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Abstract

In order to efficiently exploit available parallelism, mul-
ticore processors must address contention for shared re-
sources as cache hierarchy. This fact becomes even more
important when irregular codes are executed on them,
which is the case for sparse matrix ones.

In this paper a technique for increasing locality of sparse
matrix codes on multicore platforms is presented. The tech-
nique consists on reorganizing the data guided by a locality
model which introduces the concept of windows of locality.
The evaluation of the reordering technique has been per-
formed on two different leading multicore platforms: Intel
Core2Duo and Intel Xeon.

Experimental results show important performance im-
provements when using our reordered matrices with respect
to original ones. In particular, an average execution time
reduction of about 30% is achieved considering different
number of running threads. These results are due to an im-
proved overall cache behavior. Likewise, a comparison of
our proposal with some standard reordering techniques is
included in the paper. Results point out that the reordering
technique always outperforms standard algorithms and is
effective for matrices with any structure.

1 Introduction

Due to scaling limitations of uniprocessors, modern pro-
cessors are now moving to Chip Multiprocessor (CMP) ar-
chitectures in order to extract more performance from avail-
able chip area. CMPs contain multiple cores on a single
chip allowing more than one thread to be executed at a
time. Each core has its own resources as well as shared
resources. Several recent studies have shown that in order
to efficiently exploit available parallelism, CMPs must ad-
dress contention for shared resources [3, 24]. In particular,
CMPs typically share the L2 cache and its lower level mem-
ory hierarchy. Consequently, reuse of data cached on-chip
is especially important in CMPs in order to reduce off-chip
accesses, which compete for the available memory band-
width [4].

Therefore, data locality, both inter-thread and intra-
thread, is especially relevant in CMPs architectures. This

fact becomes even more important when irregular codes are
executed on them. These codes are characterized by irregu-
lar accesses, and they tend to have low spatial and temporal
localities. So low performance can be expected when exe-
cuting these codes on a CMP architecture.

In this paper, we propose a technique to deal with the
problem of increasing the locality of irregular codes as
sparse matrix ones on multicore platforms. The technique
consists on reorganizing the data guided by a locality model
instead of restructuring the code or changing the sparse ma-
trix storage format. The goal is to increase the grouping of
elements in the sparse matrix pattern that characterizes the
irregular accesses and, as a consequence, increasing the lo-
cality in the execution of the code. In the experiments we
show that our reordering is effective for matrices with any
structure and for different sparse matrix kernels.

The irregular kernel that we have selected as case of
study is a particular implementation of the product of a
sparse matrix by a set of dense vectors. In particular,
this operation occurs in practice when there are multiple
right-hand sides in an iterative solver, in recently proposed
blocked iterative solvers, and in blocked eigenvalue al-
gorithms such as block-Lanczos or block-Arnoldi, among
other important codes [18].

In order to evaluate our reordering technique two dif-
ferent leading multicore platforms are considered: Intel
Core2Duo and Intel Xeon. The first corresponds to a typical
dual-core CMP architecture with a shared L2 cache. While
dual-core Xeon processor belongs to Chip Multithreading
(CMT) architectures [19]. CMT processors combine Chip
Multiprocessing (CMP) and Simultaneous Multithreading
(SMT) [22]. SMT allows several independent threads to is-
sue instructions to a superscalar’s multiple functional units
in a single cycle. In particular, Xeon’s implementation of
SMT architecture is Intel’s Hyper-Threading (HT) [12].

2 Related work

SMT, CMP and CMT architectures have been well stud-
ied and analyzed in order to determine their potential bot-
tlenecks. In the analysis of SMT processors, several works
point out that the simultaneous execution of several threads
puts a lot of stress on the memory hierarchy [8, 21]. For this
reason cache contention cannot be ignored because it leads



for (i=0; i < N; i++) {
for (j=0; j < M; j++) {

reg=0;
for (k=PTR[i]; k < PTR[i+1]; k++) {

reg = reg + DA[k]*B[j][INDEX[k]];
}
R[i][j]=reg;

}
}

Figure 1. Multiplication of a sparse matrix by
a set of M vectors using the ijk nesting.

to overestimate the performance of the considered applica-
tions on a SMT architecture.

Recent years have witnessed several investigations re-
garding to CMP and CMT platforms. For example, Chen
et al. [4] analyze the impact of different thread schedulers
in order to reduce the number of off-chip cache misses. In
other work [3], the authors study the impact of L2 cache
sharing with multiprogram workloads. They propose sev-
eral performance models to predict the impact of cache
sharing on co-scheduled threads. In addition, other papers
have analyzed the performance of OpenMP applications on
CMP and CMT platforms [6, 13]. But, as in the SMT case,
research is focused on regular applications.

Nevertheless, for uniprocessor and multiprocessor sys-
tems, we can find in the literature many works that deal
with the problem of locality for irregular codes. Proposed
techniques can be mainly divided into two categories: data
reordering techniques and code restructuring techniques.
Standard reordering techniques are considered beneficial
methods for dealing with the problem of increasing the lo-
cality in the execution of irregular codes [14]. Some authors
have demonstrated that both groups of techniques are com-
plementary with successful results in terms of the exploita-
tion of the memory hierarchy [16, 17, 20].

In a recent work [23], the authors propose several op-
timization techniques for the sparse matrix–vector multi-
plication which are evaluated on different multicore plat-
forms. Authors examine a wide variety of techniques in-
cluding among others: software pipelining, prefetching ap-
proaches, register and cache blocking, etc. Nevertheless,
they do not evaluate data reordering techniques in order to
increase inter and intra-thread locality.

3 Locality Properties of the Product of a
Sparse Matrix by a Set of Vectors

In this work the process of locality improvement on mul-
ticore architectures is illustrated considering the operation
of the product of a sparse matrix by a set of dense vectors.
Like in other sparse matrix codes, the performance is highly
dependent on the nonzero structure of the matrix. In order
to apply the locality model, the locality properties of the
selected irregular code have to be analyzed.

Let’s consider the operation R=A×B, where R and B are
dense matrices, and A is a N×N sparse matrix stored using
the standard Compressed-Sparse-Row format (CSR) [18].

DA, INDEX and PTR are the three vectors (data, column in-
dices and row pointer) that characterize this format. In par-
ticular, B is the sequence of M dense vectors being M � N
(as it is usual in real codes mentioned in Section 1) by which
the product is performed. The product using the ijk nest-
ing can be implemented for its sequential execution as dis-
played in Figure 1.

For this code the entries of the sparse matrix are accessed
by rows. Note that accesses to vectors DA, INDEX and PTR
present high spatial locality. In the same way, accesses to
the elements of result matrix R are sequential, and there-
fore, a high locality is expected. For each iteration of the
outermost loop i, M rows of dense matrix B are accessed in
order to perform the product of row i of the sparse matrix
for each dense vector. Note that elements of each vector
are stored in contiguous memory locations. The positions
of the accessed elements of each vector (i.e. each row of B)
depend on the positions of the entries in row i of A given by
INDEX(k). So, B presents irregular accesses whose locality
properties depend directly on the pattern of the sparse ma-
trix. This way, the locality for this nesting can be improved
by increasing the grouping of entries over the sparse matrix
pattern that will basically affect the locality in the accesses
to B.

Depending on the storage scheme of the sparse matrix,
different versions of the code are available. Moreover, the
storage scheme usually implies a certain reordering of the
data. For example, when blocking is applied to a nesting,
the data is stored in blocks instead of in rows or columns in
order to increase the locality [9]. The locality improvement
technique in this work can also be applied to codes where
data are stored with other storage schemes. An example
was published in [16] where a reordering of the sparse ma-
trix involved in the product of a sparse matrix by a vector
in combination with blocking techniques was applied. The
technique was evaluated on different uniprocessors and dis-
tributed memory multiprocessors.

4 Reordering for Multicore Architectures

In this section we introduce a brief summary of the lo-
cality model in which the proposed reordering technique is
based on. This model was previously applied to different
computer platforms such as uniprocessors, shared and dis-
tributed memory multiprocessors [15, 16]. Next, a detailed
description of the locality optimization technique for multi-
core processors is presented.

4.1 Locality Model

The locality model is based on the evaluation of the data
locality for the considered sparse matrix code. The model is
general enough to be applied to any sparse matrix code that
can take profit of a clustering of entries in the pattern of the
matrix.

In the model, locality is measured for consecutive pairs
of rows or columns of the sparse matrix depending on



whether the prevailing irregular accesses to the sparse ma-
trix are row-wise or column-wise. In both cases, the locality
is based on two parameters: the number of entry matches
(aelems) and the number of block matches (ablocks). For in-
stance, considering accesses to the sparse matrix by rows,
the number of entry matches between any pair of rows is
defined as the number of nonzero elements in the same col-
umn of both rows. The concept of entry matches can be
extended to block matches by considering instead of single
entries (an entry is defined as a nonzero element), pieces of
consecutive positions in a row of the matrix pattern of the
size of a cache line where there is at least one entry.

Based on these two parameters a magnitude called dis-
tance between rows x and y can be defined, denoted as
di(x, y). It is used to measure the locality displayed by the
irregular accesses performed by the irregular code on these
two rows when they are consecutively accessed. From dif-
ferent distance definitions proposed in [7], in this work we
consider the following:

d1(x, y) = nelems(x) + nelems(y) − 2∗aelems(x, y) (1)

where nelems(x) is the number of entries in row x. It can be
shown that this distance define a metric.

For a given sparse matrix accessed by rows, a quantity
that is inversely proportional to the locality of the data for
the whole sparse matrix can be defined as follows:

D1 =
N−2∑

x=0

d1(x, x + 1) (2)

These definitions can be directly extended to columns.
The model is suitable for any sparse matrix without limita-
tions in the type of pattern that they present.

The locality model detailed above only provide results
based on the locality evaluated on pairs of consecutive rows
(or columns) of the sparse matrix. Nevertheless, the reuse
of data could be possible in any level of the memory hierar-
chy during the product of two or more consecutive rows (or
columns) of the matrix. For this reason, a generalization of
the distance functions based on the concept of windows of
locality is presented.

A window of locality is a set of w consecutive rows (or
columns) of the matrix between which there is a high prob-
ability of data reuse when executing the sparse matrix code.
Based on the distance function d1(x, y), we can define the
distance between windows of locality g and h as:

dw1(g, h) = n(g) + n(h) − 2∗aelems(g, h) (3)

where n(g) = nelemsw(g) − aelemsw(g). Parameter
aelems(g, h) is a direct extension of the entry matches be-
tween windows g and h. nelemsw(g) is the number of ele-
ments of window g, and aelemsw(g) generalizes the concept
of entry matches considering matches that take place on two
or more rows within window g. Note that, introducing n(g)
the possible reuse of data inside g is also considered. Figure
2 shows an example of the calculation of these parameters
when w = 2.

g

h

g

h

nelemsw(g) = 5 nelemsw(h) = 8

aelemsw(g) = 1 aelemsw(h) = 0

aelems(g,h) = 4

Figure 2. Example of the calculation of
nelemsw(g), aelemsw(g) and aelems(g, h).

These distances are equivalent to distances measured
over pairs of consecutive rows (or columns) of the matrix
when the window size is w = 1. This way, distances eval-
uated on windows of locality preserve the same properties.
Therefore, the indirect estimation of locality defined for a
sparse matrix in Equation 2 can now be calculated as a sum
over the whole matrix:

Dw1 =
∑

g

dw1(g, g + 1), ∀ g | 0 ≤ g < �N/w� (4)

where N is the number of rows or columns of the sparse ma-
trix. The model described can be applied to any sparse ma-
trix code whose locality is determined by the entries group-
ing level in the matrix pattern such as the product analyzed.
And it is also suitable for any sparse matrix without limi-
tations in the type of pattern that they present, as we show
in the analysis of results. The final objective of the local-
ity model is to guide a locality improvement process for
increasing the reuse of data at any level of the memory hi-
erarchy.

4.2 Data Reordering Algorithm

We propose a heuristic technique that modifies the pat-
tern of the sparse matrix according to the locality model
described before. In order to increase the locality in the
accesses performed by the irregular code, we search for a
permutation of rows (and columns) of the matrix that mini-
mizes its total distance Dw1 (Equation 4). We formulate the
problem of locality improvement as a classic NP-complete
optimization problem, and we solve it as a graph problem
using its analogy to the Traveling Salesman Problem (TSP).

The problem is described using a complete weighted
graph where each node represents a window of locality of
the input sparse matrix. Each edge of the graph has an as-
sociated weight that reflects the distance between pairs of
windows of locality according to the description of locality
given previously. Nevertheless, it is not necessary to work
with a complete graph. Given that sparse matrices have a
very low density of nonzero elements, most of the weights
in the graph correspond with cases where aelems = 0.
Those values, according to the distance definitions, repre-
sent the worst cases regarding to locality. So, without losing
relevant information about locality, we can use an incom-
plete weighted graph where only values of aelems different
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Figure 3. Example of the creation of windows
of locality of variable size.

from zero are considered. As a consequence, the graph size
is noticeably reduced.

Solving the problem of reordering is equivalent to find a
path of minimum length that goes through all the nodes of
the graph. This path is represented as a permutation vector
that gives the appropriate order of the nodes of the graph,
and therefore, a reordered matrix. Note that if the pattern
of the matrix is symmetric just one permutation vector is
required, that is, the same ordering is applied by rows and
columns. On the other hand, given that we have measures
(distance values) to validate the quality of an ordering, we
have opted for focusing on heuristic solutions. After a com-
parative study of different techniques we have chosen the
Chained Lin–Kernighan heuristic proposed by Applegate et
al. [1].

In order to select the window size (w), two types of win-
dows of locality are analyzed: fixed and variable. When
windows of fixed size are considered, the number of nodes
in the weighted graph is �N/w�. Therefore, for high values
of w, graph is noticeably reduced. It implies an important
decrease in the computational time needed for its calcula-
tion, together with reductions in the problem size to manage
by the reordering heuristic. Note that we are not taking into
account any locality property of the input sparse matrix in
order to create the windows. Therefore, windows of locality
can be formed by consecutive rows (or columns) of the ma-
trix which exhibit low locality according to our model. This
way, as it will be shown in Section 5, windows of locality
with a fixed size present a strong dependence with the ma-
trix pattern as values of w become higher. For this reason,
windows of variable size are introduced.

The objective of using windows of locality of variable
size is two-fold. On one hand, as in the fixed size case, to
decrease the number of nodes in the weighted graph, which
benefits are detailed in the above paragraph. On the other, to
avoid the grouping of consecutive rows (or columns) of the
matrix with low locality in the windows creation process.
Figure 3 shows an example of the proposed technique to
create windows of variable size considering the rows of the
matrix. First, a histogram is created from the input matrix.
It represents the distance between each pair of consecutive
rows. Therefore, there are N − 1 values in the histogram.

Core Architecture Intel Core2Duo Intel Xeon
Clock (GHz) 2.13 2.6

Cores 2 2
L1D Cache 32 KB 16 KB
L2 Cache 2 MB (shared) 2 MB (1 MB/core)
L3 Cache – 4 MB (shared)

Hyper-Threading No Yes

Table 1. Architectural summary of Intel
Core2Duo and Intel Xeon.

In order to decide if two consecutive rows x and y will be
included within the same window a simple criterion must
be fulfilled: d1(x, y) < D1/N , that is, the distance must
be lesser than the average distance of the whole sparse ma-
trix. According to this, in the example of Figure 3, four
windows of locality are created: {0, 1, 2}, {3, 4}, {5} and
{6, 7}. This way, windows creation process is guided by
the locality model and, as a consequence, locality among
rows within each window is increased. This process can be
directly extended to columns. Note that when the matrix
pattern is unsymmetric, the windows creation process must
be applied considering rows and columns independently.

5 Performance Evaluation

In this section, first, the experimental conditions are es-
tablished. Finally, an evaluation of the performance ob-
tained by the reordered matrices generated after applying
our reordering technique is presented. An analysis of the
overhead introduced by the reordering process is also in-
cluded.

5.1 Experimental Conditions

The proposed data reordering technique has been tested
on two different leading multicore processors: Intel
Core2Duo (Conroe) and Intel Xeon (Tulsa). The main char-
acteristics of each architecture are summarized in Table 1.
Note that Xeon processor supports Hyper-Threading (HT)
technology. This feature allows a single, physical proces-
sor to appear as two logical processors to the operating sys-
tem, where each processor maintains a separate run queue.
Therefore, when HT is enabled, two hardware contexts per
core are active simultaneously, competing each cycle for all
available resources.

All the codes were written in C and compiled with the
Intel’s 10.0 Linux compiler. OpenMP directives were used
to parallelize the irregular code of Figure 1. Furthermore,
we have used the PAPI library [2] to read the hardware per-
formance counters of the Core2Duo processor. PAPI is not
available for dual-core Xeon processor.

As a test set to evaluate the locality optimization tech-
nique we have selected fourteen square sparse matrices
from different real problems that represent a variety of non-
zero patterns. These matrices are from the University of
Florida Sparse Matrix Collection (UFL) [5]. Table 2 sum-
marizes some features of the matrices, where N is the num-



N NZ N NZ

msc10848 10848 1229778 nc5 19652 1499816
sme3Da 12504 874887 nmos3 18588 386594
av41092 41092 1683902 mixtank new 29957 1995041
gyro k 17361 1021159 psmigr 1 3140 543162

syn12000a 12000 1436806 e40r0100 17281 553562
garon2 13535 390607 rajat15 37261 443573

bcsstm36 23052 320606 Na5 5832 305630

Table 2. Matrix benchmark suite.

ber of rows or columns (all the matrices are square), and
NZ is the number of entries. For all the results in this pa-
per, we perform the product of a sparse matrix by a set of 20
dense vectors. This way, as in the real codes commented in
Section 1, the number of vectors is usually much lower than
the number of rows of the sparse matrix, that is, M � N .
In practice the number of dense vectors changes depending
on the problem.

Reorderings are performed using both types of windows
of locality: fixed and variable size. Specifically, in this pa-
per we have considered windows of five fixed sizes: w =
1, 2, 8, 32 and 128. For comparison purposes, we have also
included reordered matrices obtained after applying stan-
dard methods as Reverse Cuthill-McKee (RCM), Approxi-
mate Minimum Degree (AMD) and a particular implemen-
tation of the nested dissection ordering algorithm included
in the METIS package [10]. Note that METIS algorithm can
only be applied to matrices with symmetric pattern. Results
shown in this section are always expressed in terms of the
improvement percentage with respect to the original matri-
ces.

5.2 Intel Core2Duo Performance

In this platform, L2 cache is shared among cores. There-
fore, sharing data among threads will lead to an improved
performance of the considered parallel code. Lo et al. [11]
demonstrate that threads should be parallelized with a
cyclic, rather than a blocked algorithm in a SMT architec-
ture where cache hierarchy is shared, as in the Core2Duo
processor. For this reason, in order to parallelize the code of
Figure 1, a cyclic distribution of the loop i iterations among
the threads is used. This way, consecutive rows of the sparse
matrix are accessed by different threads, which allows the
reuse of data (elements of the dense matrix B) previously
accessed in the shared cache by a different thread.

In order to evaluate the data reordering technique, both
execution time and cache behavior are analyzed. As exam-
ple, Figure 4 shows the experimental results achieved when
two threads are used. An overview of these results indi-
cates that the best performance is achieved by reorderings
performed using windows of variable size or windows of
small size (especially, when w = 1 is considered). Nor-
mally, as the windows size grows, the performance is de-
graded. We find the explanation of this behavior when win-
dows of fixed size are constituted (see Section 4.2), be-
cause rows and columns of the sparse matrix are grouped
without taking into account any locality property. There-
fore, distance among rows (or columns) within a window

depends directly on the matrix pattern. As a consequence,
larger sizes only are effective when sets of consecutive rows
or columns with a high probability of data reuse (low dis-
tances according to our locality model) are permuted. This
is the case of some finite element matrices (FEM), such as
nmos3, mixtank new, garon2 or rajat15.

A more detailed analysis of the results shows that only
those matrices reordered using windows of variable size and
windows with w = 1 reduce the execution time with respect
to the original matrices for all considered cases (see Figure
4(a)). This is due to an improved cache behavior, which im-
plies important reductions in the number of L1 an L2 cache
misses (Figures 4(b) and 4(c) respectively). For example,
decreases up to 80% for L1 (matrix nmos3) and 90% for
L2 (matrix av41092) are achieved when using windows of
variable size. Note that while L1 misses refer only to intra-
thread locality (there is a L1 cache per core), L2 misses
indicate the influence of both intra-thread and inter-thread
locality. As a consequence, performance of the sparse op-
eration is noticeably increased, achieving, in some cases,
reductions higher than 80% in the total execution time (ma-
trix sme3Da).

Next, a summary of the results obtained on the
Core2Duo processor is displayed in Table 3 in order to es-
timate the benefits of our proposal in comparison with stan-
dard reordering methods. Best overall results are obtained
by our reordering technique using windows with w = 1,
followed by the reorderings performed using windows of
variable size. In both cases, reductions higher than 50%
in the number of L2 misses are achieved, indicating a high
level of data reuse in the shared cache. Note that our tech-
nique presents a very good behavior even in the sequential
case (one thread). The main drawback of using windows of
small fixed size (especially with w = 1) with respect to win-
dows of variable size is, as we show in Section 5.4, a higher
computational time required to perform the reordering.

Regarding to the results provided by the standard tech-
niques several conclusions can be made. First, our proposal
outperforms standard techniques except for large window
sizes. At the same time, these algorithms show an irregu-
lar cache behavior with remarkable improvements in some
cases (for example, matrices sme3Da and garon2), while
a degraded performance is showed in others (for example,
with matrices e40r0100 and Na5). Note that METIS algo-
rithm can only be applied to matrices with symmetric pat-
tern. Nevertheless, even if we consider only this type of
matrices, results displayed in Table 3 would not vary sig-
nificantly. For example, using two threads and considering
windows of variable size and windows with w = 1, the
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Figure 4. Results obtained on the Core2Duo platform using two threads (improvement percentage
with respect to the original matrix).

1 Thread 2 Threads
Exec. Time L1 Misses L2 Misses Exec. Time L1 Misses L2 Misses

d1 variable 27.8 36.3 51.5 33.0 34.5 57.3
d1 w = 1 30.8 45.8 51.7 35.2 43.3 59.6
d1 w = 2 21.8 33.5 31.7 25.8 32.4 34.2
d1 w = 8 13.0 9.7 24.7 15.2 6.7 23.3
d1 w = 32 6.7 1.0 19.1 9.5 1.1 17.3
d1 w = 128 2.8 1.3 12.9 5.4 1.6 9.5
AMD 11.7 15.3 25.6 10.2 13.4 17.1
RCM 13.2 16.2 29.9 14.9 14.9 21.2
METIS* 15.9 14.1 22.5 16.3 12.9 27.3

Table 3. Summary of the Core2Duo results (improvement percentage with respect to the original
matrix).

average execution time reduction is 32.5% and 33.8% re-
spectively.

5.3 Intel Xeon Performance

On this platform three different running configurations
are analyzed: serial execution (one thread), two threads
with HT disabled, and four threads with HT enabled. Xeon
processor contains three cache levels (see Table 1 for de-
tails). Unlike Core2Duo processor, L2 is not shared among
cores. Therefore, threads assigned to different cores can-
not take profit of data reuse in L2, only in the shared L3.
For this reason, we have opted for a different paralleliza-
tion strategy of Figure 1 code on this platform. When two
threads are running in parallel, a block distribution of the
loop i iterations is used. This distribution is preferred to
cyclic one because it favors the intra-thread locality, al-
lowing each thread to reuse elements of the dense matrix
B previously accessed by itself. Nevertheless, when HT
is enabled, two threads are mapped to each core sharing
the whole cache hierarchy. In this case, we use an hy-
brid parallelization of loop i. First, a block distribution
among cores is used, while within each core, iterations are
cyclicly distributed among threads assigned to it. This way,
threads mapped to the same core exploit inter-thread and
intra-thread localities.

Figure 5 shows the experimental results achieved when
two threads (on the left) and four threads (on the right)
are used. In both cases overall behavior is similar. As
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Figure 5. Results obtained on the Xeon plat-
form (improvement percentage with respect
to the original matrix).



Execution Time
1 Thread 2 Threads, HT off 4 Threads, HT on

d1 variable 25.7 25.8 26.7
d1 w = 1 27.5 28.7 29.4
d1 w = 2 21.9 22.6 23.7
d1 w = 8 17.2 17.5 18.0
d1 w = 32 9.0 9.0 9.2
d1 w = 128 7.0 6.9 6.9
AMD 13.8 11.2 11.0
RCM 14.3 9.2 9.2
METIS* 15.8 12.9 12.2

Table 4. Summary of the Xeon results (im-
provement percentage with respect to the
original matrix).

mixtank new
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psmigr_1
syn12000a
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rajat15

bcsstm36
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Figure 6. Analysis of the overhead introduced
by the reordering technique: (a) graph size
using windows of variable size, and (b) com-
parison of the reordering time.

in the Core2Duo results, best performance is obtained by
reorderings performed using windows of variable size and
windows with small fixed sizes. Nevertheless, here there
is one case where only reorderings using bigger window
sizes improve the performance with respect to the original
matrix (matrix bcsstm36). Reductions in the execution
time slightly higher than 70% are reached on this platform
(matrix sme3Da). If we compare these results and those
obtained on Core2Duo processor (Figure 4), we conclude
that the best results are achieved by the same set of ma-
trices, that is, matrices nc5, sme3Da, nmos3, av41092
and syn12000a.

Finally, a summary of the results obtained on the Xeon
processor is showed in Table 4. We have also included
the performance provided by the standard reordering tech-
niques. The most remarkable improvements are obtained
when using windows with w = 1 and windows of vari-
able size. Note how the average improvement percentage
increases as the number of running threads grows. This way,
reorderings performed using our technique exploit cache hi-
erarchy even when HT is enabled, taking profit of the shared
caches within each core. This behavior is not observed
when standard techniques are considered. Note that, in or-
der to compare with METIS reorderings, if we just consider
symmetric pattern matrices, results would hardly vary.

5.4 Reordering Technique Overhead

Next, we analyze the time required by our proposal in or-
der to perform the matrices reordering. This time depends
directly on the number of nodes of the weighted distance
graph (see Section 4.2). As we have commented, when
considering fixed size windows the number of nodes in the
graph is �N/w�. Nevertheless, using windows of variable
size, we do not know a priori the size of the graph. It de-
pends, at the same time, on the sparse matrix pattern and
on the selected criterion to group the consecutive rows and
columns of the matrix. Figure 6(a) shows, for all the stud-
ied matrices, the graph size when using windows of variable
size normalized with respect to the graph when w = 1 (that
is, when the number of nodes is equal to N ). These results
show an average reduction of about 65%, equivalent to use
a fixed size w � 3.

Finally, in order to evaluate objectively our proposal, a
comparison with METIS reordering time is provided in Fig-
ure 6(b). Nowadays, METIS is considered as a standard
in terms of graph partitioning and reordering. We use the
Core2Duo processor as evaluation platform. Note that re-
ordering times correspond with serial executions. Results
indicate that our reordering technique using windows with
w ≥ 8 outperforms METIS. However, reorderings with win-
dows of variable size and small size (w < 8) require more
time than METIS. In particular, reorderings performed us-
ing windows of variable size introduce about two times the
overhead of METIS, ranging from 0.6 sec (matrix Na5) to
5.8 sec (matrix mixtank new). In other words, for these
two cases, reordering times are equivalent to perform 20 and
23 sparse matrix-vector products when two threads are con-
sidered. The worst case corresponds with garon2, which
requires 67 products. Consequently, the cost of reordering
the sparse data structure must be amortized when the sparse
operation is repeatedly performed, as for instance, in iter-
ative methods, which usually require thousands of sparse
matrix-vector multiplications.

6 Conclusions and Future Work

In this paper a technique for increasing locality of sparse
matrix codes on multicore platforms is presented. The tech-
nique consists on reorganizing the data guided by a locality
model which introduces the concept of windows of local-
ity. As a case of study, the product of a sparse matrix by
a set of dense vectors was considered. The evaluation of
the reordering technique has been performed on two differ-
ent leading multicore platforms: Intel Core2Duo and Intel
Xeon.

Several remarks can be made with respect to the win-
dows of locality. Reorderings performed using small fixed
size windows obtain the best results in terms of perfor-
mance. In particular, an average execution time reduction
of about 30% with respect to original matrices is observed
when w = 1. However, a higher computational time is re-
quired in order to perform the reordering. For bigger sizes,



the overhead introduced by the reordering technique is re-
duced (improving the METIS reordering time), at the ex-
pense of obtaining lower performance. In addition, these
reorderings show a strong dependence with the matrix spar-
sity pattern. According to this, we conclude that windows
of locality of variable size are the best solution considering
both performance and overhead.

On the other hand, a comparison study between our pro-
posal and standard reordering techniques was made. Re-
sults on both considered multicore platforms show that
our reordering technique always outperforms standard algo-
rithms. Moreover, unlike standard techniques, the reorder-
ing technique is effective for matrices with any structure.

Future work will include the proposal and evaluation of
new criteria in order to create windows of locality of vari-
able size. Moreover, locality optimization technique will
be applied to other important numerical kernels on different
CMP systems.
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