
Noname manuscript No.
(will be inserted by the editor)

A Flexible and Dynamic Page Migration Infrastructure
Based on Hardware Counters

Juan A. Lorenzo-Castillo · Juan C.
Pichel · Francisco F. Rivera · Tomás F.
Pena · José C. Cabaleiro

Received: date / Accepted: date

Abstract Performance counters, also known as hardware counters, are a pow-
erful monitoring mechanism included in the Performance Monitoring Unit
(PMU) of most of the modern microprocessors. Their use is gaining popu-
larity as an analysis and validation tool for profiling, since their impact is
virtually imperceptible and their precision has noticeably increased thanks to
the new Precise Event-Based Sampling (PEBS) features.

In this paper we present and evaluate a novel user-level tool, based on
hardware counters, for monitoring and migrating pages dynamically. This tool
supports different migration strategies, being able to attach and monitor a
target application without need to modify it whatsoever. The page migration
process is performed timely and its overhead is overcome by the benefit of the
data locality achieved.

As a case study, an access-based migration algorithm was implemented
and integrated into our tool. Performance results on a NUMA system show a
noticeable reduction of remote accesses and execution time, achieving speedups
of up to ∼21% in a multiprogrammed environment.

Keywords Hardware Counters, Page Migration, NUMA

This work has been partially supported by Hewlett-Packard under contract 2008/CE377, by
the Ministry of Education and Science of Spain, FEDER funds under contract TIN 2010-
17541 and by the Xunta de Galicia (Spain) under contract 2010/28 and project 09TIC002CT.
This work is in the frame of the Spanish network CAPAP-H. The authors also wish to thank
the supercomputer facilities provided by CESGA.

Juan A. Lorenzo-Castillo · Juan C. Pichel · Francisco F. Rivera · Tomás F. Pena · José C.
Cabaleiro
Centro de Investigación en Tecnolox́ıas da Información (CITIUS)
University of Santiago de Compostela, Spain
E-mail: {juanangel.lorenzo, juancarlos.pichel, ff.rivera, tf.pena, jc.cabaleiro}@usc.es

2

1 Introduction

Over the last years, we have witnessed an important evolution in the available
computational resources in science and engineering. The line that has tra-
ditionally separated multicomputers from multiprocessors is getting blurred,
and nowadays most modern supercomputers include several multicore, NUMA
(Non-Uniform Memory Access) multiprocessor nodes interconnected by a high-
speed network.

As systems have grown in complexity, the need for understanding what is
happening inside an application has also increased. Profiling, understood as a
performance monitoring technique that records information about a running
code, has proven very useful to narrow down its bottlenecks. In this way, the
performance monitoring hardware counters, included in the vast majority of
modern microprocessors, provide an essential tool to monitor and gain an in-
sight into the system during the execution of a code. Recently, a new player has
come on stage. Precise Event-Based Sampling (PEBS) is a hardware counter-
based profiling technique with a very small overhead and a high precision. This
opens the door to the development of new tools and optimization techniques
based on the information provided by the hardware counters.

On a NUMA environment, the adequate placement of data is essential
to improve the performance of a code. Thread migration and preemption are
common events in non-dedicated environments during the life cycle of a parallel
application, which may change its page affinity requirements (i.e., the memory
module to which a page is bound).

Not until recently did Linux gain NUMA awareness [5]. Its first-touch page
migration policy has proved beneficial when the OS scheduler initially dis-
tributes the threads of a program among the available processors. In this case,
a dataset will be allocated in a memory local to the thread that first touches
it, and it will remain there regardless of which thread accesses it, with a po-
tential latency increase if it is fetched from a remote thread. This is a common
situation in parallel programming languages such as OpenMP [15]. Even in
those cases in which the first-touch policy allocates each dataset close to each
thread, any page may happen to be accessed by several threads scheduled in
different cells. In these situations, a dynamic migration policy can mitigate the
problem of efficiently accessing data.

In this paper we present a hardware counter-based, dynamic page migration
tool for Linux. To our knowledge, nobody has hitherto developed an efficient
user-level migration framework for Linux platforms based on the information
provided by the hardware counters. The main contributions of our tool are:

– No modifications of the monitored application are required.
– No knowledge about the underlying hardware and application is needed.
– It is a user-level approach, with the implicit easiness of use and portability

across platforms.
– It is flexible for the programmers: adding a new migration policy is straight-

forward.
– Its overhead is overcome by the benefit of the data locality achieved.

3

As a case study, an access-based migration algorithm was implemented
and integrated into our tool. We have evaluated several parallel applications
using our migration tool on dedicated and multiprogrammed environments.
The experiments shown in the paper have been performed on the FinisTer-
rae supercomputer [4] installed at Galicia Supercomputing Centre (CESGA),
which consists of more than 2500 Itanium2 processors. The PEBS hardware
counters present on Itanium2 processors, such as the Event Address Registers
(EARs) [6], provide event resolution for instruction and data cache misses, al-
lowing an unambiguous localization of latency data and instruction accesses.
Experiments show a noticeable reduction of remote accesses and execution
time, reaching speedups up to 20.6% in the multiprogrammed environment.

The rest of this article is organized as follows: Section 2 assesses the state
of the art in data allocation techniques. Section 3 presents and discusses the
design of our monitoring and migration tool. Section 4 performs several tests
to evaluate the page migration infrastructure. In Section 5 an access-based
migration algorithm is integrated into our tool and evaluated on different
scenarios. The results and applicability of our infrastructure are discussed in
Section 6. Finally, Section 7 presents the main conclusions derived from this
work.

2 Related Work

Research on the first generation of NUMA machines in the 80s and early
90s already addressed the data placement problem [1,8]. Most of these works
introduced kernel-level page migration policies based on page fault mechanisms
and designed for multiprocessors with large NUMA factors. In addition, these
policies were developed on the context of non-cache-coherent NUMA systems.

The NUMA support in Linux lacks some features that have been present
for a long time in other systems. Hence, most of the works have studied the
proper memory placement of data on systems such as Solaris or Irix. The
dynamic page migration infrastructure introduced in this paper tries to fill
that gap for Linux systems.

Tikir et al. [20] introduce a user-level, profile-driven page migration scheme
using performance counters on a Solaris 9 Sun Fire 6800 server. Their migra-
tion algorithm is based on the number of times a page is accessed by a pro-
cessor. Unlike our approach, it requires inserting instrumentation code into
the monitored application. The same authors had also previously proposed a
dynamic user-level page migration scheme based on an approximate trace of
memory accesses obtained by sampling the network interconnect [19].

Nikolopoulos et al. present in [12] and [13] two algorithms for moving vir-
tual memory pages to the nodes that reference them more frequently on an
IRIX system. The first one, for OpenMP iterative codes, assumes that the
page reference pattern of one iteration will be repeated throughout the execu-
tion of the program. The second algorithm checks for hot memory areas and
migrates the pages with excessive remote references. A more recent work from

4

the same authors dynamically collocates threads and memory affinity sets of
iterative programs in the presence of unpredictable scheduler interventions [14]
on a SGI Origin2000. This proposal requires compiler support by linking the
monitored program to a page-migration library.

Bull and Johnson study the tradeoffs between page migration, replication
and data distribution for OpenMP applications on the Sun WildFire system
[2]. They suggest that page replication can be even more beneficial than mi-
gration. Tao et al. [17] propose three page migration algorithms supported by
memory access histograms on a shared memory in a LAN-like environment PC
clusters. Their algorithms require a large amount of references issued before
a migration decision can be taken. Additionally, they assume that if a page is
accessed, the neighboring pages will be also accessed by the same node.

Wilson and Aglietti [22] implement a Dynamic Page Placement (DPP)
strategy by a replication/migration decision tree on a cc-NUMA multiproces-
sor simulator, proposing several ideas for improving DPP.

On Linux systems, Marathe et al. [10] introduce a hardware-assisted page
placement scheme based on automated profiling on a SGI Altix architecture
using the hardware counters of the Itanium2 and the libpfm library. Their
method needs to run previously a truncated version of an OpenMP program
to extract a trace of its memory accesses. The desired page placement is per-
formed by the OS first-touch and, once the data have been placed, they cannot
be reallocated. Note that our migration tool does not require the modification
of the considered application, and pages can be migrated at any time dur-
ing the execution. Closely related to the previous work, Thakkar [18] uses
libpfm on Itanium2-based, SGI Altix and x86-64 Opteron platforms to study
the use of hardware counters to assist dynamic page placement. His proposal
of a latency-based algorithm considers that the access latencies from a given
node are constant. His work on the Itanium2 platform was abandoned due
to the instability of the traces obtained, and his results on Opteron show an
improvement of 8-15%.

In a recent work [9], the authors study different mechanisms such as in-
program data migration and different loop iteration distributions to improve
the performance of the NAS benchmarks. They obtain good results with re-
spect to the default first-touch policy used by the Linux kernel. Unlike our
proposal, a reasonable amount of knowledge of the underlying architecture is
required. In addition, applications have to be modified.

A different approach to kernel-level dynamic page migration is presented
by Goglin et al. in [5]. The authors develop an implementation of a next-
touch memory placement for the Linux kernel in the i386 architecture. Their
proposal modifies the kernel to have a page migrated close to the thread that
last accessed it. This implementation is yet to be included in the mainstream
kernel.

Some authors have applied page migration techniques in the context of
virtual machines. For example, Wang et al. [21] change the physical location
of a logical page owned by a virtual machine to perform a dynamic cache
repartition. They observe that the cost of migrating a page is high, and further

5

studies are required to decide how many pages to migrate and which one among
all machine pages should be migrated first.

We must highlight that none of the approaches detailed above fulfill all the
requirements of our hardware counters-based page migration infrastructure
introduced in the next section.

3 Design Considerations

A first requisite to design our tool was to get insight into a mechanism to obtain
a model accurate enough of the memory map of a monitored application. A key
advantage to approach this issue has been the availability of the information
provided by PEBS hardware counters such as the access latencies and exact
memory addresses where events occur.

In order to develop a tool that provides information about page affinity and
locality of a multithreaded application, as well as to take decisions to improve
its performance, the following prerequisites were defined:

1. Attach seamlessly to any multithreaded application given as a parameter,
detecting automatically its threads.

2. Most of the page migration techniques found in the literature require the
monitored program to be linked to a given library or have its code mod-
ified somehow. The aim of our proposal is that no modifications of the
monitored program are required.

3. Run as a user-level tool, so that it can be installed and manipulated by
any user and can easily be ported across architectures.

4. Provide enough information and flexibility to associate different migration
strategies.

5. Perform page migrations timely. That is, shortly after the need to migrate
is detected.

Our software infrastructure for page migration must provide profiling ca-
pabilities –to inspect the data accesses in memory performed by a program
in runtime– and effectively modify the allocation of such data so that the
whole program locality improves. Hence, it comprises three parts: a moni-
toring stage , an evaluation stage and a migration stage . The combo
libpfm/Perfmon2 [3,16] was chosen to write a program that complies with
these requirements. Prior to developing the infrastructure, some timing con-
straints must be discussed.

Consider the time scenario depicted in Figure 1. A program is profiled dur-
ing a time ti (i = 1, 2, ...n) by a concurrent monitoring thread. The profiled
program runs normally during every monitoring period (tp) until the buffer
that stores samples gets full and overflows at tintj (j = 1, 2, ...m). For each
overflow, the profiled process is stopped and an interruption is raised, with
overhead tovj . Next, while the profiled program keeps on running normally,
the interruption is handled by the monitoring thread (hndlintj). Then, mon-
itoring is resumed and the whole process starts over. When tp expires, the

6

Fig. 1 Time intervals in a profiling process.

evaluation stage begins and all the collected data are processed by applying
a migration algorithm (period tevaluation i). Next, a number of pages are mi-
grated if needed (tmigration i). The overhead imposed in the profiled program
on each monitoring/evaluation/migration cycle is given by:

overhead =
∑
j

tovj + tmigration i (1)

Note that Equation 1 does not include either hndlintj or tevaluation i which
are computed by the monitoring thread and will be masked by the monitored
program execution. Therefore, only the interruption overheads and the migra-
tion time are susceptible of slowing down the monitored program. Hence, the
runtime consumed by the monitoring thread is:

tmonitor =
∑
j

hndlintj + tevaluation i (2)

Note that the rest of the time the monitor is idle.
Despite the implicit overheads of the interruption handling, processing and

migrating times, as well as the cache and TLB flushes, an adequate page
allocation on each cycle i is expected to amortize these costs by the locality
improvement achieved. In fact, accessing pages remotely in a NUMA system
can be very expensive, so the difference between the cost of fetching a page to a
local cell and the gain achieved by accessing the page locally compensates the
migration process. The following section describes the page migration software
infrastructure developed.

3.1 Architectural Design

A controlling process (monitoring thread) using Perfmon2 can simultaneously
monitor several threads. To do so, it waits on multiple contexts at the same
time, as shown in Figure 2. A context can only be attached to one thread
at a time. Therefore, there must be as many contexts as monitored threads.
Taking into account this feature, our page migration infrastructure comprises
the modules depicted in Figure 3:

7

Fig. 2 A monitoring thread waiting on multiple contexts.

– A monitoring thread is allocated in a monitoring core. It is used ex-
clusively to manage the sampling process, information retrieval and page
migration decisions. It waits on as many contexts as monitored threads
there are at a given time in a dynamic way.

– A multithreaded application where each application thread runs on a
different core. A Perfmon2 context is created and associated to each thread.
It retrieves the information provided by the PMU of each core.

– A sampling buffer , attached to each context, stores the samples obtained
by each PMU. Its sampled data are processed by the monitoring thread
to update a sample page map, which consists of sampled page addresses
accessed per monitored thread as well as other additional information col-
lected by the counters.

3.2 Functional Design

The algorithm of the monitoring stage, executed by the monitoring thread, is
presented in the flow diagrams of Figure 4. It comprises a main function (a)
and an interrupt handler (b). The main function configures the monitoring
process and launches the monitored process. The interrupt handler attends the
interruptions raised by the threads of the monitored process. The algorithm
follows these steps:

1. The program receives the name of the application to monitor.
2. An asynchronous notification is installed. When an interruption arrives,

the overflowHandler function is executed.
3. After initializing the libpfm library, a child process is created. Its first action

is to execute a ptrace(PTRACE TRACEME) system call, whereby the parent

8

Fig. 3 Sampling section from our page migration infrastructure.

process can observe and control the execution of the child. This action
is followed by an exec() system call to start running the application to
monitor.

4. The code enters then in a loop in which a notification is received every time
a new thread is created by the child process. If this happens, the moni-
tored thread will have previously been stopped by the ptrace(PTRACE

TRACEME) call.
5. A new Perfmon2 context is created and attached to the tid of the new

thread. A sampling buffer will be allocated and associated to that con-
text. The buffer is configured to send a notification, via the associated file
descriptor, every time it is full.

6. Finally, a ptrace(PTRACE ATTACH) system call begins tracing the new
thread before it is resumed to start running normally.

This process allows detecting dynamically any new threads created or de-
stroyed during the monitored application’s life cycle. Note that the sampling
buffer of each context is configured to send a notification every time it over-
flows. The overflowHandler function manages that notification, following the
steps in Figure 4(b):

9

(a) (b)

Fig. 4 Flow diagrams: main function (a) and interrupt handler (b) of the monitoring tool.

1. First, the Perfmon2 context of the thread that raises the interruption is
accessed.

2. Perfmon2 stores buffer notifications as messages in a queue. If the message
indicates that the buffer got full and overflowed (PFM MSG OVFL), the buffer
is processed (subprocess A) and the context is restarted to get ready to keep
on storing samples. If the message indicates that the thread has finished,
then the leftover samples in the buffer are read, and the thread is stopped
being traced.

3. When either the monitoring period expires or the monitored program fin-
ishes, a page map is created or updated with fresh information from the
just last read sampling buffer (subprocess B).

The subprocess A in Figure 4(b) processes the sampling buffer each time a
notification arrives to the monitoring tool:

1. Each Perfmon2 context has a pointer to its associated sampling buffer’s
header address. The number of stored samples in the buffer is obtained
from the buffer header, so that the samples can be iterated.

10

2. For each sample, the memory address, as well as its associated latency, are
retrieved.

3. The cache line is identified from each address.
4. Cache lines are stored or updated in a list associated to the context. There-

fore, there will be one list per monitored thread to keep control of each
thread accesses.

5. This loop continues until all the samples in the buffer have been read.
6. When sampling is restarted via PFM RESTART, the sampling buffer is marked

as empty.

The subprocess B in Figure 4(b) creates the page map once all cache lines
have been accessed as follows:

1. The list of existing contexts is iterated. For each context, each cache line
accessed is read.

2. The page address to which each cache line belongs is identified and ap-
pended to the list (which is actually a binary search tree) associated to
that context.

3. If the page already exists in the list, the cache line is added to that page.
Otherwise, a new page will be created.

4. This process is repeated for all cache lines accessed per context and for
each context.

The creation of the page map is the last step of the monitoring stage. Next,
the evaluation stage begins. In this stage, the collected data are processed by a
migration algorithm and, then, the memory pages chosen by the algorithm are
actually migrated. As case study an access-based migration algorithm is inte-
grated into our tool and evaluated in Section 5. Previously, a set of operating
tests carried out to evaluate our page migration infrastructure are presented
in the next section.

4 Validation of the Page Migration Infrastructure

We carried out our tests in the FinisTerrae supercomputer [4]. Each node
in this machine comprises two SMP cells. Both cells in a node share the main
memory in a NUMA configuration. Each cell is composed, in turn, of two
sockets with two 1.6 GHz-DualCore Intel Itanium2 Montvale processors each.
Hence, there are four dual core processors per cell, which makes sixteen cores
per node. Each socket is connected to a cell controller by a 6.8 GB/s bus.
Each cell controller connects directly to a 64 GB local memory and to the
other cell controller through a crossbar. Our system uses a SuSE Linux ES
with a 2.6.29.6 Linux kernel. In our experiments, the main event sampled is
“DATA EAR CACHE LAT4” which corresponds to all data cache misses with la-
tency higher than 4 cycles. According to the Itanium2 cache latency tables [6],
this includes accesses that miss in the L1 data cache and hit L2. To validate our
proposal, two performance studies were carried out, detailed in the following
sections.

11

Fig. 5 Average sampling error (D) for 2 threads. The Sampling period is measured as the
number of occurrences of an event before a sample is taken.

4.1 Reliability of sampling

An experiment was conducted to compare how representative our sampling
method is of all memory accesses. A distance metric D, similar to the one
described in [20], was used. If we consider the ratio of accesses from a processor
to the total number of accesses, D measures the difference, or error, between
ratios of accesses for a given program. An OpenMP program that accesses
randomly positions of an array was used. A variable Cp counts the number of
accesses by processor p. Another variable, Ca, counts all accesses performed by
all processors. The program is monitored by our page migration infrastructure,
using EARs to sample the accesses to the array by each processor (Sp) and
the accesses by all processors (Sa). The ratios of actual and sampled accesses

by each processor are given by Rall =
Cp

Ca
and Rsample =

Sp

Sa
, respectively. D

indicates how much a set of accesses deviates from another set and is defined
as D =

|Rsample−Rall|
Rall

. Therefore, the closer the distance to 0 is, the more
representative the set of sampled values is to the set of all accesses.

The experiment was performed considering 2, 4, 8 and 16 threads on a
FinisTerrae node and different sampling periods, defined as the number of
occurrences of an event before a sample is taken. As an example, results for
two threads are shown in Figure 5. They combine the average distance of every
processor (in red) with the percentage of sampled accesses (in blue) for every
case. All the considered cases show a similar pattern in which a low sampling
period (1 to 5, approximately) obtains a high number of samples, but at the
cost of a noticeable distance error. From a sampling period of 5, the values of D
decrease dramatically and stay steady until it increases again for values higher
than 1000, due to the fact that the number of samples is too low to characterize
accurately the monitored program. The choice of an appropriate sampling

12

period must attend at a low value of D and, simultaneously, a sufficient number
of samples. Regarding D, an appropriate choice for any number of threads
may be any sampling period between 5 and 1000. However, the choice of
the percentage of sampled values is far from being trivial. Indeed, at first
sight, a sensible range of sampling periods could be any between 6 and 10.
These periods are enough to obtain between 5% and 10% of sampled values.
However, this experiment evaluates a constant monitoring stage. The overhead
associated to the evaluation stage, in which the sampled data are processed,
is not considered. Empirically, a period of 1000 has been verified to be enough
to acquire a representative number of samples with a small overhead, so that
was the sampling period used in the experiments presented in the remaining
sections. The monitoring period chosen has been 1 second, which also proved
to obtain the best tradeoff overhead-number of useful samples.

4.2 Migration Throughput

Page migration is performed using the move pages() system call [11]. Whereas
it permits page migration in user-space, it suffers from a limited performance.
Each invocation has a large initialization overhead and, among other side
effects, flushes the TLB. Although move pages() was fixed in kernel 2.6.29
to have a linear complexity [5], its overhead to migrate large buffers might
constrain the final performance of a page migration policy. In our tool, the
evaluation stage is run every time the monitoring stage ends, applying a mi-
gration policy to evaluate which of the sampled pages must be migrated. The
larger the buffer of pages to migrate is, the higher the potential migration over-
head. This section evaluates and quantifies the throughput of move pages()

regarding the amount of pages transferred.
The study has been carried out on a FinisTerrae node. We have used a

code in C that allocates P pages in a buffer, places a thread in a given core and
calls move pages() from that thread. The throughput of the buffer migration
from one node to another was measured. Since both cells are symmetrical, and
considering that there are no other processes interfering, it seems reasonable
to pose that the time to migrate a page from Cell 0 to Cell 1 must be the same
as from Cell 1 to Cell 0. Additionally, this study has evaluated whether there
is any difference in performance ordering the migration from either a local
or a remote cell. Figure 6 shows the throughput for different number P of
pages and migration strategies. The legend “Data in cell X. Thread in cell Y.
Migration from X to Z” means that the data to migrate is initially allocated
in cell X and the thread that invokes move pages() is in cell Y . The pages to
migrate are in cell X and are moved to cell Z.

The figure shows two different trends. In two out of the four cases, in
which the thread that invokes move pages() is in the same cell as the data,
the throughput is identical to each other and higher than the opposite cases,
specially for 32 pages (maximum use of the L1 DTLB). In all experiments,
the peak throughput is achieved for 128 pages (number of entries of the L2

13

Fig. 6 Migration throughput between cells.

DTLB). From then on, the performance falls until a buffer size of 2048 pages
is reached, staying approximately steady from that value on. In preliminary
tests the number of pages to migrate was practically always higher than 1024
pages per monitoring period, coinciding with the steady region in Figure 6.
There, the difference of throughput is just about 3%. Taking into account that
in the tests the number of pages migrated on each monitoring period was in
the range between 1024 and 16384 pages, the migration time can be assumed
to fall, approximately, in the range between 14 and 229 milliseconds at most.
It is not straightforward to state whether such an overhead is affordable or
not, since it will depend on the number of page migration actions that occur
during the execution of the monitored program, and how much these and the
remaining overheads are compensated thanks to the improvement achieved by
those migrations.

5 Case Study: an Access-based Migration Algorithm

Next, as a case study, a page migration algorithm has been implemented and
integrated into our hardware counter-based infrastructure. Consider a generic
NUMA node whose memory modules are arranged in a hierarchy with two
latency levels: |G| groups, interconnected to each other at the same distance
(understood as the same latency) and |Gj | cells inside each group, also at the
same distance from each cell inside its own group. The proposed migration
algorithm takes into account uniquely the number of times a page is accessed
from each cell during the execution of a program. Note that, because of the use
of the hardware counters, only incomplete information from the sampled data,

14

provided by our page migration framework, is used. Assuming that it is able
to sample a representative number of accesses from each page, our algorithm
can be formally stated as follows:

Let us suppose that our system is composed of a set of |G| groups G =
{G1, G2, . . . G|G|}. A group Gj is composed of |Gj | cells Gj = {Cj1, Cj2, . . .},
with 1 ≤ j ≤ |G|.

Let P = {p1, p2 . . . pp} be the set of pages accessed by a program during its
execution. Let us suppose that, during a monitoring period of our framework,
the page pi resides in the local memory of cell Cks ∈ Gk.

Let ajmi ≥ 0 be the total number of sampled accesses to pi from the threads
running in cell Cjm ∈ Gj , being 1 ≤ j ≤ |G| and 1 ≤ m ≤ |Gj |. The total
number of accesses to pi from all the cells in group Gj is then

αj
i =

|Gj |∑
m=0

ajmi (3)

Let h and d be the indexes such that

αh
i = max1≤j≤|G|{αj

i}
ahdi = max1≤m≤|Gh|{ahmi } (4)

Then, the page pi is migrated to the cell Chd ∈ Gh. Notice that if h = k
and d = s, pi is not migrated (because pi is in the memory of Cks), and that
if h = k but d 6= s an intra-group migration is carried out.

In other words, our algorithm evaluates the number of accesses to each
page from each cell. After a monitoring period, each page is migrated to the
cell which most accessed it under the assumption that, if a page has been
accessed most from a cell during a monitoring period, it will keep on doing it
in further periods. Note that this strategy can be generalized for systems with
a more sophisticated memory hierarchy.

To evaluate the effectiveness of our proposal, a series of tests were con-
ducted on a FinisTerrae node. The migration algorithm was particularized
for |G| = 1 groups and |Gj | = 2 cells. Note that the total number of sam-

pled accesses to a page pi from a given cell, defined as ajmi in Equation 3, are
provided by the EAR hardware counters.

Eight out of the nine OpenMP NAS Parallel benchmarks [7] v3.3, C size,
were used. Namely, BT, CG, FT, IS, LU, MG, SP and UA. EP was not evalu-
ated since it does not have significant sharing of data. The goal of the experi-
ment was to compare the execution time of each benchmark with and without
our page migration tool on a dedicated and a multiprogrammed environment.
To do so, each benchmark was initially executed with 4, 8, 12 and 16 threads
without any specific constraints, allowing the OS scheduler to allocate and mi-
grate the threads on any core. Their wallclock execution time was measured.
Note that thread-to-core binding was not used, since one of the aims of our
proposal is that no knowledge about the monitored application and hardware
platform is required by the users. In fact, if an advanced user had a deep

15

Benchmark
Speedup

Benchmark
Speedup

NaD NaM NaD NaM

BT.C LU.C
4 threads 0.2 0.2 4 threads 0.2 20.6
8 threads -5.6 4.8 8 threads -5.5 3.4

12 threads -2.7 0.0 12 threads -3.2 3.3
16 threads 0.1 0.6 16 threads 10.9 2.8

CG.C MG.C
4 threads -14 -3.6 4 threads 8.8 0.3
8 threads -30.1 -2.2 8 threads 0.1 0.9

12 threads -26.5 -5.5 12 threads 1.2 6.4
16 threads -32.1 -0.3 16 threads -2.3 6.4

FT.C SP.C
4 threads -9.2 -7.4 4 threads -2.4 7.9
8 threads -17.1 -5.5 8 threads -5.2 7.7

12 threads -0.8 -4.1 12 threads -0.2 6.6
16 threads 0.3 -1.5 16 threads 2.1 5.5

IS.C UA.C
4 threads -3.7 0.4 4 threads -0.5 1.2
8 threads -1.2 -2.3 8 threads -2.0 1.9

12 threads -1.9 0.3 12 threads -1.2 1.6
16 threads -0.7 -0.8 16 threads -1.5 0.6

Table 1 Speedup (%) of our page migration strategy with respect to the OS first-touch
policy. Tested in a dedicated (NaD) and a multiprogrammed (NaM) environment.

knowledge of the application memory pattern, (s)he could pin threads that
are prone to share data to neighbour cpus in the same socket or cell. The data
access inside a cell is SMP, which is faster than accessing a remote memory.
This will probably reduce the need for a page migration algorithm, but implies
that the user knows the memory access pattern of the application. Remember
that the overhead associated to the monitoring stage is considered and must
be amortized.

5.1 Evaluation in a dedicated environment

In this scenario each thread will be scheduled in a free core, so few or no
thread migrations or preemptions are expected. Since the benchmarks are
already optimized, the first-touch policy should be sufficient to execute the
benchmarks efficiently. Therefore, only little improvements are expected.

Column NaD in Table 1 shows the speedup of the access-based migration
algorithm for each benchmark compared to the first-touch policy. Results show
that the dynamic migration technique obtains relevant improvements only for
LU and MG, whereas it is clear that the rest of them are negatively affected.
Particularly bad cases are CG and FT, in which the performance is noticeably
worse –about a -17% for FT and a -32% for CG in the worst cases–. These
results are discussed in Section 6.

16

5.2 Evaluation in a multiprogrammed environment

A more realistic scenario is the one in which the hardware resources are shared
among user applications. In this case, threads may be preempted or migrated
at any moment by the OS scheduler. Hence, the chances that a thread is
migrated far from its dataset are higher than in a dedicated environment.
Additionally, the presence of numerous programs accessing memory simulta-
neously will cause a higher bus load. In these situations, our page migration
strategy is expected to achieve a better performance.

For this experiment we wrote a parallel program called NomadicNoise to
simulate, in a controlled way, a multiprogrammed environment in which a
second program shares resources with the NAS benchmarks. NomadicNoise
allocates an array locally and accesses it during a given period. After the period
expires, the array is freed and the program migrates its threads to a new cell,
resuming the process there. For our tests, NomadicNoise was executed using
7 threads, a 10 GB array and a 15-second period. The interference of this
program was expected to force some threads of the NAS benchmarks to lose
their affinity, being moved to other cells by the OS scheduler. Two cases were
anticipated when the scheduler tried to reallocate a thread: a first one when
there are enough available cores to migrate the threads (NAS using ohly 4
or 8 threads), and when there are not (12 or 16 threads). In this last case,
some of the NAS threads will be preempted until they get a new time slot. As
in previous tests, there was no binding of threads to processors or any other
intervention that alters the behavior of the scheduler. The monitoring thread
was configured to share the cores in which the NAS benchmark was running.

Column NaM in Table 1 shows the speedup of each benchmark for the
original case and the page migration technique in the multiprogrammed envi-
ronment. There is a general performance improvement compared to the native
first-touch policy. BT, LU, SP and UA were the most benefited by the migra-
tion policies. As in the dedicated environment, FT and CG were slowed down
(-7.4% and -5.5% in the worst case, respectively), although the performance
decrease was noticeably lower than in a dedicated environment. The results
also confirm a better behavior when there are available cores where threads
can be migrated (4 and 8 threads) than those cases in which the threads are
preempted (12 and 15 threads). See later discussion in the next section.

6 Discussion

In order to discuss our findings we must go through the characteristics of
some of the benchmarks used. BT, SP, LU and UA are simulated Compu-
tational Fluid Dynamics (CFD) applications with a high rate of data usage
and computation. BT (Block Tri-diagonal) solves a discretized version of un-
steady, compressible Navier-Stokes equations in three spatial dimensions. The
factorization used decouples data in the x, y and z dimensions. The resulting
systems are Block-Tridiagonal and are solved sequentially along each dimen-

17

sion. Note that BT touches the data pages in the beginning of the program
in favor of the x and y dimensions, so only the z dimension is likely to trig-
ger data movement. The OpenMP version is particularly well tuned to reduce
the memory usage and improve the cache performance which explains why, in
general, there is no performance improvemement in the NaD column. On the
other hand, improvement in the multiprogrammed environment depends very
much on how threads are preempted or migrated in the presence of Nomadic-
Noise. Only when NomadicNoise pushes enough BT threads to the same cell
and our page migration method makes their datasets follow, a gain can be
expected. This explains why only the 4 and 8-thread cases produce a positive
speedup. For 12 and 16 threads, some of them will be preempted, given that
there is no room for all of them in the other cell.

The iteration procedure for the SP (Scalar Penta-diagonal) algorithm is
similar to BT, although the approximate factorization is different. Therefore,
at first sight it may be expected that the performance scales for any number
of threads in the multiprogrammed environment, whereas in BT does not.
However, there are a couple of factors that justify the results. Firstly, BT is
similar to SP in structure but there are several additional parallel procedure
calls to resolve each dimension. Secondly, the number of iterations performed
by SP is 400, double than BT for the same problem size. This gives more time
for the page migration cost to be amortized.

LU also solves a system resulting from a finite-difference discretization of
the Navier-Stokes equation in 3D, but does it by splitting the system into
block lower and upper triangular systems. LU is implemented in parallel using
pipelining. This is done by distributing the matrix data rows in blocks. Being a
pipeline, thread i+1 has to wait for data calculated by thread i to be available.
Once the pipeline is full, all threads work concurrently until they reach the end
of the matrix. This means that, opposite to BT and SP, there is a continuous
flow of data from one dataset to another during the execution of the bench-
mark. This type of code is likely to be benefited from dynamic page migration
techniques to increase locality, as performance improves when a dataset is
close to the previous one in the pipeline structure. Indeed, Table 1 shows a
positive speedup in LU for all cases of the multiprogrammed environment.
We noticed an important improvement as well in the dedicated environment
for 16 threads. The reason for this is a non-optimal initial thread allocation
by the first-touch policy. Once LU starts, each thread will read its neighbor
datablock to do its own calculations. A good initial allocation will keep dat-
ablocks in the same cell. However, a poor allocation will require threads to
access other datablocks in a remote cell, situation that can be relieved by our
page migration method. This can happen as well for fewer threads, but the ef-
fect is not so noticeable because there are fewer datablocks to rearrange. Note
that in this applications in which remote datablocks are required as read-only
blocks, a page replication policy could even result in better performance. We
are studying this possibility as a future work.

UA (Unstructured Adaptive mesh) features a dynamic and irregular mem-
ory access problem. As in most of problems with irregular and continually

18

changing patterns, a page migration policy can even become detrimental if
a page keeps on being migrated back and forward. Despite all, our tech-
nique achieves a modest improvement in the multiprogrammed scenario, as
the datasets are moved close to their threads when those are migrated.

The remaining benchmarks (CG, FT, IS and MG) are not applications
but kernels that mimic the computational core of numerical methods used by
CFD applications. Little or no improvement is found here. CG and FT are
benchmarks in which the performance slow down is particularly noticeable.
The former shows little movement of data –since about half of its address
space are temporary data for the initialization of the program–, and an im-
portant number of L1/L2 cache misses due to the irregularity of its operation
with sparse matrices [7]. FT is a computational-bound kernel that calculates
a Fourier Transform using the FFT-based spectral method, with little data
movement. IS and MG also show a low percentage of remote memory accesses
(3% and 2% of the total bandwidth, respectively [9]) which make them difficult
to get any improvement.

In those cases with such a high data locality the use of a migration policy,
particularly in a dedicated environment, is detrimental to the performance,
as we expected. In a multiprogrammed environment, the benefit of having
datasets migrated to follow their threads does not compensate for the overhead
of the process, given that these kernels run only for 20 iterations.

By and large, we observed that the OS scheduler, although it tends to
spread threads across cells, does not follow a fixed policy to map threads to
cores. For example, for 4 and 8 threads, some executions of the same bench-
mark had their threads evenly collocated in cores of both cells and some had
all threads in the same cell. Only those executions whose threads were spread
out in both cells could benefit of our page migration method improving the
performance and overcoming the implicit overhead of the monitoring stage.

From our observations, some characteristics emerge as being representative
of the kind of codes that can benefit from our proposal. So a user that wants
to determine its applicability to his/her codes might want to consider the
following recommendations:

– The monitoring and migration overhead must be masked by the speedup
achieved by having pages close to the thread that references the data.
Therefore the number of pages should be high enough to reach an accept-
able migration throughput and should stay next to the referencing thread
for long enough. According to our tests, this can be translated into two
features: codes should not be extremely irregular and the memory usage
must be large enough with relation to the system memory. A value that
works fine in our experiments is in the range of, at least, 1/8 of the available
memory.

– In a dedicated environment, codes with low locality can expect a per-
formance improvement, since the pages will be adequately pushed to the
requesting threads during the execution of the code.

19

– In a shared environment, a user can expect an important performance
improvement as long as the memory usage is large enough, as mentioned
in the first point.

– The problem size and, consequently, the run time are also important. Our
tests were performed using the C size of the NAS benchmarks. Sizes D or E
would have likely yielded better results, as the migrations have more time
to be amortized.

7 Conclusions

This paper has introduced a profile-driven, user-level monitoring and page mi-
gration infrastructure for Linux. It relies on the PEBS hardware counters to
obtain a sampled profile of the exact data addresses issued by an application.
This tool attaches and samples the monitored program without modifying it
whatsoever. In addition, it is flexible to support different migrating strategies.
The page migration process is performed timely, and its overhead is overcome
by the benefit of the data locality achieved. A series of tests has been car-
ried out to evaluate its performance and reliability, exploring the benefits and
drawbacks of this approach.

As case study, an access-based page migration algorithm has been im-
plemented on top of our tool. Its effectiveness has been evaluated using the
OpenMP parallel NAS benchmarks on a two-cell NUMA node. Two scenarios
have been considered. First, a dedicated one, in which the main reason for
non-local memory accesses is a poorly data allocation by the OS first-touch
policy. We observed that data misplacing by the first-touch is more likely to
happen for a high number of threads, giving more room for improvement. A
maximum execution speedup about 11% was achieved, although the general
improvement was scarce and irregular. The second scenario was a multipro-
grammed environment in which applications share the hardware resources.
In this case, pages were migrated more efficiently, achieving speedups up to
20.6%, in a more regular improvement trend.

We observed that, in a poor initial data allocation, threads can be (1)
allocated far from their datasets or, (2) have their datasets close to them
but happens that the data are tightly related to another thread’s dataset.
Our experience shows that, in a dedicated environment, there will typically
be little data migration, enough to reach an equilibrium and minimize the
number of remote accesses. In these situations the continuous overhead related
to the monitoring and evaluation process may become higher than the little
page migration needed, resulting in a performance decrease in some cases.
However, in the multiprogrammed environment, in which thread migrations
are often performed, the benefit of moving data to the same cell where a
recently migrated thread was sent clearly compensates the overhead.

By and large, the infrastructure performed correctly, migrating pages in
a reliable way when the use case algorithm stated to do it. In a multipro-
grammed environment, this algorithm improved the performance, compared

20

to the standard first-touch policy of the Linux kernel, for codes with significant
memory usage and not extremely irregular pattern access.

Our migration platform allows virtually any algorithm to be implemented
on top of it. Future work will take advantage of the latency-related events
provided by the EARs to study the effect of latency-based migration strate-
gies in the memory accesses. We are also considering the possibility of making
the migration decision process more automatic by pushing it to kernel level,
so that a sensible choice would be a kernel module that might be enabled or
disabled under certain criteria. We have also considered sustainability in other
platforms: The monitoring standard now for hardware counters access in the
x86-64 platform is Perf events. However, access to x86-64 PEBS, the closest
to the EARs hardware counters provided in IA-64, is still in an early devel-
opment stage. In fact, the Perfmon2 main developer is collaborating with the
Perf events team for this purpose. We are convinced that, given the adequate
kernel infrastructure to access hardware counters, our proposal may be applied
to the x86-64 architecture, although the efficiency and reliability of PEBS for
x86-64 remains to be tested.

References

1. W. J. Bolosky, M. L. Scott, R. P. Fitzgerald, R. J. Fowler, and A. L. Cox. NUMA policies
and their relation to memory architecture. In Int. Conf. on Architectural Support for
Programming Languages and Operating Systems, pages 212–221, 1991.

2. J. M. Bull and C. Johnson. Data distribution, migration and replication on a ccNUMA
architecture. In Proceedings of the Fourth European Workshop on OpenMP, 2002.

3. S. Eranian. The Perfmon2 Interface Specification. Technical Report HPL-2004-200R1.
HP Labs, February 2005.

4. Galicia Supercomputing Centre (CESGA). http://www.cesga.es.
5. B. Goglin and N. Furmento. Enabling high-performance memory migration for multi-

threaded applications on Linux. In Proc. of the IEEE Int. Symposium on Parallel &
Distributed Processing, pages 1–9, 2009.

6. Hewlett Packard. Dual-Core Update to the Intel Itanium 2 Processor Reference Manual,
2006. Technical paper.

7. H. Jin, H. Jin, M. Frumkin, M. Frumkin, J. Yan, and J. Yan. The OpenMP Implemen-
tation of NAS Parallel Benchmarks and its Performance. Technical report, 1999.

8. R. P. Larowe, Jr. and C. Schlatter Ellis. Experimental comparison of memory manage-
ment policies for NUMA multiprocessors. ACM Transactions on Computer Systems,
9(4):319–363, Nov. 1991.

9. Z. Majo and T. R. Gross. Matching memory access patterns and data placement for
NUMA systems. In Proc. of the Tenth International Symposium on Code Generation
and Optimization, CGO ’12, pages 230–241, New York, NY, USA, 2012.

10. J. Marathe and F. Mueller. Hardware profile-guided automatic page placement for
ccNUMA systems. In Proc. of the ACM SIGPLAN symposium on Principles and
Practice of Parallel Programming, pages 90–99, 2006.

11. move pages manual. http://linux.die.net/man/2/move pages.
12. D. S. Nikolopoulos, T. S. Papatheodorou, C. D. Polychronopoulos, J. Labarta, and

E. Ayguadé. A case for user-level dynamic page migration. In Proceedings of the Int.
Conf. on Supercomputing, pages 119–130, 2000.

13. D. S. Nikolopoulos, T. S. Papatheodorou, C. D. Polychronopoulos, J. Labarta, and
E. Ayguadé. User-level dynamic page migration for multiprogrammed shared-memory
multiprocessors. In Proc. of the Int. Conf. on Parallel Processing, pages 95–, 2000.

21

14. D. S. Nikolopoulos, C. D. Polychronopoulos, T. S. Papatheodorou, J. Labarta, and
E. Ayguadé. Scheduler-activated dynamic page migration for multiprogrammed DSM
multiprocessors. Journal of Parallel and Distributed Computing, 62(6):1069–1103, 2002.

15. OpenMP: Simple, Portable, Scalable SMP Programming. http://openmp.org.
16. Perfmon2 monitoring interface and Pfmon monitoring tool. http://perfmon2.source-

forge.net.
17. J. Tao, M. Schulz, and W. Karl. Improving data locality using dynamic page migra-

tion based on memory access histograms. In Proc. of the International Conference on
Computational Science-Part II, pages 933–942, 2002.

18. V. Thakkar. Dynamic Page Migration on ccNUMA Platforms Guided by Hardware
Tracing. Master’s thesis, Graduate Faculty of North Carolina State University, 2008.

19. M. M. Tikir and J. K. Hollingsworth. Using hardware counters to automatically improve
memory performance. In Proc. of the ACM/IEEE conference on Supercomputing, SC
’04, pages 46–, 2004.

20. M. M. Tikir and J. K. Hollingsworth. Hardware monitors for dynamic page migration.
Journal of Parallel and Distributed Computing, 68:1186–1200, 2008.

21. X. Wang, X. Wen, Y. Li, Y. Luo, X. Li, and Z. Wang. A dynamic cache partitioning
mechanism under virtualization environment. In Proc. of the 11th International Conf.
on Trust, Security and Privacy in Computing and Communications (TrustCom), pages
1907 –1911, june 2012.

22. K. M. Wilson and B. B. Aglietti. Dynamic page placement to improve locality in CC-
NUMA multiprocessors for TPC-C. In Proceedings of the ACM/IEEE Conference on
Supercomputing, pages 98–107, 2001.

