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Artificial neural networks
● ANN: Artificial Neural Networks

● Neural network: combination of local processing units (neurons)

● Neuron: simple processing unit of various inputs and one output.

● Input connections with weights for each input.

● The output is determined by activation functions from the inputs and 
weights. 

● The weights are persistent: they are the memory of the neural net. 

● The weights are calculated to approximate n-dimensional functions. 

● The neurons are grouped in layers: multi-layers networks: input, hidden 
(one or various) and output layers.
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Neural network
● The term ANN are normally used to multi-layer perceptron 

(MLP). 

● There are supervised and unsupervised neural networks. 

● Supervised training: weights are calculated using training 
patterns and true outputs.  

● Test pattern propagates through the net to calculate the output. 

● The network performance is evaluated comparing true and 
predicted output using the previous measurements

● ANN may exhibit overfitting



Artificial Neural Networks Eva Cernadas 5

Perceptron (I)
● One neuron with n inputs and one output, binary activation 

function (0,1), e.g. binary  classification:

● Need a threshold b (for example b=0.5) to calculate the 
output (-1 or 1). Varying b, a ROC curve is generated.

● Connection weights w1...wn : iteratively calculated 

● A differential function f(t) may also be used

z(x)=f (∑
i=1

n

wi xi−b)=f (wT x−b)Σ

x1

xi

xn

z
w1wi

wn

...
.

...
. b f (t )={ 1 t≥0

−1 t<0 }
Step activation function
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Perceptron (II)
● Gradient descent (training algorithm): searches to minimize 

the difference between the desired (y) and predicted (z) 
outputs, summed over the training set,  is the learning 
speed

● If the data are linearly separable, this iterative training finds 
the separating hyperplane (w,b) for what yi zi>0 for i=1..N.

w (t+1)=w (t )+μ∑
i=1

N

( y i−zi) f ' (w
T xi−b)xi

Note that  yi-zi∈{0,1}

J=∑
i=1

N

( yi−z i)
2; w (t+1)=w (t )−μ ∂J

∂w
; ∂J

∂w
=−∑

i=1

N

( y i−zi) f ' (w
T xi−b)xi
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Perceptron (III)

f (t)=σ(t )= 1
1+e−at

Logistic sigmoid
function: 0,1

f (t)=tanh at= e
−at−eat

eat+e−at

Hyperbolic tangent 
function: 1

● Soft activation function f: sigmoid or hyperbolic tangent:



Artificial Neural Networks Eva Cernadas 8

Kernel perceptron
● Kernel perceptron: linear classification                          

in the multi-dimensional projected hidden space (f : 
step function) mapped by Φ(x):

● Initially, ai=0, i=1..N; ai=ai+1 if yi zi<0 (misclassified 
patted) until that yi zi>0 (pattern correctly classified) for 
i=1,...N

● For datasets that are not linearly separable.

w=∑
i=1

N

ai y iΦ⃗ (xi) b=∑
i=1

N

ai y i

z=f (wT Φ⃗(x)+b)
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Multi-layer neural network (MLP)
● Each neuron is a linear classifier of the input space (hyperplane).

● Divides the space in two subspaces with outputs 0,1 (sigmoid 
function) or 1 (hiperbolic function).

● Joining various neurons into one layer, divides the space into 
regions with piecewise linear borders (surfaces). 
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Multi-layer Layer Perceptron
● Hidden layer: sigmoidal/tanh 

activation function
● Output layer: step activation 

for clasificación, linear for 
regression

● We need: training set, cost 
function, and derivable 
activation

● wj
k: weight vector of neuron j=1..Ik in layer k=1..H

● aij
k=(wj

k)Thi
k-1+bj

k , i=1..N (pattern), k=1..H (layer), j=1..Ik (neuron)
● hi

k-1: output of layer k-1 (Ik-1 values) for pattern xi

● hi
k: output of layer k for pattern xi:  hij

k=f(aij
k) with j=1..Ik

● yij =true output for j-th output neuron and training pattern xi

1

I1

1

IH-1

1

IH

x1

x1

xn-1

xn

...
.

Input 
pattern

1st hidden
layer

(H-1)st hidden
layer

...
.

Output 
layer (Hst)

z1

zM...
...

...
...

...
..

....



Artificial Neural Networks Eva Cernadas 11

Backpropagation (I)
● Gradient descent:

● Sum J of squared errors (SSE) Ji evaluated on output 
layer for the i pattern:

● The derivative is:

Δw j
k=−μ ∂J

∂w j
k ,Δb j

k=−μ ∂ J
∂b j

k , k=1 ,…, H , j=1 ,…, I k

J i=
1
2∑j=1

IH

( y ij−hijH )2=|yi−hi
H|2

2

∂ J i
∂w j

k=
∂ J i
∂aij

k

∂ aij
k

∂w j
k ,

∂ J i
∂b j

k=
∂ J i
∂aij

k

∂aij
k

∂b j
k

J=∑
i=1

N

J i
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Backpropagation (II)
● Define:             

● Thus:

  
● So:

δij
k≡

∂J i
∂aij

k

∂aij
k

∂w j
k=hi

k−1 ,
∂ aij

k

∂b j
k=1

Δw j
k=−μ∑

i=1

N

δij
k hi

k−1;Δb j
k=−μ∑

i=1

N

δij
k

ak
ij=(wk

j)Thi
k-1+bk

j
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Backpropagation (III)
● For the output layer (k=H):

● For the layer k<H:

δij
H=( y ij−hij

H) f ' (aij
H)=εij

H f ' (aij
H)

Δw j
k=−μ∑

i=1

N

εij
H f ' (aij

H)hij
k−1

hij
k=f(aij

k)

Δ b j
k=−μ∑

i=1

N

εij
H f ' (aij

H)

δij
k=

∂ J i
∂aij

k=∑
l=1

I k+1 ∂ J i
∂ail

k+1

∂ail
k+1

∂aij
k =∑

l=1

I k+1

δil
k+1 ∂ail

k+1

∂aij
k

J i=
1
2∑j=1

IH

( y ij−hijH )2δij
k≡

∂J i
∂aij

k
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Backpropagation (IV)
● Since ail

k+1=(wl
k+1)Thi

k+bl
k+1 and hij

k=f(aij
k), then:

● So δij
k is a recursive function depending on δij

k+1 and 
wl

k+1:

● Denoting                        , we obtain:
● The derivatives are, respectively, f’(t)=af(t)[1-f(t)] and 

f ’(t)=a[1-f 2(t)] for sigmoid and tanh activation functions.

∂ail
k+1

∂aij
k =wlj

k+1 f ' (aij
k )ail

k+1=∑
m=1

I k

wlm
k+1 f (aim

k )+bl
k+1

δij
k=∑

l=1

I k+1

δil
k+1wlj

k+1 f ' (aij
k)=f ' (aij

k)∑
l=1

I k+1

δil
k+1w lj

k+1 , k=K−1,… ,1

εij
k=∑

l=1

I k+1

δil
k+1w lj

k+1 δij
k=εij

k f ' (aij
k)



Artificial Neural Networks Eva Cernadas 15

Backpropagation (V)
repeat   # epoch loop

for i=1:N
for k=1:H  # direct pattern propagation

for j=1:Ik
aij

k=(wj
k)Thi

k-1+bj
k; hij

k=f(aij
k)

endfor
endfor
for j=1:IH

εij
H=yij-hij

H; δij
H=εij

H f ’(aij
H)

endfor
for k=H-1:-1:1  # error backpropagation 

for j=1:Ik
     ; δij

k=εij
k f ’(aij

k+1)
endfor

endfor
endfor
for k=1:H   # weight updating

for j=1:Ik

wj
k=wj

k+Δwj
k; bj

k=bj
k+Δbj

k

endfor
endfor

until stop criterion

εij
k=∑

l=1

I k+1

δil
k +1wlj

k+1

Δw j
k=−μ∑

i=1

N

δij
k hi

k−1 ;Δb j
k=−μ∑

i=1

N

δij
k

● Initial random low weights wj
k 

and biases bj
k

● Epoch: processing of the whole 
training set

● Stop criterion: 1) J or gradient 
of J below a threshold; 2) 
maximum of epochs

● Speed μ with intermediate 
values: avoid slowness and 
oscilations

● Select the best among 
different initializations in order 
to avoid falls into local minima 
with high J

● Weight updating  pattern by 
pattern (online): it can avoid 
local minimums and converges 
fasterBach processing
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Enhancements over 
backpropagation (I)

● Preprocessing: inputs using 0 mean and the same variance 
as the activation range f(t).

● Symmetrical activation (tanh) instead of the sigmoid 
function.

● Moment (   ): inertia in the learning:

Δw j
k(t+1)=αΔw j

k(t )−μ∑
i=1

N

δij
k hi

k−1

t=iteration; α∈[0.7-0.95]; Δwj
k reduce aprox. in 1-α

α
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Enhancements over 
backpropagation (II)

● RMSProp (root mean square propagation): use a second 
order moment instead of first order moment; η,β: hyper-
parameters

Sw=0;Sb=0
for epoch=1:nepoch

calculate Δw and Δb
Sw=βSw+(1-β)|Δw|2;Sb=βSb+(1-β)Δb2

endfor

w (t+1)=w (t )− ηΔ w
ε+√Sw

;b(t+1)=b (t )− ηΔb
ε+√Sb

Use the squared 
gradient to scale the
learning speed.

epoch=presentation of 
training set



Artificial Neural Networks Eva Cernadas 18

Enhancements over 
backpropagation (III)

● Adaptive learning speed: μ(t=0)∈[0.03-0.1]

– μ(t+1)=(1+εi)μ(t) if J(t+1)<J(t)

– μ(t+1)=(1-εd)μ(t) and a=0 if J(t+1)>(1+εc)J(t), with 
εi=0.05, εd=0.3 e εc=0.04

● Speed reduction: t=epoch; μ0,β,k: hyper-parameters

μ(t )=
μ0
1+t β μ(t )=0.95tμ0 μ(t )=

kμ0
√t
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Enhancements over 
backpropagation (IV)

● Different speed for each weight: increase μ when the 
gradient of that weight has the same sign in two iteractions. 

● Desired outputs yij corresponding with activation function  
(sigmoid or hyperbolic).

● If yij∈[0,1], they can be seen as probabilities and cross entropy 
can be used as cost function instead of SSE:

J=−∑
i=1

N

∑
j=1

IH

[ y ij ln hijH+(1− y ij) ln (1−hijH)]
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Enhancements over 
backpropagation (V)

● Karhunen-Loewe divergence  or relative entropy, using 
softmax activation function for the output, can also be used as a 
cost function:

● The number H of layers and neurons Ik in each layer k=1..H must 
be decided: tunable hyper-parameter

● With many neurons (and weights wj
k, that are trainable 

parameters), produces overfitting.

hij
H= ea ij

H

∑
l=1

I H

ea il
HJ=−∑

i=1

N

∑
j=1

IH

y ij ln
hij
H

y ij
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Enhancements over 
backpropagation (VI)

● In practice, it was demostrated that backpropagation did not 
provide good solutions using various hidden layers. 

● It was demostrated Mathematically that ANN with only one 
hidden layer is a universal approximator of any function. 

● But this affects the training error, not test error: overfitting

● Number of neurons by layer: start with many neurons and 
use regularization to remove the less informative weights 
(pruning).
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Enhancements over 
backpropagation (VII)

● Weight reduction: use J’(W)=J(W)+λ|W|2 regularizated by 
the squared norm of the weight matrix W={wj

k}, k=1..H, 
j=1..Ik

● Alternative to |W|2: 

being θl the lth weight (l=1..Nw) and  θh the threshold: removes 
the weights θl<θh 

∑
l=1

N w θl
2

θh
2+θl

2
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Enhancements over 
backpropagation (VIII)

● Sensitivity analysis: the weights θl with low saliency sl=hllθl
2/2 

are periodically removed. hll measures the effect over J of removing 
θl):

● Early stopping: each epoch, the network is tested over a 
separated validation set

● Training is stopped when the validation error starts to 
increase (overfitting).

hl l=
∂2 J
∂θl

2
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Enhancements over 
backpropagation (IX)

● Shared weights: some conections are enforced to share 
weight values to guarantee certain in-variances (ex: 
translation, rotation and  scale in images).

● Alternative: to use input features which are invariants to 
these transformations. 
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Limitations of MLP (I)
● Slow training, stucking in non-optimal local minima, most 

frequently with several hidden layers 

● Many tunable hyper-parameters: number of hidden layers 
(H), number of neurons in each layer (I1..IH), learning speed 
(μ), momentum (α), etc.

● For some time, the multilayer networks (H>2) were 
discarded instead of one hidden layer (H=2) networks, that 
are universal approximators. 
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Limitations of MLP (II)
● However, the neurons required with one layer is higher than 

with various layers

● Backpropagation is based on f’(aij
k+1), where f is sigmoid or 

tanh and exhibits null derivative in most its domain

● This leads to null gradients stopping training and generating 
many problems. 
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MLP in Python  
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MLP in octave
● Package nnet in octave: https://octave.sourceforge.io/nnet/

– prestd(): preprocesses the data so that the mean is 0 and 
the standard deviation is 1. 

– trastd(): preprocess additional data for neural network 
simulation (for example the test set).

– newff(): create a feed-forward backpropagation network.

– train(): a neural feed-forward network will be trained. 

– sim(): is usuable to simulate a before defined and trained 
neural network.

● Similar functions in the Matlab Neural Network Toolbox

https://octave.sourceforge.io/nnet/
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MLP in R
● Package nnet in R: https://cran.r-project.org/web/packages/nnet/index.html  

https://cran.r-project.org/web/packages/nnet/index.html
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Extreme Learning Machine (ELM)
● Network with H=2 layers: only one hidden layer, direct propagation

● Input weights W1={wjk
1} and biases {bj}, with j=1..I1 and k=1..n, 

initialized with random values.

● Output weights W2={wjk
2} and biases {bj}, with j=1..I2 (I2=C, no. 

classes, for classification) and k=1..I1
● W2 calculated using the pseudo inverse of activity matrix H and 

the desired outputs Y as W2=Y H†: direct and efficient for small 
datasets and networks

● W2=(I2 x I1), Y=(I2 x N), H=(I1 x N), H†=(N x I1)
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Extreme Learning Machine (II)
● It was proved that training error converges to zero when I1→N 

● The activation function for the output layer is linear (for 
regression) or sigmoid+softmax (for classification):

● The number I1 of hidden neurons is a tunable hyper-
parameter, with best values lower than the number N of 
training patterns

zij=w jl
2 f (∑

m=1

n

w lm
1 x im+b j

1) i=1,…N ; j=1…I2

zij=
ehij

2

∑
k=1

I 2

ehkj
2hij

2=f [w jl
2 f (∑

m=1

n

w lm
1 xi m+bl

1)+b j2]
Linear

activation:

Sigmoid+
softmax

activation:
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Quick ELM (I)
● Problems of ELM with large datasets:

– The activity H matrix is of order I1 x N. With large 
datasets, it does not fit in memory

– If H fits in memory, calculation of H† is not possible
– Tuning of hidden layer size I1 requires to repeat 

training many times, that is not possible
● Solution: Quick ELM

– Quick extreme learning machine for large-scale 
classification. Audi Albtoush, Manuel Fernández-
Delgado, Eva Cernadas and Senén Barro. Neural 
Computing and Applications, Vol. 34, pp. 5923–5938 
(2022). DOI: 10.1007/s00521-021-06727-8

https://link.springer.com/article/10.1007/s00521-021-06727-8
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Quick ELM (II)

● Quick ELM: efficient approach for classification
1)Avoids tuning of I1 by estimating it from N
2)Bounds the size of matrix H for large datasets
3)Replaces patterns by prototypes to calculate H

● Works on datasets with 31 million patterns, 30,000 inputs 
and 130 classes

● Estimation of I1:
I1=⌊ηmin(N,N0)⌋,   η=0.15, N0=15000
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Quick ELM (III)
● Based on behavior of performance vs I1 / N
● The optimal I1 is 

increasing with N
● Performance reduces

when I1 → N
● Overtraining
● Empirically, we

observed that I1
about 0.15N is
a good choice

● Upper bounded by N0

Train error

Test error
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Quick ELM (IV)
● Replaces xn by pcl (prototype) for Hkn=g(wk

1xn+bk) in matrix H
● Limited collection of prototypes {pcl} with c=1..C, l=1..Lc

● The maximum number Lc of prototypes per class depends on 
the class population Nc, with Lc<100

● The total number of prototypes is bounded to allow H fits in 
memory and be pseudo-inverted

● Each prototype pcl is iteratively updated with its nearest 
training patterns of its class c:

Ncl(t): no. training patterns nearest to l-th prototype of class c

pcl(t+1)=[1− 1
N cl(t ) ] pcl(t )+ xn

N cl(t )

c= yn

l= argmin
j=1.. Lc

{|pcj−xn|}

N cl(t+1)=N cl(t )+1
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Other neural networks
● Radial Basis Function (RBF) neural network
● Recursive networks: with feedback from outputs to 

inputs
● Self-Organized Map (SOM): non-supervised learning
● Learning vector quantization (LVQ): SOM with 

supervised learning 
● Boltzmann machine
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Deep Learning
● Networks with many hidden layers:

– Deep neural network (DNN)

– Deep belief network (DBN)

– Convolutional neural network (CNN)

– Deep autoencoder network (DAN)

● Non-supervised pre-training for each layer separately: restricted 
Boltzman machine (RBM). Unsupervised. Locates the starting weights in 
areas of the weight space with good solutions

● Supervised training of the output weights

● Fine training of intermediate and output weights using back-propagation
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