
International Master in
Computer Vision

Fundamentals of machine

learning for computer vision

Eva Cernadas

Artificial Neural Networks Eva Cernadas 2

Contents
Machine learning theory (Dr. Jaime Cardoso)

Linear regression and optimization (Dr. Jaime Cardoso)

Clustering

Model selection and evaluation

Classical classification models

Artificial neural networks

Support vector machines (SVM)

Ensembles: bagging, boosting and random forest

Artificial Neural Networks Eva Cernadas 3

Artificial neural networks
● ANN: Artificial Neural Networks

● Neural network: combination of local processing units (neurons)

● Neuron: simple processing unit of various inputs and one output.

● Input connections with weights for each input.

● The output is determined by activation functions from the inputs and
weights.

● The weights are persistent: they are the memory of the neural net.

● The weights are calculated to approximate n-dimensional functions.

● The neurons are grouped in layers: multi-layers networks: input, hidden
(one or various) and output layers.

Artificial Neural Networks Eva Cernadas 4

Neural network
● The term ANN are normally used to multi-layer perceptron

(MLP).

● There are supervised and unsupervised neural networks.

● Supervised training: weights are calculated using training
patterns and true outputs.

● Test pattern propagates through the net to calculate the output.

● The network performance is evaluated comparing true and
predicted output using the previous measurements

● ANN may exhibit overfitting

Artificial Neural Networks Eva Cernadas 5

Perceptron (I)
● One neuron with n inputs and one output, binary activation

function (0,1), e.g. binary classification:

● Need a threshold b (for example b=0.5) to calculate the
output (-1 or 1). Varying b, a ROC curve is generated.

● Connection weights w1...wn : iteratively calculated

● A differential function f(t) may also be used

z(x)=f (∑
i=1

n

wi xi−b)=f (wT x−b)Σ

x1

xi

xn

z
w1wi

wn

...
.

...
. b f (t)={ 1 t≥0

−1 t<0 }
Step activation function

Artificial Neural Networks Eva Cernadas 6

Perceptron (II)
● Gradient descent (training algorithm): searches to minimize

the difference between the desired (y) and predicted (z)
outputs, summed over the training set, is the learning
speed

● If the data are linearly separable, this iterative training finds
the separating hyperplane (w,b) for what yi zi>0 for i=1..N.

w (t+1)=w (t)+μ∑
i=1

N

(y i−zi) f ' (w
T xi−b)xi

Note that yi-zi∈{0,1}

J=∑
i=1

N

(yi−z i)
2; w (t+1)=w (t)−μ ∂J

∂w
; ∂J

∂w
=−∑

i=1

N

(y i−zi) f ' (w
T xi−b)xi

Artificial Neural Networks Eva Cernadas 7

Perceptron (III)

f (t)=σ(t)= 1
1+e−at

Logistic sigmoid
function: 0,1

f (t)=tanh at= e
−at−eat

eat+e−at

Hyperbolic tangent
function: 1

● Soft activation function f: sigmoid or hyperbolic tangent:

Artificial Neural Networks Eva Cernadas 8

Kernel perceptron
● Kernel perceptron: linear classification

in the multi-dimensional projected hidden space (f :
step function) mapped by Φ(x):

● Initially, ai=0, i=1..N; ai=ai+1 if yi zi<0 (misclassified
patted) until that yi zi>0 (pattern correctly classified) for
i=1,...N

● For datasets that are not linearly separable.

w=∑
i=1

N

ai y iΦ⃗ (xi) b=∑
i=1

N

ai y i

z=f (wT Φ⃗(x)+b)

Artificial Neural Networks Eva Cernadas 9

Multi-layer neural network (MLP)
● Each neuron is a linear classifier of the input space (hyperplane).

● Divides the space in two subspaces with outputs 0,1 (sigmoid
function) or 1 (hiperbolic function).

● Joining various neurons into one layer, divides the space into
regions with piecewise linear borders (surfaces).

Artificial Neural Networks Eva Cernadas 10

Multi-layer Layer Perceptron
● Hidden layer: sigmoidal/tanh

activation function
● Output layer: step activation

for clasificación, linear for
regression

● We need: training set, cost
function, and derivable
activation

● wj
k: weight vector of neuron j=1..Ik in layer k=1..H

● aij
k=(wj

k)Thi
k-1+bj

k , i=1..N (pattern), k=1..H (layer), j=1..Ik (neuron)
● hi

k-1: output of layer k-1 (Ik-1 values) for pattern xi

● hi
k: output of layer k for pattern xi: hij

k=f(aij
k) with j=1..Ik

● yij =true output for j-th output neuron and training pattern xi

1

I1

1

IH-1

1

IH

x1

x1

xn-1

xn

...
.

Input
pattern

1st hidden
layer

(H-1)st hidden
layer

...
.

Output
layer (Hst)

z1

zM...
...

...
...

...
..

....

Artificial Neural Networks Eva Cernadas 11

Backpropagation (I)
● Gradient descent:

● Sum J of squared errors (SSE) Ji evaluated on output
layer for the i pattern:

● The derivative is:

Δw j
k=−μ ∂J

∂w j
k ,Δb j

k=−μ ∂ J
∂b j

k , k=1 ,…, H , j=1 ,…, I k

J i=
1
2∑j=1

IH

(y ij−hijH)2=|yi−hi
H|2

2

∂ J i
∂w j

k=
∂ J i
∂aij

k

∂ aij
k

∂w j
k ,

∂ J i
∂b j

k=
∂ J i
∂aij

k

∂aij
k

∂b j
k

J=∑
i=1

N

J i

Artificial Neural Networks Eva Cernadas 12

Backpropagation (II)
● Define:

● Thus:

● So:

δij
k≡

∂J i
∂aij

k

∂aij
k

∂w j
k=hi

k−1 ,
∂ aij

k

∂b j
k=1

Δw j
k=−μ∑

i=1

N

δij
k hi

k−1;Δb j
k=−μ∑

i=1

N

δij
k

ak
ij=(wk

j)Thi
k-1+bk

j

Artificial Neural Networks Eva Cernadas 13

Backpropagation (III)
● For the output layer (k=H):

● For the layer k<H:

δij
H=(y ij−hij

H) f ' (aij
H)=εij

H f ' (aij
H)

Δw j
k=−μ∑

i=1

N

εij
H f ' (aij

H)hij
k−1

hij
k=f(aij

k)

Δ b j
k=−μ∑

i=1

N

εij
H f ' (aij

H)

δij
k=

∂ J i
∂aij

k=∑
l=1

I k+1 ∂ J i
∂ail

k+1

∂ail
k+1

∂aij
k =∑

l=1

I k+1

δil
k+1 ∂ail

k+1

∂aij
k

J i=
1
2∑j=1

IH

(y ij−hijH)2δij
k≡

∂J i
∂aij

k

Artificial Neural Networks Eva Cernadas 14

Backpropagation (IV)
● Since ail

k+1=(wl
k+1)Thi

k+bl
k+1 and hij

k=f(aij
k), then:

● So δij
k is a recursive function depending on δij

k+1 and
wl

k+1:

● Denoting , we obtain:
● The derivatives are, respectively, f’(t)=af(t)[1-f(t)] and

f ’(t)=a[1-f 2(t)] for sigmoid and tanh activation functions.

∂ail
k+1

∂aij
k =wlj

k+1 f ' (aij
k)ail

k+1=∑
m=1

I k

wlm
k+1 f (aim

k)+bl
k+1

δij
k=∑

l=1

I k+1

δil
k+1wlj

k+1 f ' (aij
k)=f ' (aij

k)∑
l=1

I k+1

δil
k+1w lj

k+1 , k=K−1,… ,1

εij
k=∑

l=1

I k+1

δil
k+1w lj

k+1 δij
k=εij

k f ' (aij
k)

Artificial Neural Networks Eva Cernadas 15

Backpropagation (V)
repeat # epoch loop

for i=1:N
for k=1:H # direct pattern propagation

for j=1:Ik
aij

k=(wj
k)Thi

k-1+bj
k; hij

k=f(aij
k)

endfor
endfor
for j=1:IH

εij
H=yij-hij

H; δij
H=εij

H f ’(aij
H)

endfor
for k=H-1:-1:1 # error backpropagation

for j=1:Ik
 ; δij

k=εij
k f ’(aij

k+1)
endfor

endfor
endfor
for k=1:H # weight updating

for j=1:Ik

wj
k=wj

k+Δwj
k; bj

k=bj
k+Δbj

k

endfor
endfor

until stop criterion

εij
k=∑

l=1

I k+1

δil
k +1wlj

k+1

Δw j
k=−μ∑

i=1

N

δij
k hi

k−1 ;Δb j
k=−μ∑

i=1

N

δij
k

● Initial random low weights wj
k

and biases bj
k

● Epoch: processing of the whole
training set

● Stop criterion: 1) J or gradient
of J below a threshold; 2)
maximum of epochs

● Speed μ with intermediate
values: avoid slowness and
oscilations

● Select the best among
different initializations in order
to avoid falls into local minima
with high J

● Weight updating pattern by
pattern (online): it can avoid
local minimums and converges
fasterBach processing

Artificial Neural Networks Eva Cernadas 16

Enhancements over
backpropagation (I)

● Preprocessing: inputs using 0 mean and the same variance
as the activation range f(t).

● Symmetrical activation (tanh) instead of the sigmoid
function.

● Moment (): inertia in the learning:

Δw j
k(t+1)=αΔw j

k(t)−μ∑
i=1

N

δij
k hi

k−1

t=iteration; α∈[0.7-0.95]; Δwj
k reduce aprox. in 1-α

α

Artificial Neural Networks Eva Cernadas 17

Enhancements over
backpropagation (II)

● RMSProp (root mean square propagation): use a second
order moment instead of first order moment; η,β: hyper-
parameters

Sw=0;Sb=0
for epoch=1:nepoch

calculate Δw and Δb
Sw=βSw+(1-β)|Δw|2;Sb=βSb+(1-β)Δb2

endfor

w (t+1)=w (t)− ηΔ w
ε+√Sw

;b(t+1)=b (t)− ηΔb
ε+√Sb

Use the squared
gradient to scale the
learning speed.

epoch=presentation of
training set

Artificial Neural Networks Eva Cernadas 18

Enhancements over
backpropagation (III)

● Adaptive learning speed: μ(t=0)∈[0.03-0.1]

– μ(t+1)=(1+εi)μ(t) if J(t+1)<J(t)

– μ(t+1)=(1-εd)μ(t) and a=0 if J(t+1)>(1+εc)J(t), with
εi=0.05, εd=0.3 e εc=0.04

● Speed reduction: t=epoch; μ0,β,k: hyper-parameters

μ(t)=
μ0
1+t β μ(t)=0.95tμ0 μ(t)=

kμ0
√t

Artificial Neural Networks Eva Cernadas 19

Enhancements over
backpropagation (IV)

● Different speed for each weight: increase μ when the
gradient of that weight has the same sign in two iteractions.

● Desired outputs yij corresponding with activation function
(sigmoid or hyperbolic).

● If yij∈[0,1], they can be seen as probabilities and cross entropy
can be used as cost function instead of SSE:

J=−∑
i=1

N

∑
j=1

IH

[y ij ln hijH+(1− y ij) ln (1−hijH)]

Artificial Neural Networks Eva Cernadas 20

Enhancements over
backpropagation (V)

● Karhunen-Loewe divergence or relative entropy, using
softmax activation function for the output, can also be used as a
cost function:

● The number H of layers and neurons Ik in each layer k=1..H must
be decided: tunable hyper-parameter

● With many neurons (and weights wj
k, that are trainable

parameters), produces overfitting.

hij
H= ea ij

H

∑
l=1

I H

ea il
HJ=−∑

i=1

N

∑
j=1

IH

y ij ln
hij
H

y ij

Artificial Neural Networks Eva Cernadas 21

Enhancements over
backpropagation (VI)

● In practice, it was demostrated that backpropagation did not
provide good solutions using various hidden layers.

● It was demostrated Mathematically that ANN with only one
hidden layer is a universal approximator of any function.

● But this affects the training error, not test error: overfitting

● Number of neurons by layer: start with many neurons and
use regularization to remove the less informative weights
(pruning).

Artificial Neural Networks Eva Cernadas 22

Enhancements over
backpropagation (VII)

● Weight reduction: use J’(W)=J(W)+λ|W|2 regularizated by
the squared norm of the weight matrix W={wj

k}, k=1..H,
j=1..Ik

● Alternative to |W|2:

being θl the lth weight (l=1..Nw) and θh the threshold: removes
the weights θl<θh

∑
l=1

N w θl
2

θh
2+θl

2

Artificial Neural Networks Eva Cernadas 23

Enhancements over
backpropagation (VIII)

● Sensitivity analysis: the weights θl with low saliency sl=hllθl
2/2

are periodically removed. hll measures the effect over J of removing
θl):

● Early stopping: each epoch, the network is tested over a
separated validation set

● Training is stopped when the validation error starts to
increase (overfitting).

hl l=
∂2 J
∂θl

2

Artificial Neural Networks Eva Cernadas 24

Enhancements over
backpropagation (IX)

● Shared weights: some conections are enforced to share
weight values to guarantee certain in-variances (ex:
translation, rotation and scale in images).

● Alternative: to use input features which are invariants to
these transformations.

Artificial Neural Networks Eva Cernadas 25

Limitations of MLP (I)
● Slow training, stucking in non-optimal local minima, most

frequently with several hidden layers

● Many tunable hyper-parameters: number of hidden layers
(H), number of neurons in each layer (I1..IH), learning speed
(μ), momentum (α), etc.

● For some time, the multilayer networks (H>2) were
discarded instead of one hidden layer (H=2) networks, that
are universal approximators.

Artificial Neural Networks Eva Cernadas 26

Limitations of MLP (II)
● However, the neurons required with one layer is higher than

with various layers

● Backpropagation is based on f’(aij
k+1), where f is sigmoid or

tanh and exhibits null derivative in most its domain

● This leads to null gradients stopping training and generating
many problems.

Artificial Neural Networks Eva Cernadas 27

MLP in Python

Artificial Neural Networks Eva Cernadas 28

MLP in octave
● Package nnet in octave: https://octave.sourceforge.io/nnet/

– prestd(): preprocesses the data so that the mean is 0 and
the standard deviation is 1.

– trastd(): preprocess additional data for neural network
simulation (for example the test set).

– newff(): create a feed-forward backpropagation network.

– train(): a neural feed-forward network will be trained.

– sim(): is usuable to simulate a before defined and trained
neural network.

● Similar functions in the Matlab Neural Network Toolbox

https://octave.sourceforge.io/nnet/

Artificial Neural Networks Eva Cernadas 29

MLP in R
● Package nnet in R: https://cran.r-project.org/web/packages/nnet/index.html

https://cran.r-project.org/web/packages/nnet/index.html

Artificial Neural Networks Eva Cernadas 30

Extreme Learning Machine (ELM)
● Network with H=2 layers: only one hidden layer, direct propagation

● Input weights W1={wjk
1} and biases {bj}, with j=1..I1 and k=1..n,

initialized with random values.

● Output weights W2={wjk
2} and biases {bj}, with j=1..I2 (I2=C, no.

classes, for classification) and k=1..I1
● W2 calculated using the pseudo inverse of activity matrix H and

the desired outputs Y as W2=Y H†: direct and efficient for small
datasets and networks

● W2=(I2 x I1), Y=(I2 x N), H=(I1 x N), H†=(N x I1)

Artificial Neural Networks Eva Cernadas 31

Extreme Learning Machine (II)
● It was proved that training error converges to zero when I1→N

● The activation function for the output layer is linear (for
regression) or sigmoid+softmax (for classification):

● The number I1 of hidden neurons is a tunable hyper-
parameter, with best values lower than the number N of
training patterns

zij=w jl
2 f (∑

m=1

n

w lm
1 x im+b j

1) i=1,…N ; j=1…I2

zij=
ehij

2

∑
k=1

I 2

ehkj
2hij

2=f [w jl
2 f (∑

m=1

n

w lm
1 xi m+bl

1)+b j2]
Linear

activation:

Sigmoid+
softmax

activation:

Artificial Neural Networks Eva Cernadas 32

Quick ELM (I)
● Problems of ELM with large datasets:

– The activity H matrix is of order I1 x N. With large
datasets, it does not fit in memory

– If H fits in memory, calculation of H† is not possible
– Tuning of hidden layer size I1 requires to repeat

training many times, that is not possible
● Solution: Quick ELM

– Quick extreme learning machine for large-scale
classification. Audi Albtoush, Manuel Fernández-
Delgado, Eva Cernadas and Senén Barro. Neural
Computing and Applications, Vol. 34, pp. 5923–5938
(2022). DOI: 10.1007/s00521-021-06727-8

https://link.springer.com/article/10.1007/s00521-021-06727-8

Artificial Neural Networks Eva Cernadas 33

Quick ELM (II)

● Quick ELM: efficient approach for classification
1)Avoids tuning of I1 by estimating it from N
2)Bounds the size of matrix H for large datasets
3)Replaces patterns by prototypes to calculate H

● Works on datasets with 31 million patterns, 30,000 inputs
and 130 classes

● Estimation of I1:
I1=⌊ηmin(N,N0)⌋, η=0.15, N0=15000

Artificial Neural Networks Eva Cernadas 34

Quick ELM (III)
● Based on behavior of performance vs I1 / N
● The optimal I1 is

increasing with N
● Performance reduces

when I1 → N
● Overtraining
● Empirically, we

observed that I1
about 0.15N is
a good choice

● Upper bounded by N0

Train error

Test error

Artificial Neural Networks Eva Cernadas 35

Quick ELM (IV)
● Replaces xn by pcl (prototype) for Hkn=g(wk

1xn+bk) in matrix H
● Limited collection of prototypes {pcl} with c=1..C, l=1..Lc

● The maximum number Lc of prototypes per class depends on
the class population Nc, with Lc<100

● The total number of prototypes is bounded to allow H fits in
memory and be pseudo-inverted

● Each prototype pcl is iteratively updated with its nearest
training patterns of its class c:

Ncl(t): no. training patterns nearest to l-th prototype of class c

pcl(t+1)=[1− 1
N cl(t)] pcl(t)+ xn

N cl(t)

c= yn

l= argmin
j=1.. Lc

{|pcj−xn|}

N cl(t+1)=N cl(t)+1

Artificial Neural Networks Eva Cernadas 36

Other neural networks
● Radial Basis Function (RBF) neural network
● Recursive networks: with feedback from outputs to

inputs
● Self-Organized Map (SOM): non-supervised learning
● Learning vector quantization (LVQ): SOM with

supervised learning
● Boltzmann machine

Artificial Neural Networks Eva Cernadas 37

Deep Learning
● Networks with many hidden layers:

– Deep neural network (DNN)

– Deep belief network (DBN)

– Convolutional neural network (CNN)

– Deep autoencoder network (DAN)

● Non-supervised pre-training for each layer separately: restricted
Boltzman machine (RBM). Unsupervised. Locates the starting weights in
areas of the weight space with good solutions

● Supervised training of the output weights

● Fine training of intermediate and output weights using back-propagation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

