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Single-chip Cloud Computer (SCC)

. The SCC is an
experimental
processor created by
Intel Labs for
many-core software
research

. It consists of 48
independent x86
cores arranged in 24
tiles
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Single-chip Cloud Computer (SCC)

Tile
. Two P54c Pentium cores

. Modified cache hierarchy: L1D and
L1I: 16KB, L2: 256 KB

. No coherency among cores caches:
software methods (flushing)

. Message Passing Buffer (MPB):
16KB (8KB per core), support
message passing programming
model

. Each tile has its own frequency
domain (from 100 to 800 MHz)
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Single-chip Cloud Computer (SCC)

Mesh network
. Simple 2D grid that connects all tiles

. Data is routed first horizontally and
then vertically through the network

. The network has its own clock and
power source (800 MHz or 1.6
GHz)

. Dynamic changes during runtime
are not supported
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Single-chip Cloud Computer (SCC)

Main memory
. System admits 64 GB of main

memory through 4 DDR3 memory
controllers (MCs)

. Each core has its own private
domain in this main memory (640
MB in our system)

. MCs attached to the routers of tiles
at (0,0), (2,0), (0,5) and (2,5)

. Six tiles (12 cores) share one MC to
access their private memory

. MCs operate on their own clock and
power source (800 or 1066 MHz)
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Single-chip Cloud Computer (SCC)

RCCE
. It is a simple message passing library

. Specifically designed to use the special architecture
characteristics of the SCC (e.g. MPB)

. Two basic communication primitives: point-to-point and
collective operations

. It also provides access to other entities (e.g. voltage controller)

. When executing a RCCE application, the cores to be used and
their order can be configured differently
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Sparse Matrix-Vector Multiplication (SpMV)

working set (in bytes) = 4× ((n + 1) + nnz) + 8× (nnz + 2× n)
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Experimental conditions

Matrices test set
. Thirty-two sparse matrices from different real problems that

represent a variety of nonzero patterns

. n ∈ [3140, 71505], nnz ∈ [232633, 8767466],
nnz/n ∈ [7, 378] and ws(MBytes) ∈ [2.9, 101.4]

SCC platform
. It is based on Ubuntu Linux with a 2.6.32-24 kernel

. Cores, routers and memory clocked at the default speeds: 533
MHz, 800 MHz and 800 MHz respectively

. Codes were written in C and compiled with Intel’s 8.1 Linux C
compiler using RCCE 1.0.13

. Matrices are split row-wise with the same amount of nonzeros
assigned to each UE
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Mapping units of execution to cores

. Six tiles (12 cores) share MC, by default, partitioned in
quadrants

. Memory latency of a core depends on the distance to the MC:
40Ccore + 4× nh × 2Cmesh + 46Cmem

. Only property to take into account: number of mesh network
hops (nh)
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Mapping units of execution to cores

Different mappings of the UEs to cores: (a) standard and (b) considering the hops
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Influence of the working set size
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. Boost in performance with cores > 8: matrices fit L2 cache

. Matrices 24 and 25: very short row lengths (small nnz/n)
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Influence of the irregular accesses

. SpMV performance: low locality
caused by irregular accesses

. Modified version of the SpMV code:
each reference to x access x[0]

. Performance differences between
original and modified version
caused by irregular accesses

. Big impact on performance:
speedup over 10% in more than
50% of the matrices

. This behavior is not observed in
other multicore systems: cache
hierarchy of the SCC cores
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SCC configurations

. The SCC processor allows to change the cores, mesh network
and memory clock frequency

. We consider three different configurations (frequencies in
MHz):

- conf0 (default): 533, 800, 800
- conf1 : 800, 1600, 1066
- conf2 : 800, 1600, 800
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SCC configurations
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Comparison of the performance (a) and power efficiency (b)

. conf1 increases 30% the power consumption with respect to
conf0, but it is the most efficient configuration

. Efficiency of conf0 and conf2 is practically the same
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Architectural Comparison

Evaluated systems
. Intel Itanium2 Montvale: This processor comprises two cores running

at 1.6 GHz. The peak performance per core is 6.4 GFLOPS/s. Power
consumption: 104 W (TDP).

. Intel Xeon X5570: It is a quad-core processor. Each core operates at
2.93 GHz, with 11.72 GFLOPS/s as peak performance per core.
Power consumption: 95 W (TDP).

. AMD Opteron 6174: This processor consists of 12 cores running at
2.2 GHz. Power consumption: 80 W (ADP), 115 W (TDP).

. NVIDIA Tesla C1060: This GPU consists of 240 cores, with a double
precision arithmetic peak performance of 78 GFLOPS/s. Power
consumption: 187.8 W (TDP).

. NVIDIA Tesla M2050: It has 448 cores, with a double precision peak
performance of 515.2 GFLOPS/s. Power consumption: 225 W (TDP).
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Architectural Comparison
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Comparison of the performance (a) and power efficiency (b)

. SCC outperforms Itanium2, behaves better in terms of power
efficiency

. Xeon and Opteron efficiencies are similar to the observed with
Tesla C1060

. Best behavior overall: Tesla M2050

15/16



Introduction Experimental Evaluation Architectural Comparison Conclusions

Outline

1 Introduction
Single-chip Cloud Computer (SCC)
Sparse Matrix-Vector Multiplication (SpMV)

2 Experimental Evaluation
Mapping units of execution to cores
Influence of the working set size
Influence of the irregular accesses
SCC configurations

3 Architectural Comparison

4 Conclusions



Introduction Experimental Evaluation Architectural Comparison Conclusions

Conclusions

A study of the behavior of the SpMV on the SCC many-core
processor has been performed. Some of the most important
observations are:

. Mapping the UEs to the cores with the lowest distance to
memory increase the SpMV performance up to 1.23×

. A boost in the performance has been observed when the
working set per core fits the L2 cache

. Unlike other multicore systems, the irregular accesses have a big
impact on the SpMV performance

. Speedups up to 1.45× were obtained using a different SCC
configuration with respect to the default one

. SCC only outperforms the Intel Itanium2 in terms of
performance and power efficiency
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Thank you!!
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