena, J. A. Pérez-Ortiz, ScaleMT: a1088

free/open-source framework for building scalable machine1089

translation web services, Prague Bulletin of Mathematical Lin-1090

guistics 93 (2010) 97–106.1091

[24] C. Federmann, A. Eisele, MT Server Land: an open-source1092

MT architecture, Prague Bulletin of Mathematical Linguistics1093

94 (2010) 57–66.1094

[25] A. Tamchyna, O. Dušek, R. Rosa, P. Pecina, MTMonkey: A1095

scalable infrastructure for a machine translation web service,1096

Prague Bulletin of Mathematical Linguistics 100 (2013) 31–40.1097

15

http://www-01.ibm.com/software/data/bigdata
http://www-01.ibm.com/software/data/bigdata
http://www-01.ibm.com/software/data/bigdata
https://github.com/moses-smt/mosesdecoder/issues/39
https://github.com/moses-smt/mosesdecoder/issues/39
https://github.com/moses-smt/mosesdecoder/issues/39
http://gramtrans.com
https://www.apertium.org
http://ucam-smt.github.io
http://ucam-smt.github.io
http://ucam-smt.github.io
http://joshua-decoder.org
https://translate.google.com
https://translate.google.com
https://translate.google.com
http://www.bing.com/translator
http://www.bing.com/translator
http://www.bing.com/translator
http://research.google.com/pubs/MachineTranslation.html
http://research.google.com/pubs/MachineTranslation.html
http://research.google.com/pubs/MachineTranslation.html
http://research.google.com/pubs/MachineTranslation.html
http://research.google.com/pubs/MachineTranslation.html
http://www.microsoft.com/translator/automatic-translation.aspx
http://www.microsoft.com/translator/automatic-translation.aspx
http://www.microsoft.com/translator/automatic-translation.aspx

	Introduction
	Background on Moses
	Additional limitations of Moses Server

	Architecture of the Machine Translation System
	Parser module
	Autotuning module
	Load balancer module
	Example of the translation system operation

	Performance Evaluation
	Configuration
	Methodology
	Reusing the information of translation caches
	Case A: experimental results
	Dynamic parallelism vs. serial execution of individual jobs
	Dynamic parallelism vs. fixed parallelism

	Case B: experimental results

	Related Work
	Conclusions

