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Machine learning (I)
● Machine learning: synthesize a function from a set of 

selected values (training examples).
● Simple case: linear regression (it concerns two-

dimensional sample points with one independent 
variable and one dependent variable, (x1,y1),...,(xN,yN), 
and finds a linear function that, as accurately as 
possible (minimizing the mean squared error), predicts 
the dependent variable values as a function of the 
independent variable.



Eva Cernadas 4

Machine learning (II)
● The coefficients of the line or polynomial can be 

calculated minimizing the mean squared error. They can 
be used to predict a function for x≠xi.

● The polynomial coefficients are the learned or trained 
parameters. For higher polynomial degrees, more 
trained parameters.

● Other possibilities would be to do interpolation (lineal, 
spline, etc.) instead of adjustment.
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Machine learning (III)
● So, we always need to learn a set of parameters.
● In some cases, the learning of parameters leads to 

analytical expressions (mathematical formulas like in 
linear regression).

● If the problem complexity or number of trained 
parameters increase, more sophisticated and efficient 
methods may be needed instead of analytical methods.
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Classification or regression
● How are the values of the function to predict or 

approximate? 

– Continuous: then regression

– Discrete (categorical): (integer values with or 
without order) then classification
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Supervised and unsupervised learning

● Supervised learning: the value of the function to be 
predicted is already unknown, like in the linear 
regression, interpolation or classification.

● Unsupervised learning: the objective is to extract 
information from the data using criteria like similarity or 
distances, as in the case of clustering or 
dimensionality reduction. 
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Clustering
● Objective: to group a set of patterns into clusters (groups of patterns) 

using a similarity or distance measurement.

● To learn the data structure (the pattern groups).

● Similar patterns (low distances among them) are assigned to the same 
cluster and used to create a cluster prototype. 

● Different patterns (high distances) are assigned to different clusters. 

● The threshold to split the distances between similar and different patterns 
depends of the number of clusters. 

● Many clusters: each cluster will have similar patterns.

● Few clusters: each cluster can have very different patterns. 
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Clustering

● The pattern distribution determines the clustering difficulty.

● The quality of the learned clustering: to what extent do cluster 
prototypes represent patterns?

● Are there pattern-free (empty) regions between clusters?

● In high dimensions, distances among patterns are very similar.

Example of good clusters Example of difficult clustering
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Clustering
● The results of the clustering are the cluster prototypes. The 

whole prototype set constitutes a compressed data 
representation. 

● The prototypes should be placed on the regions in the input 
space with higher pattern density. 

● Non-supervised learning: there is no pattern label (discrete 
nor continuous).

● There is only a distance measurement, which indicates how 
far two patterns are from each other or from a prototype.
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Clustering: k-means
● The number K of clusters that you want to create must be known.

● Set randomly K prototypes {pk}k=1
K in K patterns.

● For each pattern {xi}i=1
N :

– Calculate the distance between xi and {pk}k=1
K 

– Select the closest prototype.

● For each prototype {pk}k=1
K , update the prototype using only the 

closest patterns and return the calculation of the prototype. 

● Repeat the process until the prototypes do not change significantly 
or a specified number of times. 
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K-means algorithm
Data: K>1, {xi}i=1

N, ε>0
Output: {pj,Ej}j=1

K: prototypes and pattern list for each cluster
{pk=xs(k)}k=1

K     #s(k): random number in {1..N}
repeat

P={pk}k=1
K; {Nk}k=1

K=0; {Ek=∅}k=1
K

for i=1:N

Nk=Nk+1; Ek=Ek∪{i}
endfor
for k=1:K

endfor
P’={pk’}k=1

K; {pk=pk’}k=1
K

until |P’-P|<ε

m= argmin
k=1..K {|xi−pk|}

pk '=
1
N k

∑
i∈E k

xi
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Distance measurements between 
patterns and prototypes

● Euclidean distance:

● Mahalanobis distance:

● Similarity:

● Tanimoto similarity:

d (xi , x j)=√∑k=1
N

(xik−x jk)
2

s(xi , x j)=
xi
T x j

|xi2|+|x j2|−xiT x j

d (xi , x j)=√(xi−x j)
T Σ−1(xi−x j)

s(xi , x j)=
xi
T x j

|xi||x j|

Σ is the data covariance matrix
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Measures of error and 
clustering quality (I)

● To minimize the quadratic error between patterns and prototypes:

● To maximize the trace of the between-cluster covariance matrix Sb: 

● To minimize the determinant of within-cluster cov. matrix SW:

J=∑
k=1

K

∑
x∈Ek

|x−pk|
2

tr(SB)=∑
k=1

K

N k|pk− p|
2

det (SW )=det (∑
k=1

K

Sk) Sk=∑
x∈Ek

(x−mk)(x−mk)
T

SW: within-cluster covariance
SB: between-cluster covariance
ST=SW+SB: total covariance

p= 1
N∑

i=1

N

xi
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Measures of error 
and cluster quality (II)

● To maximize the trace of SW
-1SB:

● To maximize the trace of ST
-1SB:

● To maximize the determinant ratio between SW and ST:

● Post-processing: the clusters of lower quality (for example, high 
quadratic error) can be splitted to reduce the error. 

|SW|
|ST|

=∏
i=1

n 1
1+λ i

tr(ST
−1SB)=∑

i=1

n 1
1+λ i

tr(SW
−1SB)=∑

i=1

n

λ i λi: i-th eigenvalue 
of SW

-1SB
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The number K of clusters
● It is a hyper-parameter which must be set before clustering. 

● It can be tuned if there is some quality measure of the clustering. 

● Sometimes, it is pre-defined by the problem. 

● PCA (Principal Component Analysis) can be used to visualize the 
data in 2D and to select an appropiated number of clusters. 

● Instead of setting K, we can set a maximum distance D: 

1) If d<D, the pattern is asigned to the cluster and update its 
prototype. 

2) If d>D for all clusters, a new cluster is created. The final number K 
of clusters depends on data.
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Example: image segmentation
● To divide a RGB image in regions with similar appearance.
● The  K-means method shows the images with K colors. 

C. Bishop. Pattern recognition and machine learning



Eva Cernadas 18

Image segmentation: 
performance

● Pixel level evaluation:
– Assume that each pixel is a pattern
– The image segmentation process is a two-class 

classification problem
– Class 0 and 1 for background and foreground pixels
– Use the quality measures for classification:

● Kappa and accuracy
● Precision, recall and F1

● The  K-means method shows the images with K colors. 
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Image segmentation: 
performance

● Region level evaluation:
– Both examples are rather bad
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Image segmentation: 
performance

● Region level evaluation:
– Quantify the agreement of expert and algorithm 

at region level.
– Measure the overlap between the expert and 

computer to  segment objects.
– Di and Ai the number of segmented and true 

objects in image Ii.
– Pd

i, number of pixels of recognized object Rd
i, 

d=1..Di

– Pa
i, number of pixels of true object Ra

i, a=1..Ai 
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Image segmentation: 
performance

● Region level evaluation:
–  Oda

i= Pd
i Ո Pa

i number of overlapped pixels 
between Rd

i and Ra
i 

– Oda
i= ᴓ both regions are not overlapped.

– Oda
i= Rd

i = Ra
i, the overlapping is complete.

Di Ai
Oda

i
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Image segmentation: 
performance

● A region is classified in the following types:
– Let 0 ≤ T ≤ 1 is a strictness criterion
– Correct: a region Ra

i  is correctly detected if 
Oda

i≥ Pd
i T 

– Missed: a region Ra
i  that it is not correctly 

detected is missed.
– Noise: a region Rd

i  that does not participate in 
any instance of correct detection is classified as 
noise. 
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Image segmentation: 
performance

● Example: “MSCF: Multi-Scale Canny Filter to Recognize Cells 
in Microscopic Images”, 2023.

●  https://doi.org/10.3390/su151813693

https://doi.org/10.3390/su151813693
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Example: image segmentation
● Matlab: function imsegkmeans()  
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Example: K-means clustering
● Matlab/Octave: function kmeans()  
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Example: image segmentation
● OpenCV: function kmeans()  (see OpenCV help)

https://docs.opencv.org/master/d5/d38/group__core__cluster.html#ga9a34dc06c6ec9460e90860f15bcd2f88
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Example: image segmentation
● Sklearn: module cluster  (python)
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Real examples of clustering
● CystAnalyser: 10.1371/journal.pcbi.1008337 or 

https://citius.usc.es/transferencia/software/cystanalyser

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008337
https://citius.usc.es/transferencia/software/cystanalyser
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Real examples of clustering
● OralImmunoAnalyser: 
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Example: image compression
● Image N pixels, 1 pixel=3 colors x 8 bits/color=24 bits: size=24N bits.

● Using K (≪N) prototypes, an input pattern is a pixel xi=(Ri,Gi,Bi).

● Clustering: K prototypes {pk}j=1
K, with pk=(Rk ,Gk ,Bk ), stored only once.

● Compression: pixel xi (8x3 bits) → prototype index pk of size log2 K

● Size of compressed image: number N of pixels multiplied by the number of 
bits required to code the number K of prototypes (N·log2 K bits) and the K 
prototypes (24K bits)

● Compresion factor:                                                             for large N

● With K=10, α=7.2

α=
T 0
T 1

= 24 N
24 K+N log2K

≈ 24
log2K
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