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Support Vector Machine (SVM)
● SVM for classification (SVC) : binary classification (2 

classes)

● Linear classifier z(x)=sgn(wTx+b) in the hidden space. The 
output z(x) and the true outputs yi are -1 for one class and 
+1 for the another; xs(1)...xs(M) are the M<N support vectors

xs(1),ys(1) xs(M),ys(M)

x

α1 αM

b

z(x)∈{1}K(,) K(,)

z(x)=sign(∑
i=1

M

αi y s (i)K [x s(i) , x]+b)
Step function

sign(x)={ 1 x≥0
−1 x<0 }
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Support Vector Machine (SVM)
● Trainable parameters: {αi}i=1

M, b

● Tunable hyper-parameters: regularization (λ) and hyper-
parameters of the kernel K

● The SVM combines two ingredients:

1)A kernel K to project into a hidden space were linear 
separability is increased.

2)Selection of the linear classifier in the hidden space that 
minimizes overfitting, maximazing the margin.
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SVM: kernel (I)
● Cover theorem (1965): the probability that N patterns in a n-

dimensional space will be linearly separable is 1 if n>N, and
                        if  n<N-1 (this function increases with n).

● Increasing the dimensionality n of data increases their 
probability to be linearly separable. 

● Kernel function: maps the input 
space ℝn to ℝm with m>n: 
x → Φ(x): Φ is a vector function

1
2N
∑
i=1

n

(N−1i )
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SVM: kernel (II)

● The linear separability is more probable in the ℝm space 
(hidden or feature space) than in the original space.  

● The kernel Φ verifies the condition Φ(x)TΦ(y)=K(x,y): Φ is a 
generalized scalar product).

● K(x,y)  is a generalized similarity measure between x and y 
in the hidden space.

● The SVM is a linear classifier defined by vector w in the 
hidden space created by the kernel mapping Φ(x).
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SVM: kernel (III)
● We will see that                                  , with M support vectors 

{xs(i)}i=1
M

● So:

where K(xs(i),x)=Φ[xs(i)]TΦ(x) and yi∈{±1}

● There are several kernels with different hyper-parameters, 
that should be tuned for each problem.

w=∑
i=1

M

αi y s (i)Φ[x s(i)]

z(x)=sign(wTΦ(x)+b)=sign (∑
i=1

M

αi y s (i)Φ[x s(i)]
TΦ(x)+b)

z(x)=sign(∑
i=1

M

αi ys (i)K [x s(i) , x]+b)
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SVM: kernel (IV): types
● Gaussian or RBF kernel: 

The spread σ is the tunable hyper-parameter, with recommended 
values {2i}-5

10 . The hidden space has infinite dimension.

● Polynomial kernel: K(v,w)=(vTw+a)b: tunable parameters a,b: 
degree b=1,2,3 and offset a with values between -n and +n, being 
n the upper bound of vTw  so that |vTw|<n. Hidden space of finite 
(high) dimension.

● No kernel means Φ(x)=x or lineal kernel K(v,w)=vTw: the hidden 
space is the input space, the SVM is a linear classifier.

K (v ,w)=exp(−|v−w|
2

2σ2 )
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SVM: kernel (V)
● The Gaussian kernel is normally the best performing, 

when the spread σ is tuned
● The SVM performance exhibits a peak for the best σ 

value, and lower values for σ values low and high
● The SVM performance with linear kernel is lower than 

Gaussian kernel
● With large values of n (high-dimensional data), both 

kernels have similar performance, because the mapping 
to high-dimensions is no longer required
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Minimizing overfitting (I)
● Statistical learning theory (V. Vapnik). The Vapnik-

Chervonenkis dimension (h) of a binary classifier is 
defined as: the maximum number of patterns that it can 
learn without making mistakes, independently of the class 
label.

● h measures the classifier complexity: the higher h, the larger 
overfitting: it must be minimized.

● For a linear classifier in a n-dimensional space: h≤n+1. 
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Minimizing overfitting (II)
● If the patterns x satisfy |x|<D and ρ is the margin (minimum 

distance between x and the classifier hyperplane):

● You must maximize the margin ρ in order to minimize 
overfitting of the linear classifier (hyperplane) in the hidden 
space.

h≤min(⌈ Dρ2 ⌉ ,n)+1
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SVM training (I)
● The margin ρ in the hidden space is:

● Requiring |wTΦ(xi)+b|≥1 for all the training 
patterns xi , the margin is ρ=1/|w|

● The training error  for Φ(xi) is
ξi=max[0,1-yi(wTΦ(xi)+b)]

● ξi>0 when Φ(xi) is missclassified or well 
classified but wTΦ(xi)+b<1 (inside bands)

ρ= min
i=1…N

|wTΦ(xi)+b|
|w|

bad
hyperplane

High 
margin ρ

good
hyperplane

Low 
margin
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● λ=regularization parameter. The hyperplane (w,b) must 
minimize:

with the conditions:

● The Lagrange multipliers {αi,βi}i=1
N and function L are used as 

optimization method with constrains:

SVM training (II)

J (w ,b , ξ⃗)=|w|2

2
+λ∑

i=1

N

ξi

ξi≥0,w
T xi+b≥ y i(1−ξi) , i=1…N

L(w ,b , ξ⃗ ,β⃗ , α⃗)=|w|2

2
+λ∑

i=1

N

ξi−∑
i=1

N

αi [ yi(w
T Φ⃗(xi)+b)−1+ξi]−∑

i=1

N

βiξi

wT xi+b≥−1 , y i=−1
wT xi+b≥1 , y i=+1
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SVM training (III)
● Deriving with respect to w and equaling to 0:

● The vector w is a linear combination of the training patterns. 
Not scalable to high N (many patterns).

● Solution: as we will see αi =0 for many i (sparse solution).

● Deriving with respect to b, ξi, αi and βi, the problem is 
transformed into finding    =(α1,…,αM) that maximizes:

w=∑
i=1

N

αi yi Φ⃗(xi)

α⃗T 1−α⃗T K α⃗
2

α⃗

1 and α: column vectors
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SVM training (IV)
 where K=(Kij)i,j=1

N  and Kij=K(xi
T, xj ), with the conditions:

● This optimization problem is solved using iterative numeric 
procedures.

● The SVM only requires M<N training patterns (support 
vectors) xs(1)...xs(M), for which 0≤αi ≤λ, being αi=0 for the 
remaining patterns.

● The vector w in the hidden space is:    

α⃗T y=0,0≤αi≤λ ,βiξi=0,αi{yi [∑j=1
N

αiK (x j
T ,x)+b ]}=0, i=1,…N

w=∑
i=1

M

αi y s (i)Φ⃗[xs (i)]
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SVM training (VI)
● The offset b is:

being xj a support vector.

● Substituting w in z(x)=sign(wTΦ(x)+b) and using that 
Φ(v)TΦ(w)=K(v,w), we achieve the final expression of the 
SVM output:

● The SVM suffers less the curse of dimensionality (poor 
performance with high-dimensional input patterns) than 
other classifiers.

b= y j−∑
i=1

M

αi ys (i)K [x j , xs (i)]

z(x)=sign(∑
i=1

M

αi y s (i)K [x s(i) , x]+b)
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Tunable hyper-parameters
● λ (regularization parameter): values 2-5..215: the results 

are not very sensitive to its value. A default value 
(when tuning is not possible) would be λ=1 or λ=100.

● With Gaussian kernel: σ (kernel spread): values 2-5..210 : 
very important in the results: the best value is normally 
in the median of the σ range. A default value would be 
σ=1/n.

● The SVM performance is much higher developing a 
hyper-parameter tuning.
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Multi-class SVM classification (I)
● One-vs-all (OVA) and one-vs-one (OVO) approaches

● For high C, use one-vs-all (OVA) approach: C binary SVMs, 
where the i-th SVM classifies the patterns between class i 
and the remaining classes

● The i-th SVM trains with all patterns: yj=1 for the training 
patterns xj of class i, and yj=-1 for patterns of the remaining 
classes

● More efficient because uses only C binary SVMs. Lower 
performance.
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Multi-class classification (II)
● All the SVMs share the λ and σ values.

● αs(i,j), xs(i,j): j-th coefficient and support vector of i-th binary 
SVM

z1(x)
1

2

C

...

x ...
argmax

z2(x)
z(x)

zC(x)

zi(x)=∑
j=1

M i

αs(i , j) ys (i , j)K [xs (i , j) , x]+bi
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Multi-class classification (III)
● If C>2 is low, use one-vs-one (OVO) approach. You will 

need C(C-1)/2 binary SVMs. Less efficient because the 
number of binary SVMs raises with C2. Better performance.

● The ij-th binary SVM classifies between patterns of class i and 
j, with i=1..C-1 and j=i+1..C, training only with patterns xk of 
classes i and j (yk=1 for x of class i, y=-1 for x of class j)

ij-th binary
SVMx zij(x)∈{1}
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Multi-class classification (IV)

v i(x)=∑
j=1

C

∑
k=1

C

δijδik z jk (x) , i=1…C

δij=1 if i=j and δij=0 if i≠j

1,2

1,C

2,3

2,C

(C-1),C

...
...

...
x

...

argmax

v1(x)

v2(x)

vC(x)

z(x)

z12(x)

z1C(x)

z23(x)

z2C(x)

z(C-1)C(x)

z(x)= argmax
i=1…N

{v i(x)}
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Complexity
● The SVM training is a quadratic optimization with complexity of 

O(N3) and memory requirements of O(N2)

● Efficient implementations: O(Np) with 1≤p≤2.3

● SVM is normally slow for > 10.000-50.000 patterns, depending of 
the number n of inputs

● With very wide patterns (n high), use linear kernel because it is 
not necessary to map the data to a high-dimensional space.

● In this case, linear and Gaussian kernels achieve similar results.

z(x)=sign(wT x+b) ,w=∑
i=1

M

αi y s(i)xs (i)
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Implementations

● LibSVM: accessible from C++, Octave/Matlab, 
Python, Weka/Java. 

● Function SVC in package scikit-learn of 
Python.

● Function ksvm in the package kernlab of R.
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LibSVM in Octave/Matlab
● Functions svmtrain() and svmpredict()
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svm module in Python scikit-learn
● https://scikit-learn.org/stable/modules/svm.html

https://scikit-learn.org/stable/modules/svm.html
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Kernlab R package
● https://www.rdocumentation.org/packages/kernlab/versions/0.9-29/topics/ksvm

https://www.rdocumentation.org/packages/kernlab/versions/0.9-29/topics/ksvm
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Real application: STERapp
● https://citius.usc.es/transferencia/software/sterapp

● STERapp allows the estimation of fish fecundity by an automatic 
analysis of histological images of fish gonads.

● Specifically, cells are classified into three different development 
stages and also into cells with/without visible nucleus. 

● It uses the Gaussian SVM classifier applied on texture and color 
features extracted from each cell.

● To calculate fecundity, we need to measure the cells with visible 
nucleus and to count the cells in each development stage.

https://citius.usc.es/transferencia/software/sterapp
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Real application: STERapp
● Colaborators:

– CiTIUS: Centro Singular en Tecnoloxías intelixentes da 
USC.

– Universidade de Vigo.

– IIM-CSIC: Instituto de Investigaciones Marinas de Vigo.

– IEO-CSIC: Instituto español de oceonografía. 
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Real application: STERapp
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Real application: STERapp
● Three different development stages (colors) and present/absent 

nucleus  (continuous/dashed line).
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Real application: PDApp
● In colaboration with the Faculty of Medicine and Dentistry in the USC.

● PDApp is a new reliable and easy-to-use software tool to estimate 
the Third Molar Eruption Potential from the panoramic radiological 
images of adolescents/teenagers patients. 

● Its GUI  allows to draw the retromolar space, third molar diameter 
and angle on the image.

● Use a SVM to predict probability of positive (eruption) and negative 
(non-eruption) potential.
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Real application: PDApp
● https://citius.usc.es/transferencia/software/pdapp 

https://citius.usc.es/transferencia/software/pdapp
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Fast Support Vector Classifier (FSVC)
● The SVC is unable to train with several thousands of patterns
● Calculation of {αi}i∈SV and b is of complexity (N3) and 

requires RAM memory (N2)
● The whole training set must be stored in memory during 

training
● Testing requires to store all the support vectors
● Tuning of λ and RBF kernel spread σ requires to repeat 

training+test many times
● High n (many inputs): calculation of distance  |xn-xm| for 

kernel is slow
● High C (many classes): it requires to train (C2) binary SVCs
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FSVC (II)
● We proposed Fast SVC: Fast Support Vector Classification for 

Large-Scale Problems, Z. Akram-Ali-Hammouri, M. Fernández-
Delgado, E. Cernadas, S. Barro, IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 44(10), 2022, DOI: 
10.1109/TPAMI.2021.3085969

● Five elements that provide efficiency to SVC training+test:
1)Efficient training: no iterative optimization to calculate 

{αi} and b. Instead, direct calculation of b and y(x) without 
training set storage

y (x)=sign(∑n=2 k n(x)N 2
−∑
n=1

k n(x)
N 1

+b)
K (x , y )=exp(−|x− y

2|
2σ2 ) b=∑

nm=1

k nm
2N1

2−∑
nm=2

knm
2N 2

2

k n(x)=K (xn , x)

k nm=K (xn ,xm)

https://doi.org/10.1109/TPAMI.2021.3085969
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FSVC (III)
2)Efficient kernel calculation: prototypes pql of classes 

created using on-line kmeans clustering:

● The previous equations are re-formulated for prototypes 
pql instead of training patterns xn:

y (x)=sign(∑
l=1

L2 k 2 l(x)
L2

−∑
l=1

L1 k1 l(x)
L1

+b)
b=∑

lm=1

L1 k1lm
2L1

2−∑
lm=1

L2 k2 lm
2L2

2

k ql(x)=K (pql , x)

k qlm=K ( pql , xm)K (x , y)=exp(−|x− y
2|

2σ2 )

pql(t+1)=(1− 1
N qr ) pql(t )+

xn
Nql

q=cn r=argmin
l=1 ,…Lq

|pql−xn| N ql=N ql+1
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FSVC (IV)
3)Efficient hyper-parameter tuning:
● Efficient training removes λ hyper-parameter
● Spread σ of RBF kernel estimated minimizing difference 

between kernel matrix K and ideal kernel matrix J
● K(s)

lm=K(pl ,pm,s ): RBF kernel for pl and pm with spread σ
● Jlm=1 when cl=cm and Jlm=0 otherwise
● Difference A(σ) between K(s) and J:

● Select σ0 as:
● Avoids repetition of training+test

A (σ)=∑
lm=1

L1+L2 |K lm
(σ)−J lm|

(L1+L2)
2

σ0=argminσ∈Σ {A (σ)} Σ={2
−(i+1)
2 }i=−13

13
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FSVC (V)
4)Large input dimensionality n: use of linear instead 

of RBF kernel: y(x)=sign(wTx+b), with w and b:

Very efficient: n-dimensional dot product and sum
5)Large number C of classes: use of one-vs-all instead 

of one-vs-one
● Computational complexity of FSVC: linear in N (no. 

training patterns), n (no. inputs) and T (no. test patterns), 
quadratic only in C (no. classes)

● Low memory required: tunable depending on the 
available memory; less memory → less speed

w=∑
l=1

L2 p2 l
L2

−∑
l=1

L1 p1 l
L1

b=∑
lm=1

L1 p1l
T p1m
2L1

2 −∑
lm=1

L2 p2 l
T p2m
2L2

2
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FSVC (VI)
● Implementation in CodeOcean: DOI:

https://doi.org/10.24433/CO.8733864.v1
● Code also available from this link
● Executed on datasets up to N=31 millions of patterns, 

n=30.000 inputs and C=131 classes
● Average performance 6% below SVC on small datasets
● The slowest dataset: 21 millions patterns, 115 inputs, 9 

classes. FSVC spent 1h 40m per fold (4-fold cross validation)
● Can be run in low-power computers (small memory)
● Faster and more accurate than Pegasos-SVM, SVM-SIMBA and 

Indefinite Core Vector Machine. Faster than evolutionary 
training set selection, that is unable to run on most datasets

https://codeocean.com/
https://doi.org/10.24433/CO.8733864.v1
https://persoal.citius.usc.es/manuel.fernandez.delgado/papers/fsvc/fsvc.tar.gz
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