International Master in Computer Vision

Fundamentals of machine

learning for computer vision

Eva Cernadas

Contents

- Machine learning theory (Dr. Jaime Cardoso)
- Linear regression and optimization (Dr. Jaime Cardoso)
- Clustering
- Model selection and evaluation
- Classical classification models
- Artificial neural networks
- Support vector machines (SVM)
- Ensembles: bagging, boosting and random forest

Machine learning (I)

- Machine learning: synthesize a function from a set of selected values (training examples).
- Simple case: linear regression (it concerns twodimensional sample points with one independent variable and one dependent variable, $(x_1, y_1), ..., (x_N, y_N)$, and finds a linear function that, as accurately as possible (minimizing the mean squared error), predicts the dependent variable values as a function of the independent variable.

Machine learning (II)

- The coefficients of the line or polynomial can be calculated minimizing the mean squared error. They can be used to predict a function for x≠x_i.
- The polynomial coefficients are the learned or trained parameters. For higher polynomial degrees, more trained parameters.
- Other possibilities would be to do interpolation (lineal, spline, etc.) instead of adjustment.

Machine learning (III)

- So, we always need to learn a set of parameters.
- In some cases, the learning of parameters leads to analytical expressions (mathematical formulas like in linear regression).
- If the problem complexity or number of trained parameters increase, more sophisticated and efficient methods may be needed instead of analytical methods.

Classification or regression

- How are the values of the function to predict or approximate?
 - Continuous: then regression
 - Discrete (categorical): (integer values with or without order) then classification

Supervised and unsupervised learning

- Supervised learning: the value of the function to be predicted is already unknown, like in the linear regression, interpolation or classification.
- Unsupervised learning: the objective is to extract information from the data using criteria like similarity or distances, as in the case of clustering or dimensionality reduction.

Clustering

- Objective: to group a set of patterns into clusters (groups of patterns) using a similarity or distance measurement.
- To learn the data structure (the pattern groups).
- Similar patterns (low distances among them) are assigned to the same cluster and used to create a cluster prototype.
- Different patterns (high distances) are assigned to different clusters.
- The threshold to split the distances between similar and different patterns depends of the number of clusters.
- Many clusters: each cluster will have similar patterns.
- Few clusters: each cluster can have very different patterns.

- The pattern distribution determines the clustering difficulty.
- The quality of the learned clustering: to what extent do cluster prototypes represent patterns?
- Are there pattern-free (empty) regions between clusters?
- In high dimensions, distances among patterns are very similar.

Clustering

- The results of the clustering are the cluster prototypes. The whole prototype set constitutes a compressed data representation.
- The prototypes should be placed on the regions in the input space with higher pattern density.
- Non-supervised learning: there is no pattern label (discrete nor continuous).
- There is only a distance measurement, which indicates how far two patterns are from each other or from a prototype.

Clustering: k-means

- The number K of clusters that you want to create must be known.
- Set randomly K prototypes $\{\mathbf{p}_k\}_{k=1}^{K}$ in K patterns.
- For each pattern $\{\mathbf{x}_i\}_{i=1}^N$:
 - Calculate the distance between \mathbf{x}_i and $\{\mathbf{p}_k\}_{k=1}^{K}$
 - Select the closest prototype.
- For each prototype $\{\mathbf{p}_k\}_{k=1}^{K}$, update the prototype using only the closest patterns and return the calculation of the prototype.
- Repeat the process until the prototypes do not change significantly or a specified number of times.

K-means algorithm

Data: K > 1, $\{\mathbf{x}_i\}_{i=1}^N$, $\varepsilon > 0$ Output: $\{\mathbf{p}_{i}, \mathbf{E}_{i}\}_{i=1}^{K}$: prototypes and pattern list for each cluster $\{\mathbf{p}_{k}=\mathbf{x}_{s(k)}\}_{k=1}^{K}$ #s(k): random number in $\{1..N\}$ repeat $\mathbf{P} = \{\mathbf{p}_{k}\}_{k=1}^{K}; \{\mathbf{N}_{k}\}_{k=1}^{K} = 0; \{\mathbf{E}_{k} = \emptyset\}_{k=1}^{K}$ for i=1:N $m = \underset{k=1}{\operatorname{argmin}} \left\{ \left\| \boldsymbol{x}_{i} - \boldsymbol{p}_{k} \right\| \right\}$ $N_{k}=N_{k}+1; E_{k}=E_{k}\cup\{i\}$ endfor **for** *k*=1:*K* $\boldsymbol{p}_{k}' = \frac{1}{N_{k}} \sum_{i \in E_{k}} \boldsymbol{x}_{i}$ endfor $\mathbf{P}' = \{\mathbf{p}_{k}'\}_{k=1}^{K}; \{\mathbf{p}_{k} = \mathbf{p}_{k}'\}_{k=1}^{K}$ until |P'-P|<ε

Distance measurements between patterns and prototypes

• Euclidean distance:
$$d(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{\sum_{k=1}^{N} (x_{ik} - x_{jk})^2}$$

• Mahalanobis distance: $d(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{(\mathbf{x}_i - \mathbf{x}_j)^T \sum_{\mathbf{A}}^{-1} (\mathbf{x}_i - \mathbf{x}_j)}$

• Similarity:
$$s(\mathbf{x}_i, \mathbf{x}_j) = \frac{\mathbf{x}_i^T \mathbf{x}_j}{|\mathbf{x}_i| |\mathbf{x}_j|}$$

 ${f \Sigma}$ is the data covariance matrix

• Tanimoto similarity: $s(\mathbf{x}_i, \mathbf{x}_j) = \frac{\mathbf{x}_i^T \mathbf{x}_j}{|\mathbf{x}_i^2| + |\mathbf{x}_j^2| - \mathbf{x}_i^T \mathbf{x}_j}$

T

Measures of error and clustering quality (I)

• To minimize the quadratic error between patterns and prototypes:

$$J = \sum_{k=1}^{K} \sum_{x \in E_k} |\mathbf{x} - \mathbf{p}_k|^2$$

• To maximize the trace of the between-cluster covariance matrix \mathbf{S}_{b} :

$$tr(\boldsymbol{S}_B) = \sum_{k=1}^{K} N_k |\boldsymbol{p}_k - \boldsymbol{p}|^2 \qquad \boldsymbol{p} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_i$$

• To minimize the determinant of within-cluster cov. matrix \mathbf{S}_{w} :

$$det(\mathbf{S}_W) = det\left(\sum_{k=1}^K \mathbf{S}_k\right) \qquad \mathbf{S}_k = \sum_{\mathbf{x} \in E_k} (\mathbf{x} - \mathbf{m}_k) (\mathbf{x} - \mathbf{m}_k)^T$$

 \mathbf{S}_{w} : within-cluster covariance

 \mathbf{S}_{B} : between-cluster covariance

 $\mathbf{S}_{T} = \mathbf{S}_{W} + \mathbf{S}_{B}$: total covariance

Eva Cernadas

Measures of error and cluster quality (II)

• To maximize the trace of $\mathbf{S}_{W}^{-1}\mathbf{S}_{B}$:

$$tr(\boldsymbol{S}_{W}^{-1}\boldsymbol{S}_{B}) = \sum_{i=1}^{n} \lambda_{i}$$

$$\lambda_i: i$$
-th eigenvalue
of $\mathbf{S}_w^{-1}\mathbf{S}_B$

- To maximize the trace of $\mathbf{S}_{T}^{-1}\mathbf{S}_{B}$: $tr(\mathbf{S}_{T}^{-1}\mathbf{S}_{B}) = \sum_{i=1}^{n} \frac{1}{1+\lambda_{i}}$
- To maximize the determinant ratio between \mathbf{S}_{w} and \mathbf{S}_{τ} :

$$\frac{|\boldsymbol{S}_W|}{|\boldsymbol{S}_T|} = \prod_{i=1}^n \frac{1}{1+\lambda_i}$$

 Post-processing: the clusters of lower quality (for example, high quadratic error) can be splitted to reduce the error.

Eva Cernadas

The number *K* of clusters

- It is a hyper-parameter which must be set before clustering.
- It can be tuned if there is some quality measure of the clustering.
- Sometimes, it is pre-defined by the problem.
- PCA (Principal Component Analysis) can be used to visualize the data in 2D and to select an appropriated number of clusters.
- Instead of setting *K*, we can set a maximum distance *D*:
- 1) If d<D, the pattern is asigned to the cluster and update its prototype.
- 2) If d>D for all clusters, a new cluster is created. The final number K of clusters depends on data.

Example: image segmentation

- To divide a RGB image in regions with similar appearance.
- The K-means method shows the images with K colors.

• Pixel level evaluation:

- Assume that each pixel is a pattern
- The image segmentation process is a two-class classification problem
- Class 0 and 1 for background and foreground pixels
- Use the quality measures for classification:
 - Kappa and accuracy
 - Precision, recall and F1
- The K-means method shows the images with K colors.

Region level evaluation:

- Both examples are rather bad

Region level evaluation:

- Quantify the agreement of expert and algorithm at region level.
- Measure the overlap between the expert and computer to segment objects.
- Dⁱ and Aⁱ the number of segmented and true objects in image lⁱ.
- P_d^{i} , number of pixels of recognized object R_d^{i} , $d=1..D^i$
- P_a^i , number of pixels of true object R_a^i , a=1..Aⁱ

- Region level evaluation:
 - $O_{da}^{i} = P_{d}^{i} \cap P_{a}^{i}$ number of overlapped pixels between R_{d}^{i} and R_{a}^{i}
 - $O_{da}^{i} = \otimes$ both regions are not overlapped.
 - $O_{da}^{i} = R_{d}^{i} = R_{a}^{i}$, the overlapping is complete.

- A region is classified in the following types:
 - Let $0 \le T \le 1$ is a strictness criterion
 - **Correct:** a region R_a^i is correctly detected if $O_{da}^i \ge P_d^i T$
 - Missed: a region R_aⁱ that it is not correctly detected is missed.
 - **Noise:** a region R_d^i that does not participate in any instance of correct detection is classified as noise.

- **Example:** "MSCF: Multi-Scale Canny Filter to Recognize Cells in Microscopic Images", 2023.
- https://doi.org/10.3390/su151813693

Example: image segmentation

Matlab: function imsegkmeans()

K-means clustering based image segmentation

collapse all in page

Syntax

- L = imsegkmeans(I,k)
- [L,centers] = imsegkmeans(I,k)
- L = imsegkmeans(I,k,Name,Value)

Description

L = imsegkmeans(I, k) segments image I into k clusters by performing k-means clustering and returns the segmented labeled output in L.

[L,centers] = i	<pre>imsegkmeans(I,k)</pre>	also returns the cluster centroid locations, centers.	example
-----------------	-----------------------------	---	---------

L = imsegkmeans(I, k, Name, Value) uses name-value arguments to control aspects of the k-means clustering algorithm.

Example: K-means clustering

Matlab/Octave: function kmeans()

Example: image segmentation

• OpenCV: function kmeans() (see OpenCV help)

Functions

double cv::kmeans (InputArray data, int K, InputOutputArray bestLabels, TermCriteria criteria, int attempts, int flags, OutputArray centers=noArray()) Finds centers of clusters and groups input samples around the clusters. More...

template<typename _Tp , class _EqPredicate >

int partition (const std::vector< _Tp > &_vec, std::vector< int > &labels, _EqPredicate predicate=_EqPredicate()) Splits an element set into equivalency classes. More...

Detailed Description

Function Documentation

kmeans()		
double cv::kmeans (InputArray	data,	
int	К,	
InputOutput/	Array bestLabels,	
TermCriteria	criteria,	
int	attempts,	
int	flags,	
OutputArray	centers = noArray()	
)		
Python:		

retval, bestLabels, centers = cv.kmeans(data, K, bestLabels, criteria, attempts, flags[, centers])

Example: image segmentation

• Sklearn: module cluster (python)

\leftarrow \rightarrow C \textcircled{a}	O A https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html			🗊 yD	ಳು ≡		
learn Install	User Guide	API Examples	Community More -				Go
Prev Up Next		sklearn.cluster.KMeans class sklearn.cluster.KMeans(n_clusters=8, *, init='k-means++', n_init='warn', max_iter=300, tol=0.0001, verbose=0, random_state=None, copy_x=True, algorithm='lloyd') K-Means clustering. Read more in the User Guide.					
Other versions Please cite us if you use the							
software. sklearn.cluster.KMeans KMeans							
Examples using sklearn.cluster.KMeans		Parameters:	n_clusters : <i>int, default=8</i> The number of clusters to form as well as the number of centric init : {'k-means++', 'random'}, callable or array-like of shape (n_context) Method for initialization: 'k-means++' : selects initial cluster centroids using sampling the points' contribution to the overall inertia. This technique so implemented is "greedy k-means++". It differs from the vanilla sampling step and choosing the best centroid among them. 'random': choose n_clusters observations (rows) at random' If an array is passed, it should be of shape (n_clusters, n_feat If a callable is passed, it should take arguments X, n_clusters	troids to generate. clusters, n_features), de based on an empirical (speeds up convergence a k-means++ by makin n from data for the initi tures) and gives the initi and a random state ar	efault='k-means probability distr . The algorithm g several trials a ial centroids. tial centers. nd return an init	ibution of at each ialization.	
Toggle Menu			n_init : 'auto' or int, default=10 Number of times the k-means algorithm is run with different (controid coode. The fin	al roculte is tho	haet autou	+

Real examples of clustering

CystAnalyser: 10.1371/journal.pcbi.1008337 or

https://citius.usc.es/transferencia/software/cystanalyser

Image: /home/cernadas/proxectos/validation/cystAnalyser/images/rilVersion2/730 kid/Image61.jpg Size: 4080x3072

Real examples of clustering

OrallmmunoAnalyser:

File Edit View Analysis Classification Help	
Reset 🖸 🔁 🛨 🗠 🗡 🖉 🔹 🕅	
1	Set calibration: 🗌 Value: [1,0
13	Set Parameters: pixels
Charles and the second s	Min. Diameter: 10 Rule
	Max. Diameter: 50 Rule
	Region name: Default name
	Automatic processing:
	User tools: Areas Reset points BasalPoint
	Reset basal point and subarea: Reset
	Detect cells (RDA): HIGH LOW WS
	Detect cells (EDA): Add cells detected
	Classifier: Run

Image: /home/cernadas/proxectos/validation/ki67Analyser/images/version2/10B3548 2 MIB1.tif Size: 4080x3072

Example: image compression

- Image *N* pixels, 1 pixel=3 colors x 8 bits/color=24 bits: size=24*N* bits.
- Using K ($\ll N$) prototypes, an input pattern is a pixel $\mathbf{x}_i = (R_i, G_i, B_i)$.
- Clustering: K prototypes $\{\mathbf{p}_k\}_{i=1}^{K}$, with $\mathbf{p}_k = (\mathbf{R}_k, \mathbf{G}_k, \mathbf{B}_k)$, stored only once.
- Compression: pixel \mathbf{x}_i (8x3 bits) \rightarrow prototype index \mathbf{p}_k of size $\log_2 K$
- Size of compressed image: number N of pixels multiplied by the number of bits required to code the number K of prototypes (N·log₂ K bits) and the K prototypes (24K bits)

• Compression factor:
$$\alpha = \frac{T_0}{T_1} = \frac{24N}{24K + N\log_2 K} \approx \frac{24}{\log_2 K}$$
 for large N

• With *K*=10, α=7.2