
Exploiting data compression in collective I/O techniques

Rosa Filgueira, David E. Singh, Juan C. Pichel,
and Jesús Carretero

Department of Computer Science
University Carlos III of Madrid - Spain

{rosaf, desingh, jcpichel, jcarrete}@arcos.inf.uc3m.es

Abstract

This paper presents Two-Phase Compressed I/O (TPC
I/O,) an optimization of the Two-Phase collective I/O tech-
nique from ROMIO, the most popular MPI-IO implementa-
tion. In order to reduce network traffic, TPC I/O employs
LZO algorithm to compress and decompress exchanged
data in the inter-node communication operations. The com-
pression algorithm has been fully implemented in the MPI
collective technique, allowing to dynamically use (or not)
compression. Compared with Two-Phase I/O, Two-Phase
Compressed I/O obtains important improvements in the
overall execution time for many of the considered scenar-
ios.

1 Introduction

A large class of scientific applications operates on a high
volume of data that needs to be persistently stored. Parallel
file systems such as GPFS [10], PVFS [7] and Lustre [8]
offer scalable solutions for concurrent and efficient access
to storage disk space. These parallel file systems are ac-
cessed by the parallel applications through interfaces such
as POSIX [21] or MPI-IO [20]. This paper targets the op-
timization of the MPI-IO interface inside ROMIO [6], the
most popular MPI-IO distribution.
Many parallel applications (especially related to simula-

tions) consists of alternating compute and I/O phases. Dur-
ing the compute phase, the simulated process evolves to
new states. These states have to be periodically stored to
disk in order to recover the system in case of fault (check-
pointing). During the I/O phase, the processes frequently
access a common data set by issuing a large number of
small non-contiguous I/O requests [14, 15]. Usually, these
requests originate an important performance slowdown of

the I/O subsystem. Collective I/O addresses this problem
by merging small individual requests into larger global re-
quests in order to optimize the network and disk perfor-
mance. Depending on the place where the request merging
occurs, one can identify two collective I/O methods. If the
requests are merged at the I/O nodes the method is called
Disk-Directed I/O [4, 16]. If the merging occurs at inter-
mediary nodes or at compute nodes the method is called
Two-Phase I/O (TP I/O) [2, 1].

In this work we focus on the TP I/O technique, extended
by Thakur and Choudhary in ROMIO. Based on it we have
developed and evaluated the Two-Phase Compressed I/O for
different scenarios, a technique in which the data are com-
pressed during the communications of the merging stage.
The main goal of our research is to use compresion to en-
hance overall execution time without affecting the applica-
tion or the original programm. We dont pursue reducing
the size of the data stored, as this would require to change
data format and to modify the file system. To achieve that,
we have used the LZO [18] algorithm, a portable lossless
data compression technique. It offers pretty fast compres-
sion and extremely fast decompression in real time. The
comparison with the original TP I/O technique shows that
our approach obtains for many of the considered scenarios,
important reductions in the execution time when compres-
sion is used. This is achieved by reducing the size of the
messages, and therefore, reducing the total communication
time. Additionally, TPC I/O allows to dynamically select to
use (or not) compression.

This paper is structured as follows: Section 2 contains
the related work. Section 3 explains the internal structure
of Two-Phase I/O. Section 4 presents the Two-Phase Com-
pressed I/O. Section 5 is dedicated to the performance eval-
uation of both techniques. Finally, in Section 6 we present
the main conclusions derived from this work.

2 Related work

There are several collective I/O implementations, based
on the assumption that several processes access concur-
rently, interleaved and non-overlapping to a file (a common
case for parallel scientific applications). In disk-directed
I/O [4], the compute nodes fordward file requests to the I/O
nodes. Then, the I/O nodes merge and sort the requests be-
fore sending them to disk. In server-directed I/O of Panda
[16], the I/O nodes sort the requests on file offsets instead
of disk addresses. Two-Phase I/O [2, 1] consists of an ac-
cess phase, in which compute nodes exchange data with the
file system according to the file layout, and a shuffle phase,
in which compute nodes redistribute the data among each
other according to the access pattern. Lustre file joining
(merging two files into one) for improving collective I/O is
presented in [17].
Several researchers have contributed with optimizations

ofMPI-IO data operations: data sieving [6], non-contiguous
access [11], collective caching [12], cooperating write-
behind buffering [13], integrated collective I/O and coop-
erative caching [9].
In a previous work, we presented the Locality-Aware

Two-Phase (LATP) I/O [19] technique (LATP), an optimiza-
tion of the Two-Phase collective I/O. Both techniques can
perform (in combination with MPI file views) generic file
access. That is, they can be used to access in parallel to
contiguous and non-contiguous portions of a given file. In
order to increase the locality of the file accesses, LATP em-
ploys the Linear Assignment Problem (LAP) for finding an
optimal distribution of data to processes, an aspect that is
not considered in the original technique. This assignment is
based on the local data that each process stores, and its main
purpose is the reduction of the number of communications
involved in the I/O collective operation and, therefore, the
improvement of the global execution time. We also used
compression to enhance execution time in COMPASSION
library [22], a version of the out of core library PASSION.
Collective I/O (IEC I/O) is presented. This technique

takes advantage of fast communication networks for ex-
changing the data, so that the I/O locality is improved. This
increases the communication efficiency, reducing the cost
of the global I/O operation.

3 Internal structure of Two-Phase I/O

Two-Phase I/O is a collective I/O technique implemented
in ROMIO. In this paper we focus in Two-Phase I/O for the
collective writing of data. The algorithm has two phases:
the first phase consists of the data exchange among the pro-
cesses that take part in the writing operation, whereas the
second phase is the collective writing of data to disk.

Regarding the internal structure of TP I/O, it is divided
into several stages which can be summarized as follows:

• Offsets and lengths calculation (st1): In this stage the
lists of offsets and lengths of the file are calculated.

• Offsets and lengths communication (st2): Each process
communicates its start and end offsets to the other pro-
cesses, so that all processes have global information
about the involved file interval that is going to be ac-
cessed.

• File domain calculation (st3): The I/O workload is di-
vided among processes. This is done by dividing the
file into file domains (FDs). In this way, in the follow-
ing stages, each aggregator collects and transfers to the
file the data associated to its FD.

• Access request calculation (st4): It calculates the ac-
cess requests for the file domains of each remote pro-
cess.

• Metadata transfer (st5): Transfer the lists of offsets
and lengths.

• Buffer writing (st6): Data are sent to appropriate pro-
cesses. First, each process posts all of its receives (us-
ing MPI lrecv), and then posts all of its sends (using
MPI Isend). The process then waits for all messages
it needs to receive, and copies the data into the write
buffer. In this way, the write buffer is filled with all the
gathered data assigned to this process.

• File writing (st7): The data placed in the write buffer.
These data correspond to the contiguous region (the
FD) of each process. Thus, the number of I/O re-
quests is reduced and the overall I/O performance is
improved. Note that by using the MPI view opera-
tion, a given FD can bemapped to genericfile elements
(non-contiguous writes).

The buffer and file writing stages (st6 and st7), are re-
peated as many times as the result of dividing the size of
the file portion of each process by the size of the TP I/O
buffer (4 MB per process, by default in our current imple-
mentation). First, the write size of each process is obtained
by dividing the size of the file by the number of processes.
For example, if the size of the file is 552MB1 and the num-
ber of processes is 8, the write size of each process is 69
MB. This is the file domain of each process. Then, the file
size related to each process is divided in as many chunks as
buffers fit in each file domain. For example, a 69MB file
domain requires of 69/4 buffers to cover it.

1As we comment in Section 5.1, this file is generated by our benchmark
when mesh 4 is stored using a load of 500.

2

Note that only four of all these stages have associated
communication operations: st2, for exchanging the lists off-
sets and length of the operations; st5, for exchanging the
offset-length data structures; st6, for transffering the data;
and st7 for transferring the data to the filesystem (disk ac-
cess).

4 Two-Phase I/O combined with compression

In general, a parallel system allows using user-
customized MPI libraries (installed in the local account).
However, the filesystem library is usually read-only and
its modification are usually restricted. In this work, we
have focused on the communication operations internally
performed in TP I/O. More specifically, we have applied
compression techniques to the offset-length data exchange
(st5) and to the data suffering (st6). Both stages are inter-
nally performed in TP I/O, and thus, we only need to ap-
ply changes to this routine (belonging to ROMIO). In con-
trast, we don’t apply these techniques to the disk access
phase (st7) given that it would imply changes in the par-
allel filesystem library (which usually cannot be modified).
Besides, we have decided, not to apply the compression in
the stage st2, because it has very small communications.
As we can see in the Figures 1(a) and 1(b), the cost of

these phases increase with the number of processes, due
to increasing number of messages to transfer among pro-
cesses.
In this paper we have developed a novel technique called

TwoPhase Compressed I/O (TPC I/O) for reducing the vol-
ume of communications, thus enhancing exceution time.
We have used the LZO library for compressing the data.

This library offers pretty fast compression and decompres-
sion in real time, favouring speed over compression ratio.
It has been chosen because it provides good compression
ratios with reduced compression times.
Therefore, as shown in Figure 2, before any MPI Isend

message, the set of data to sent is compressed. In the same
way, after receiving the exchanged data, a decompression
phase is performed. In this way, on-line data compression
allows reducing the size of the messages sent, and the cost
of the total communication phases. In this example, the
original algorithm (TP I/O) sends 250MB of data from node
0 to node 1. By means of our technique, 250 MB are com-
pressed to 10MB, then sent by P0, then received by P1, and
afterwards decompressed back to 250 MB. Note that only
10 MB of data are transferred.

5 Performance Evaluation

We have evaluated our approach using theBIPS3D appli-
cation with different input meshes related to different semi-
conductor devices. We have compared TPC I/O with the

original version of the technique (TP I/O) implemented in
MPICH.

We have used a cluster with 40 nodes for our tests. Each
one is Dual-Core AMD with 512 MB of RAM. The inter-
connection network is FastEthernet.

We have used the MPICHGM 2.7.15NOGMdistribution
and developed our technique by modifying the TP I/O im-
plementation of ROMIO. The parallel file system used is
PVFS 1.6.3 with one metadata server and 8 I/O nodes with
a striping factor of 64KB.

We have evaluated both techniques when applied to the
I/O stage of the BIPS3D Simulator. This application is de-
scribed next.

100000

10000

m
s)

1000
ti
m
e
(m

100

cu
ti
on

t

10

Ex
ec

11

st5 st6 st7

(a)

1000

10000

100000

ti
m
e
(m

s)

1

10

100

st5 st6 st7

Ex
ec
ut
io
n
t

(b)

Figure 1. Stages of Two-Phase I/O for mesh
1: (a) with load 200 and 8 processes and (b)
with load 200 and 32 processes.

3

Network

Node 0

Bus I/O

Memory
Data
Compression

P0

250 MB

10 MB

Node 1

Bus I/O

Memory
Data
Decompression

P1

10 MB

250 MB

10 MB
Transferred

MPI_Isend MPI_Irecv

Figure 2. Example of data Compression

5.1 BIPS3D Simulator

BIPS3D is a 3-dimensional simulator of BJT and HBT
bipolar devices [5]. The goal of the 3D simulation is to
relate electrical characteristics of the device with its physi-
cal and geometrical parameters. The basic equations to be
solved are Poisson’s equation and electron and hole conti-
nuity in a stationary state.

Finite element methods are applied in order to discretize
the Poisson equation, hole and electron continuity equations
by using tetrahedral elements. The result is an unstructured
mesh which is distributed among the compute nodes. In
this work, we have used four different meshes, as described
later.

Using the METIS [3] library, this mesh is divided into
sub-domains, in such a manner that each sub-domain cor-
responds to one process. Then we construct, for each sub-
domain, in a parallel manner, the part corresponding to each
part of the distributed mesh. Each sub-domain is solved us-
ing domain decomposition methods, and finally the results
are written to a file. For our evaluation BIPS3D has been ex-
ecuted using four different meshes: mesh 1 (47200 nodes),
mesh 2 (32888 nodes), mesh 3 (73257 nodes) and mesh 4
(289648 nodes), with different number of processes: 4,8,
16, and 32. The BIPS3D associates a data structure to each
node of a mesh. The contents of these data structures are
the data written to disk during the I/O phase. The number
of elements that this structure has per each mesh entry is
variable (depends of each simulation configuration) and is
given by the load parameter. This means that, given a mesh
and a load, the number of data written is the product of the
number of mesh elements and the load. In other words, for
each element of the mesh written to disk, a structure of load
elements in actually written. In this work we have evaluated
different loads, specifically, 100, 200, 500 and 1000 words
(with 4 bytes). Table 1 lists the different sizes (in MB) of
the file associated to each mesh and loadwhen using integer
data. Results are shown based on load and mesh character-
istics. If we use float data, the sizes will be double.

Load per node mesh1 mesh2 mesh3 mesh4
100 18 12 28 110
200 36 25 56 221
500 90 63 140 552
1000 180 126 280 1104

Table 1. Size in MB of each file when using
integer data.

5.2 Performance evaluation of TPC I/O

We have analyzed the I/O stage performance of the
BIPS3D under different scenarios. More specifically, we
have evaluated:

• Different input data meshes with diverse loads.

• Various compression levels.

• Different number of processors.

The performance of TP I/O and TPC I/O was compared
for all these scenarios. For each one of them, the execution
time of each stage (introduced in Section 3) was evaluated.
Note that both techniques differs only in st5 and st6 stages,
which respectively represent the 2% and 83% of the overall
execution time2.
Figures 3 and 4 show the st6 execution time improve-

ment for TPC I/O employing integers and floats. The exe-
cution time improvement is defined as the reduction the exe-
cution time (TP I/O -TPC I/O) as percentage of the TP I/O
time. A positive value indicates that compression reduces
the execution time of this stage. In contrast, a negative
value implies an increase of the st6 execution time when
compression is used. In general, for the same dataset, an
increase in the number of processors reduces the compres-
sion efficiency. However, this change is different for each
input data. For example, good improvements are obtained
for meshes 3 and 4 in all the cases. In contrast, the perfor-
mance severely degrades for meshes 1 and 2 when the pro-
cessor number increases. The reasons of these behaviours
are analysed in the next section. Note also that different
percentages of improvement are obtained for floats and in-
tegers. This is due to the fact that an integer is compressed
more efficently than a float. For example, compressing in-
teger values for mesh 1 (load=200, 4 processes) obtains a
49% of space reduction and takes 39.0 msecs (42.0 msecs
for decompressing). In the case of compressing float val-
ues, obtains a 23% of space reduction and takes 67.7 msecs
(78.6 msecs for decompressing).

2This percentage corresponds for mesh 4 with load = 200 using 8
processors. Note that the cost of st5 stage significatively increases with the
number of processors.

4

Figures 6 and 7 show, respectively, the impact of the data
volume in the integer and float execution time improvement
for st6. We can see that in general, the higher load parame-
ter (number of elements associated to each node) the better
efficiency of the TPC I/O. Performance improvement highly
depends on the mesh characteristics. Besides, the TPC I/O
efficiency is better for intergers than floats.
The impact of the compression level is showed in Fig-

ure 8. We have synthetically created new data meshes filled
with variable percentages of zero elements. In practice, zero
values appear in the mesh boundary (where no electrical
fields are applied). We have covered a complete range of
zero values starting from 0% (original mesh) until 100%
(full zero mesh). With this test we evaluate the efficiency
of the compression technique under different data contents.
Note that raising the percentage of zero elements dramat-
ically increases the LZO performance. This behavior ap-
pears for all the considered scenarios.
integer data, load 1000 and using 32 processes (74%).

And the maximum improvement for 100% of zero values
is obtained with mesh 3, float data, load 500 and using 32
processes (98,8%).
Regarding st5 stage, as Figure 1 shows, when the num-

ber of processors is reduced, the cost of this stage is small
(compared with st6 and st7). Thus, it has a minor impact
in the TP I/O performance. However, when the number of
processors incresases, this stage becomes more significant
in terms of overall execution time. Figure 5 shows the exe-
cution time improvement for TPC I/O of st5 using integers.
Note that in general good improvements are obtained using
compression for this stage.
Finally, note that, in this study we are not considering

the disk transfer time (st7 stage) given that it is the same
for both techniques. This time represents the 27% of the
total Two-Phase I/O execution time3.

100

50

0

50

100

io
n
tim

e
Im

pr
ov

em
en

t
(%

)

4 8 16 32

250

200

150

Mesh 1 Mesh 2 Mesh 3 Mesh 4

T6
ex
ec
ut

Figure 3. Percentage of improvement of com-
pression technique for integers in stage st6
with load 200.

3This percentage corresponds for a mesh 4 using 8 processors.

150

100

50

0

50

io
n
tim

e
Im

pr
ov

em
en

t
(%

)

4 8 16 32

250

200

Mesh 1 Mesh 2 Mesh 3 Mesh 4

T6
ex
ec
ut

Figure 4. Percentage of improvement of com-
pression technique for float in stage st6 with
load 200.

50

100

150

200

250

io
n
tim

e
Im

pr
ov

em
en

t
(%

)

4 8 16 32

50

0

Mesh 1 Mesh 2 Mesh 3 Mesh 4

T5
ex
ec
ut

Processor Number

Figure 5. Percentage of improvement of com-
pression technique for integers with load 200.

10

20

30

40

50

60

70

80

tio
n
tim

e
Im

pr
ov

em
en

t
(%

)

Load 100 Load 200 Load 500 Load 1000

20

10

0

10

Mesh 1 Mesh 2 Mesh 3 Mesh 4

T6
ex
ec
ut

Figure 6. Impact of the data volume in the in-
teger compression efficiency for an 16 pro-
cessor execution in stage st6.

5.3 Performance analysis of TPC I/O

In order to identify the reasons for different performance
improvements of TPC I/O technique, a more detailed study
was performed. More specifically, we have focused on the
st6 stage (given that it represents a significant fraction of
the TPC I/O execution time), and we have evaluated the re-
lationship between mesh characteristics and TPC I/O per-

5

30

20

10

0

10

20

30

40
tio

n
tim

e
Im

pr
ov

em
en

t
(%

)
Load 100 Load 200 Load 500 Load 1000

60

50

40

30

Mesh 1 Mesh 2 Mesh 3 Mesh 4

T6
ex
ec
ut

Figure 7. Impact of the data volume in the
float compression efficiency for an 16 pro-
cessor execution in stage st6.

20

40

60

80

100

120

tio
n
tim

e
Im

pr
ov

em
en

t
(%

)

0% 25% 50% 75% 100%

20

0

20

Mesh 1 Mesh 2 Mesh 3 Mesh 4T6
ex
ec
ut

Figure 8. Impact of compression level in the
integer compression efficiency for an 16 pro-
cessor execution with load 200 in stage st6.

formance. All the measures shown in this section were ob-
tained for 0% of zero values and integers. Similar results
can be derived for the rest of scenarios.
Tables 2 and 3 show, respectively, the total amount of ex-

changed messages and exchanged data for the st6 stage and
mesh 1. The first one is the overall number of communica-
tions of st6 stage. The second one is the overall volume of
exchanged data of this stage. These values were obtained
instrumenting the TP I/O algorithm. In this table we can
observe two behaviours:

1. When the load increases the number of communica-
tions dimishes. This is due to the fact that larger loads
produce larger chunks of data associated to each mesh
node. Given that the exchange buffer size is limited
to 4MB, when the node size increases (bigger loads)
the buffer is filled with less different nodes. Note that
the number of communications is related to different
node owners in the same exchange buffer. Conse-
quently, increasing the load tends to reduce the num-
ber of communications (Table 2) and to increase the
ammount of exchanged data (Table 3). In terms of per-

Proc/Load 100 200 500 1000
4 12 10 9 8
8 38 33 26 22
16 114 105 80 64
32 408 271 240 181

Table 2. Number of different exchanged mes-
sages for mesh 1.

Proc/Load 100 200 500 1000
4 3,599,800 7,199,600 17,999,000 35,998,000
8 4,456,100 8,912,200 22,280,500 44,561,000
16 4,586,600 9,173,200 22,933,000 45,866,000
32 4,637,200 9,274,400 23,186,000 46,372,000

Table 3. Number of exchanged messages for
mesh 1.

formance, this behaviour implies that when the load
incresases, bigger data structures are compressed, thus,
the LZO performance increases. Table 4 shows the
efficiency of LZO algorithm for different communi-
cations using just one exchange buffer4. We can see
that as more processes share the buffer, the compress-
ing/decompressing time increases.

2. When the number of processes increases, the nodes of
the exchange buffer are distributed among more pro-
cesses. On one hand, this causes data to be gath-
ered from more processes, producing more communi-
cations (Table 2). On the other hand, the ammount
of exchanged data also increases (Table 3). However,
the amount of data of each communication decreases,
producing worse LZO performance. For example, for
mesh 1 and 4 processes, the average message length is:
7, 199, 600/10 = 719960 whereas for 32 processess
is: 9, 274, 400/271 = 34, 223.

In Figures 5 and 6 the effects of the first behaviour can
be observed: when the load increases, the execution time
improvement also tends, in general, to increase. Figures 3
and 4 reflect the second behaviour: the execution time im-
provement decreases with the number of processors.
Tables 5 and 6 evaluates the mesh characteristics influ-

ence on the algorithm performance. These tables show, re-
spectively, the total amount of exchangedmessages and data
for load = 200. Each mesh has a specific data distribution
pattern. However, mesh 3 and 4 produce lesser number of

4In this case the buffer contents are scattered among all the processors,
therefore the number of communications is the total number of processor
minus one.

6

Time(msec.)/Number
of Comm.

3 7 15 31

Compress 44,1 51,1 55,3 58,5
Decompess 28,7 32 32,1 32,6
Total 72,8 83,1 87,4 91,1

Table 4. Compression and decompression
time for one exchange buffer and different
number of communications in msec.

Proc Mesh1 Mesh2 Mesh3 Mesh4
4 10 10 8 7
8 33 32 22 20
16 105 112 56 49
32 271 387 159 130

Table 5. Number of different exchanged mes-
sages for all meshes with load 200.

Proc Mesh1 Mesh2 Mesh3 Mesh4
4 7,199,600 5,562,600 12,894,400 44,184,800
8 8,912,200 6,181,200 14,447,400 47,644,800
16 9,173,200 6,402,400 14,425,600 51,706,600
32 9,274,400 6,468,400 14,578,400 53,831,000

Table 6. Number of data exchanged for all
meshes with load 200.

communications than mesh 1 and 2 (Table 5). Given that
the exchanged ammount of data is mostly the same for each
mesh (Table 6), the average communication size is bigger
for meshes 3 and 4 than for meshes 1 and 2. This fact pro-
duces a better TPC I/O performance for meshes 3 and 4 for
32 processes (see Figures 3 and 4).

6 Conclusions

In this paper a new technique called Two-Phase Com-
pressed I/O based on the compression and decompression
of communication is presented. In the evaluation section
we have shown that the performance of Two-Phase Com-
pressed I/O is, in many scenarios, better than the perfor-
mance of the original Two-Phase I/O technique. However,
this performance on the following factors:

• Size of message. In general, the LZO algorithm is effi-
cient for large message sizes. For example, when large
data structures are employed.

• Number of processors used in collective communica-

tions. For large numbers, the TPC I/O performance
decreases.

• The mesh distribution. Both previous topics are
strongly related with the way in which the mesh is dis-
tributed. In fact, we obtained different perfomance be-
haviours for each mesh.

As future work we plan to design a heuristic for deciding
to use (or not) compression. This heuristic is based on net-
work features, data characteristics, compression level, and
number of processes used in the collective I/O operation.

Acknowledgements

This work has been partially funded by project TIN2007-
63092 of Spanish Ministry of Education and project
CCG07-UC3M/TIC-3277 of Madrid State Governement.

References

[1] R. Bordawekar. Implementation of Collective I/O in
the Intel Paragon Parallel File System: Initial Experi-
ences. In Proc. 11th International Conference on Su-
percomputing, July 1997.

[2] J. del Rosario, R. Bordawekar, and A. Choudhary. Im-
proved parallel I/O via a two-phase run-time access
strategy. In Proc. of IPPS Workshop on Input/Output
in Parallel Computer Systems, 1993.

[3] G. Karypis and V. Kumar. METIS — A software
package for partitioning unstructured graphs, parti-
tioning meshes, and computing fill-reducing orderings
of sparse matrices. Technical report, Department of
Computer Science/Army HPC Research Center, Uni-
versity of Minnesota, Minneapolis, 1998.

[4] D. Kotz. Disk-directed I/O forMIMDMultiprocesses.
In Proc. of the First USENIX Symp. on Operating Sys-
tems Design and Implementation, 1994.

[5] A. Loureiro, J. González, and T.F.Pena. A parallel
3d semiconductor device simulator for gradual het-
erojunction bipolar transistors. Journal of Numeri-
cal Modelling: electronic networks, devices and fields,
16:53–66, 2003.

[6] R. Thakur, W. Gropp, and E. Lusk. Data Sieving and
Collective I/O in ROMIO. In Proc. of the 7th Sympo-
sium on the Frontiers of Massively Parallel Computa-
tion, pages 182–189, February 1999.

[7] W. Ligon and R. Ross. An Overview of the Parallel
Virtual File System. In Proceedings of the Extreme
Linux Workshop, June 1999.

7

[8] C. F. S. Inc. Lustre: A scalable, high-
performance file system. Cluster File Systems
Inc. white paper, version 1.0, November 2002.
http://www.lustre.org/docs/whitepaper.pdf.

[9] F. Isaila, G. Malpohl, V. Olaru, G. Szeder, and
W. Tichy. Integrating Collective I/O and Coopera-
tive Caching into the “Clusterfile” Parallel File Sys-
tem. In Proceedings of ACM International Confer-
ence on Supercomputing (ICS), pages 315–324. ACM
Press, 2004.

[10] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File
System for Large Computing Clusters. In Proceedings
of FAST, 2002.

[11] R. Thakur, W. Gropp, and E. Lusk. Optimizing Non-
contiguous Accesses in MPI-IO. Parallel Computing,
28(1):83–105, Jan. 2002.

[12] W. keng Liao, K. Coloma, A. Choudhary, L. Ward,
E. Russel, and S. Tideman. Collective Caching:
Application-Aware Client-Side File Caching. In Pro-
ceedings of the 14th International Symposium on High
Performance Distributed Computing (HPDC), July
2005.

[13] W. keng Liao, K. Coloma, A. N. Choudhary, and
L. Ward. Cooperative Write-Behind Data Buffering
for MPI I/O In PVM/MPI, pages 102–109, 2005.

[14] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Ellis, and
M. Best. File Access Characteristics of Parallel Scien-
tific Workloads. In IEEE Transactions on Parallel and
Distributed Systems, 7(10), Oct. 1996.

[15] H. Simitici and D. Reed. A Comparison of Logi-
cal and Physical Parallel I/O Patterns. In Interna-
tional Journal of High Performance Computing Ap-
plications, special issue (I/O in Parallel Applications),
12(3), 1998.

[16] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and
M. Winslett. Server-directed collective I/O in Panda.
In Proceedings of Supercomputing ’95.

[17] W. Yu and J. Vetter and R. S. Canon and S. Jiang.
Exploiting Lustre File Joining for Effective Collec-
tive I/O. In CCGRID ’07: Proceedings of the Seventh
IEEE International Symposium on Cluster Computing
and the Grid, pages 267–274, Washington, DC, USA,
2007. IEEE Computer Society.

[18] LZO algirthm internal structure
http://wildsau.idv.uni-linz.ac.at/mfx/lzo.html

[19] Rosa Filgueira, David E. Singh, Juan Carlos Pichel
Florin Isaila, and Jesus Carretero. Data Locality
Aware Strategy for Two-Phase Collective I/O. In Int.
Meeting High Performance Computing for Compu-
tational Science (VECPAR). Toulouse, France. June
2008..

[20] P. Corbett and D. Feitelson and Y. Hsu and J.-P. Prost
and M. Snir and S. Fineberg and B. Nitzberg and
B. Traversat and P. Wong. MPI-IO: A parallel file I/O
interface for MPI. In NAS-95-002, June 1995.

[21] http://www.unix-systems.org/ The Portable Operating
System Interface 1995.

[22] Jesús Carretero and Jaechun No and Sun-soon Park
and Alok N. Choudhary and Pang Chen. COM-
PASSION: A Parallel I/O Runtime System Includ-
ing Chunking and Compression for Irregular Appli-
cations. HPCN Europe 1998: Proceedings of the
International Conference and Exhibition on High-
Performance Computing and Networking. 1998.

8

