
International Master in
Computer Vision

Fundamentals of machine

learning for computer vision

Eva Cernadas

Support Vector Machines (SVM) Eva Cernadas 2

Contents
Machine learning theory (Dr. Jaime Cardoso)

Linear regression and optimization (Dr. Jaime Cardoso)

Model selection and evaluation

Classical classification models

Artificial neural networks (ANN)

Support vector machines (SVM)

Ensembles: bagging, boosting and random forest

Clustering

Support Vector Machines (SVM) Eva Cernadas 3

Support Vector Machine (SVM)
● SVM for classification (SVC) : binary classification (2

classes)

● Linear classifier z(x)=sgn(wTx+b) in the hidden space. The
output z(x) and the true outputs yi are -1 for one class and
+1 for the another; xs(1)...xs(M) are the M<N support vectors

xs(1),ys(1) xs(M),ys(M)

x

α1 αM

b

z(x)∈{1}K(,) K(,)

z(x)=sign(∑
i=1

M

αi y s (i)K [x s(i) , x]+b)
Step function

sign(x)={ 1 x≥0
−1 x<0 }

Support Vector Machines (SVM) Eva Cernadas 4

Support Vector Machine (SVM)
● Trainable parameters: {αi}i=1

M, b

● Tunable hyper-parameters: regularization (λ) and hyper-
parameters of the kernel K

● The SVM combines two ingredients:

1)A kernel K to project into a hidden space were linear
separability is increased.

2)Selection of the linear classifier in the hidden space that
minimizes overfitting, maximazing the margin.

Support Vector Machines (SVM) Eva Cernadas 5

SVM: kernel (I)
● Cover theorem (1965): the probability that N patterns in a n-

dimensional space will be linearly separable is 1 if n>N, and
 if n<N-1 (this function increases with n).

● Increasing the dimensionality n of data increases their
probability to be linearly separable.

● Kernel function: maps the input
space ℝn to ℝm with m>n:
x → Φ(x): Φ is a vector function

1
2N
∑
i=1

n

(N−1i)

Support Vector Machines (SVM) Eva Cernadas 6

SVM: kernel (II)

● The linear separability is more probable in the ℝm space
(hidden or feature space) than in the original space.

● The kernel Φ verifies the condition Φ(x)TΦ(y)=K(x,y): Φ is a
generalized scalar product).

● K(x,y) is a generalized similarity measure between x and y
in the hidden space.

● The SVM is a linear classifier defined by vector w in the
hidden space created by the kernel mapping Φ(x).

Support Vector Machines (SVM) Eva Cernadas 7

SVM: kernel (III)
● We will see that , with M support vectors

{xs(i)}i=1
M

● So:

where K(xs(i),x)=Φ[xs(i)]TΦ(x) and yi∈{±1}

● There are several kernels with different hyper-parameters,
that should be tuned for each problem.

w=∑
i=1

M

αi y s (i)Φ[x s(i)]

z(x)=sign(wTΦ(x)+b)=sign (∑
i=1

M

αi y s (i)Φ[x s(i)]
TΦ(x)+b)

z(x)=sign(∑
i=1

M

αi ys (i)K [x s(i) , x]+b)

Support Vector Machines (SVM) Eva Cernadas 8

SVM: kernel (IV): types
● Gaussian or RBF kernel:

The spread σ is the tunable hyper-parameter, with recommended
values {2i}-5

10 . The hidden space has infinite dimension.

● Polynomial kernel: K(v,w)=(vTw+a)b: tunable parameters a,b:
degree b=1,2,3 and offset a with values between -n and +n, being
n the upper bound of vTw so that |vTw|<n. Hidden space of finite
(high) dimension.

● No kernel means Φ(x)=x or lineal kernel K(v,w)=vTw: the hidden
space is the input space, the SVM is a linear classifier.

K (v ,w)=exp(−|v−w|
2

2σ2)

Support Vector Machines (SVM) Eva Cernadas 9

SVM: kernel (V)
● The Gaussian kernel is normally the best performing,

when the spread σ is tuned
● The SVM performance exhibits a peak for the best σ

value, and lower values for σ values low and high
● The SVM performance with linear kernel is lower than

Gaussian kernel
● With large values of n (high-dimensional data), both

kernels have similar performance, because the mapping
to high-dimensions is no longer required

Support Vector Machines (SVM) Eva Cernadas 10

Minimizing overfitting (I)
● Statistical learning theory (V. Vapnik). The Vapnik-

Chervonenkis dimension (h) of a binary classifier is
defined as: the maximum number of patterns that it can
learn without making mistakes, independently of the class
label.

● h measures the classifier complexity: the higher h, the larger
overfitting: it must be minimized.

● For a linear classifier in a n-dimensional space: h≤n+1.

Support Vector Machines (SVM) Eva Cernadas 11

Minimizing overfitting (II)
● If the patterns x satisfy |x|<D and ρ is the margin (minimum

distance between x and the classifier hyperplane):

● You must maximize the margin ρ in order to minimize
overfitting of the linear classifier (hyperplane) in the hidden
space.

h≤min(⌈ Dρ2 ⌉ ,n)+1

Support Vector Machines (SVM) Eva Cernadas 12

SVM training (I)
● The margin ρ in the hidden space is:

● Requiring |wTΦ(xi)+b|≥1 for all the training
patterns xi , the margin is ρ=1/|w|

● The training error for Φ(xi) is
ξi=max[0,1-yi(wTΦ(xi)+b)]

● ξi>0 when Φ(xi) is missclassified or well
classified but wTΦ(xi)+b<1 (inside bands)

ρ= min
i=1…N

|wTΦ(xi)+b|
|w|

bad
hyperplane

High
margin ρ

good
hyperplane

Low
margin

Support Vector Machines (SVM) Eva Cernadas 13

● λ=regularization parameter. The hyperplane (w,b) must
minimize:

with the conditions:

● The Lagrange multipliers {αi,βi}i=1
N and function L are used as

optimization method with constrains:

SVM training (II)

J (w ,b , ξ⃗)=|w|2

2
+λ∑

i=1

N

ξi

ξi≥0,w
T xi+b≥ y i(1−ξi) , i=1…N

L(w ,b , ξ⃗ ,β⃗ , α⃗)=|w|2

2
+λ∑

i=1

N

ξi−∑
i=1

N

αi [yi(w
T Φ⃗(xi)+b)−1+ξi]−∑

i=1

N

βiξi

wT xi+b≥−1 , y i=−1
wT xi+b≥1 , y i=+1

Support Vector Machines (SVM) Eva Cernadas 14

SVM training (III)
● Deriving with respect to w and equaling to 0:

● The vector w is a linear combination of the training patterns.
Not scalable to high N (many patterns).

● Solution: as we will see αi =0 for many i (sparse solution).

● Deriving with respect to b, ξi, αi and βi, the problem is
transformed into finding =(α1,…,αM) that maximizes:

w=∑
i=1

N

αi yi Φ⃗(xi)

α⃗T 1−α⃗T K α⃗
2

α⃗

1 and α: column vectors

Support Vector Machines (SVM) Eva Cernadas 15

SVM training (IV)
 where K=(Kij)i,j=1

N and Kij=K(xi
T, xj), with the conditions:

● This optimization problem is solved using iterative numeric
procedures.

● The SVM only requires M<N training patterns (support
vectors) xs(1)...xs(M), for which 0≤αi ≤λ, being αi=0 for the
remaining patterns.

● The vector w in the hidden space is:

α⃗T y=0,0≤αi≤λ ,βiξi=0,αi{yi [∑j=1
N

αiK (x j
T ,x)+b]}=0, i=1,…N

w=∑
i=1

M

αi y s (i)Φ⃗[xs (i)]

Support Vector Machines (SVM) Eva Cernadas 16

SVM training (VI)
● The offset b is:

being xj a support vector.

● Substituting w in z(x)=sign(wTΦ(x)+b) and using that
Φ(v)TΦ(w)=K(v,w), we achieve the final expression of the
SVM output:

● The SVM suffers less the curse of dimensionality (poor
performance with high-dimensional input patterns) than
other classifiers.

b= y j−∑
i=1

M

αi ys (i)K [x j , xs (i)]

z(x)=sign(∑
i=1

M

αi y s (i)K [x s(i) , x]+b)

Support Vector Machines (SVM) Eva Cernadas 17

Tunable hyper-parameters
● λ (regularization parameter): values 2-5..215: the results

are not very sensitive to its value. A default value
(when tuning is not possible) would be λ=1 or λ=100.

● With Gaussian kernel: σ (kernel spread): values 2-5..210 :
very important in the results: the best value is normally
in the median of the σ range. A default value would be
σ=1/n.

● The SVM performance is much higher developing a
hyper-parameter tuning.

Support Vector Machines (SVM) Eva Cernadas 18

Multi-class SVM classification (I)
● One-vs-all (OVA) and one-vs-one (OVO) approaches

● For high C, use one-vs-all (OVA) approach: C binary SVMs,
where the i-th SVM classifies the patterns between class i
and the remaining classes

● The i-th SVM trains with all patterns: yj=1 for the training
patterns xj of class i, and yj=-1 for patterns of the remaining
classes

● More efficient because uses only C binary SVMs. Lower
performance.

Support Vector Machines (SVM) Eva Cernadas 19

Multi-class classification (II)
● All the SVMs share the λ and σ values.

● αs(i,j), xs(i,j): j-th coefficient and support vector of i-th binary
SVM

z1(x)
1

2

C

...

x ...
argmax

z2(x)
z(x)

zC(x)

zi(x)=∑
j=1

M i

αs(i , j) ys (i , j)K [xs (i , j) , x]+bi

Support Vector Machines (SVM) Eva Cernadas 20

Multi-class classification (III)
● If C>2 is low, use one-vs-one (OVO) approach. You will

need C(C-1)/2 binary SVMs. Less efficient because the
number of binary SVMs raises with C2. Better performance.

● The ij-th binary SVM classifies between patterns of class i and
j, with i=1..C-1 and j=i+1..C, training only with patterns xk of
classes i and j (yk=1 for x of class i, y=-1 for x of class j)

ij-th binary
SVMx zij(x)∈{1}

Support Vector Machines (SVM) Eva Cernadas 21

Multi-class classification (IV)

v i(x)=∑
j=1

C

∑
k=1

C

δijδik z jk (x) , i=1…C

δij=1 if i=j and δij=0 if i≠j

1,2

1,C

2,3

2,C

(C-1),C

...
...

...
x

...

argmax

v1(x)

v2(x)

vC(x)

z(x)

z12(x)

z1C(x)

z23(x)

z2C(x)

z(C-1)C(x)

z(x)= argmax
i=1…N

{v i(x)}

Support Vector Machines (SVM) Eva Cernadas 22

Complexity
● The SVM training is a quadratic optimization with complexity of

O(N3) and memory requirements of O(N2)

● Efficient implementations: O(Np) with 1≤p≤2.3

● SVM is normally slow for > 10.000-50.000 patterns, depending of
the number n of inputs

● With very wide patterns (n high), use linear kernel because it is
not necessary to map the data to a high-dimensional space.

● In this case, linear and Gaussian kernels achieve similar results.

z(x)=sign(wT x+b) ,w=∑
i=1

M

αi y s(i)xs (i)

Support Vector Machines (SVM) Eva Cernadas 23

Implementations

● LibSVM: accessible from C++, Octave/Matlab,
Python, Weka/Java.

● Function SVC in package scikit-learn of
Python.

● Function ksvm in the package kernlab of R.

Support Vector Machines (SVM) Eva Cernadas 24

LibSVM in Octave/Matlab
● Functions svmtrain() and svmpredict()

Support Vector Machines (SVM) Eva Cernadas 25

svm module in Python scikit-learn
● https://scikit-learn.org/stable/modules/svm.html

https://scikit-learn.org/stable/modules/svm.html

Support Vector Machines (SVM) Eva Cernadas 26

Kernlab R package
● https://www.rdocumentation.org/packages/kernlab/versions/0.9-29/topics/ksvm

https://www.rdocumentation.org/packages/kernlab/versions/0.9-29/topics/ksvm

Support Vector Machines (SVM) Eva Cernadas 27

Real application: STERapp
● https://citius.usc.es/transferencia/software/sterapp

● STERapp allows the estimation of fish fecundity by an automatic
analysis of histological images of fish gonads.

● Specifically, cells are classified into three different development
stages and also into cells with/without visible nucleus.

● It uses the Gaussian SVM classifier applied on texture and color
features extracted from each cell.

● To calculate fecundity, we need to measure the cells with visible
nucleus and to count the cells in each development stage.

https://citius.usc.es/transferencia/software/sterapp

Support Vector Machines (SVM) Eva Cernadas 28

Real application: STERapp
● Colaborators:

– CiTIUS: Centro Singular en Tecnoloxías intelixentes da
USC.

– Universidade de Vigo.

– IIM-CSIC: Instituto de Investigaciones Marinas de Vigo.

– IEO-CSIC: Instituto español de oceonografía.

Support Vector Machines (SVM) Eva Cernadas 29

Real application: STERapp

Support Vector Machines (SVM) Eva Cernadas 30

Real application: STERapp
● Three different development stages (colors) and present/absent

nucleus (continuous/dashed line).

Support Vector Machines (SVM) Eva Cernadas 31

Real application: PDApp
● In colaboration with the Faculty of Medicine and Dentistry in the USC.

● PDApp is a new reliable and easy-to-use software tool to estimate
the Third Molar Eruption Potential from the panoramic radiological
images of adolescents/teenagers patients.

● Its GUI allows to draw the retromolar space, third molar diameter
and angle on the image.

● Use a SVM to predict probability of positive (eruption) and negative
(non-eruption) potential.

Support Vector Machines (SVM) Eva Cernadas 32

Real application: PDApp
● https://citius.usc.es/transferencia/software/pdapp

https://citius.usc.es/transferencia/software/pdapp

Support Vector Machines (SVM) Eva Cernadas 33

Fast Support Vector Classifier (FSVC)
● The SVC is unable to train with several thousands of patterns
● Calculation of {αi}i∈SV and b is of complexity (N3) and

requires RAM memory (N2)
● The whole training set must be stored in memory during

training
● Testing requires to store all the support vectors
● Tuning of λ and RBF kernel spread σ requires to repeat

training+test many times
● High n (many inputs): calculation of distance |xn-xm| for

kernel is slow
● High C (many classes): it requires to train (C2) binary SVCs

Support Vector Machines (SVM) Eva Cernadas 34

FSVC (II)
● We proposed Fast SVC: Fast Support Vector Classification for

Large-Scale Problems, Z. Akram-Ali-Hammouri, M. Fernández-
Delgado, E. Cernadas, S. Barro, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(10), 2022, DOI:
10.1109/TPAMI.2021.3085969

● Five elements that provide efficiency to SVC training+test:
1)Efficient training: no iterative optimization to calculate

{αi} and b. Instead, direct calculation of b and y(x) without
training set storage

y (x)=sign(∑n=2 k n(x)N 2
−∑
n=1

k n(x)
N 1

+b)
K (x , y)=exp(−|x− y

2|
2σ2) b=∑

nm=1

k nm
2N1

2−∑
nm=2

knm
2N 2

2

k n(x)=K (xn , x)

k nm=K (xn ,xm)

https://doi.org/10.1109/TPAMI.2021.3085969

Support Vector Machines (SVM) Eva Cernadas 35

FSVC (III)
2)Efficient kernel calculation: prototypes pql of classes

created using on-line kmeans clustering:

● The previous equations are re-formulated for prototypes
pql instead of training patterns xn:

y (x)=sign(∑
l=1

L2 k 2 l(x)
L2

−∑
l=1

L1 k1 l(x)
L1

+b)
b=∑

lm=1

L1 k1lm
2L1

2−∑
lm=1

L2 k2 lm
2L2

2

k ql(x)=K (pql , x)

k qlm=K (pql , xm)K (x , y)=exp(−|x− y
2|

2σ2)

pql(t+1)=(1− 1
N qr) pql(t)+

xn
Nql

q=cn r=argmin
l=1 ,…Lq

|pql−xn| N ql=N ql+1

Support Vector Machines (SVM) Eva Cernadas 36

FSVC (IV)
3)Efficient hyper-parameter tuning:
● Efficient training removes λ hyper-parameter
● Spread σ of RBF kernel estimated minimizing difference

between kernel matrix K and ideal kernel matrix J
● K(s)

lm=K(pl ,pm,s): RBF kernel for pl and pm with spread σ
● Jlm=1 when cl=cm and Jlm=0 otherwise
● Difference A(σ) between K(s) and J:

● Select σ0 as:
● Avoids repetition of training+test

A (σ)=∑
lm=1

L1+L2 |K lm
(σ)−J lm|

(L1+L2)
2

σ0=argminσ∈Σ {A (σ)} Σ={2
−(i+1)
2 }i=−13

13

Support Vector Machines (SVM) Eva Cernadas 37

FSVC (V)
4)Large input dimensionality n: use of linear instead

of RBF kernel: y(x)=sign(wTx+b), with w and b:

Very efficient: n-dimensional dot product and sum
5)Large number C of classes: use of one-vs-all instead

of one-vs-one
● Computational complexity of FSVC: linear in N (no.

training patterns), n (no. inputs) and T (no. test patterns),
quadratic only in C (no. classes)

● Low memory required: tunable depending on the
available memory; less memory → less speed

w=∑
l=1

L2 p2 l
L2

−∑
l=1

L1 p1 l
L1

b=∑
lm=1

L1 p1l
T p1m
2L1

2 −∑
lm=1

L2 p2 l
T p2m
2L2

2

Support Vector Machines (SVM) Eva Cernadas 38

FSVC (VI)
● Implementation in CodeOcean: DOI:

https://doi.org/10.24433/CO.8733864.v1
● Code also available from this link
● Executed on datasets up to N=31 millions of patterns,

n=30.000 inputs and C=131 classes
● Average performance 6% below SVC on small datasets
● The slowest dataset: 21 millions patterns, 115 inputs, 9

classes. FSVC spent 1h 40m per fold (4-fold cross validation)
● Can be run in low-power computers (small memory)
● Faster and more accurate than Pegasos-SVM, SVM-SIMBA and

Indefinite Core Vector Machine. Faster than evolutionary
training set selection, that is unable to run on most datasets

https://codeocean.com/
https://doi.org/10.24433/CO.8733864.v1
https://persoal.citius.usc.es/manuel.fernandez.delgado/papers/fsvc/fsvc.tar.gz

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

