International Master in Computer Vision

Fundamentals of machine

learning for computer vision

Eva Cernadas

Contents

- **Machine learning theory (Dr. Jaime Cardoso)**
- **Linear regression and optimization (Dr. Jaime Cardoso)**
- **Clustering**
- **Model selection and evaluation** \mathcal{L}
- **Classical classification models**
- **Artificial neural networks**
- **Support vector machines (SVM)**
- **Ensembles: bagging, boosting and random forest** \mathcal{L}

Linear Discriminant Analysis **2** and 2 and

Linear Discriminant Analysis

- **LDA: linear discriminant analysis**, 2 classes
- Projects to a one-dimensional space $y = w^T x$ that:

1)Maximizes the separation between the projected means of both classes: $m_i = \mathbf{w}^T \mathbf{m}_i$ with $i = 1, 2$ $m_i =$ 1 *Ni* ∑ $y_j = i$ *x j*

2)Minimizes the separation among patterns within a class

• Separation measure within a class: sum of squared distance between pattern and class mean

$$
s_i^2 = \sum_{y_j=i} (y_j - m_i)^2 = \sum_{y_j=i} (\boldsymbol{w}^T \boldsymbol{x}_j - \boldsymbol{w}^T \boldsymbol{m}_i)^2, i = 1, 2
$$

Linear Discriminant Analysis
projection
projection
projection

LDA 2 classes

- Separation measure between classes: $(m_1-m_2)^2$
- Fisher criterion: $J(w)$ = $(m_1 - m_2)^2$
- Substituting m_i and s_i vs. \boldsymbol{w} : $s_1^2 + s_2^2$ $J(\mathbf{w})=$ $\boldsymbol{w}^T\boldsymbol{S}_{B}\boldsymbol{w}$ $\boldsymbol{w}^T\boldsymbol{S}_{W}\boldsymbol{w}$ Rayleigh quotient
- $\mathbf{S}_{\scriptscriptstyle{B}}$: covariance matrix between classes

$$
\boldsymbol{S}_{B} = (\boldsymbol{m}_{2} - \boldsymbol{m}_{1})(\boldsymbol{m}_{2} - \boldsymbol{m}_{1})^{T} \quad \boldsymbol{S}_{W} = \sum_{i=1}^{2} \sum_{y_{j}=i} (\boldsymbol{x}_{j} - \boldsymbol{m}_{i})(\boldsymbol{x}_{j} - \boldsymbol{m}_{i})^{T}
$$

• \mathbf{S}_w : sum of *within* class covariance matrices

 $\mathbf{S}_{\scriptscriptstyle{B}}$ and $\mathbf{S}_{\scriptscriptstyle{W}}$: squared matrices of size n

LDA 2 classes

• For maximizing $J(\mathbf{w})$, require $\nabla J(\mathbf{w}) = \mathbf{0}$, leading to:

$$
(\boldsymbol{w}^T\,\boldsymbol{S}_{\boldsymbol{B}}\boldsymbol{w})\boldsymbol{S}_{\boldsymbol{W}}\boldsymbol{w}\!=\!(\boldsymbol{w}^T\boldsymbol{S}_{\boldsymbol{W}}\boldsymbol{w})\boldsymbol{S}_{\boldsymbol{B}}\boldsymbol{w}
$$

• Since $S_{B}w=(m_{2}-m_{1})(m_{2}-m_{1})^{T}w$, while $(m_{2}-m_{1})^{T}w$, $w^T S_{\mu} w$ and $w^T S_{\mu} w$ are scalars we achieve that, $\mathbf{S}_{w} \mathbf{w} \propto (\mathbf{m}_{2} \text{-} \mathbf{m}_{1})$ and:

$$
\mathbf{w} \propto \mathbf{S}_{W}^{-1}(\mathbf{m}_{2}^{-}\mathbf{m}_{1})
$$

- Classification: $z(x) = sign(w^T x b)$: b is the threshold
- Assuming that S_W^{-1} exists: $b=$ $\mathbf{w}^T(\mathbf{m}_1 + \mathbf{m}_2)$ 2
- Projects to R: $y=-1$ (resp. $+1$) for patterns of class 1 (resp. 2): $D=C-1$: dimensionality of mapped space

Linear Discriminant Analysis **Eva Cernadas** 5

LDA multiclass (I)

- With n>C>2 classes, $y_i = Wx_i$ ∈R^D, with W of degree Dxn
- Projects to a D-dimensional space, with $D=C-1\leq n$.
- The total covariance is:

$$
\mathbf{S}_{T} = \sum_{i=1}^{C} (\mathbf{x}_{i} - \mathbf{m})(\mathbf{x}_{i} - \mathbf{m})^{T} \qquad \qquad \mathbf{m} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} = \frac{1}{N} \sum_{i=1}^{C} N_{i} \mathbf{m}_{i}
$$

where N_i is the number of patterns of class i

• Considering that $\mathbf{S}_{\tau} = \mathbf{S}_{\text{\tiny B}} + \mathbf{S}_{\text{\tiny W}}$

$$
\mathbf{S}_{B} = \sum_{i=1}^{C} N_i (\mathbf{m}_i - \mathbf{m})(\mathbf{m}_i - \mathbf{m})^T \qquad \qquad \mathbf{S}_{W} = \sum_{i=1}^{C} \sum_{y_j=i} (\mathbf{x}_j - \mathbf{m}_i)(\mathbf{x}_j - \mathbf{m}_i)^T
$$

Linear Discriminant Analysis **Eva Cernadas** 6

LDA multiclass (II)

• In the \mathbb{R}^D *space*, the matrices S^D_{B} and S^D_{W} are:

$$
\boldsymbol{S}_{B}^{D} = \sum_{i=1}^{C} N_{i} (\boldsymbol{y}_{i} - \boldsymbol{\mu}) (\boldsymbol{y}_{i} - \boldsymbol{\mu})^{T} \quad \boldsymbol{S}_{W}^{D} = \sum_{i=1}^{C} \sum_{y_{j}=i} (\boldsymbol{y}_{j} - \boldsymbol{\mu}_{i}) (\boldsymbol{y}_{j} - \boldsymbol{\mu}_{i})^{T} \quad \boldsymbol{\mu}_{i} = \frac{1}{N_{i}} \sum_{y_{j}=i} \boldsymbol{y}_{i}
$$

• Fisher criterion: $J(W)$ =Trace $(S_W^{-1}S_B)$ Covariance matrices In the original n-dim. space

● The Dxn matrix **W** maximizing J(**W**) contains the D principal eigenvectors (i.e. associated to the highest D eigenvalues) of $\mathbf{S}_{\scriptscriptstyle{W}}^{-1}\mathbf{S}_{\scriptscriptstyle{B}}$

LDA multiclass (III)

- *range*(S_B)≤C-1, because S_B is the sum of C matrices of range 1 (each one is the outer product of 2 vectors)
- $\mathbf{S}_{\scriptscriptstyle{B}}$ has a maximum of $\,$ C-1 non-zero eigenvalues
- The projection to a $(C-1)$ -dimensional space does not modify J(**W**)
- The $(C-1)$ -dimensional space generated by the $C-1$ principal eigenvectors keeps much information of the original space.
- The LDA reduces the dimensionality from n to $D=C-1$

LDA in Octave for dimensionality reduction

- Projects to a D -dimensional space $(D=C-1<\n_n)$
- With $C=2$ classes, D must be 1.
- If $n < D$, LDA can not be applied.
- \cdot v=eigenvector matrix; l=diagonal matrix with eigenvalues
- Descending order of eigenvalues to select the most important eigenvectors

```
D = input('D?');
x =load('datos.dat'); n =size(x,2);
if n < D; error('D>n'); end
y=x (:, n); x (:, n) = [];
C = numel(numique(y));St=cov(x); Si=zeros(n);for i=1:0j = find(y == i); n = numel(j);
    Si = Si + ni * cov(x(j,:)) / C;end
Se=St-Si; m=min(C-1,D);
[v, l] = eig(Se, Si);[1, i]=sort(diag(l),'descend');
w=v(:,l(1:m));V = X^*W:
```
LDA classification

- Test pattern **x** mapped to ℝ^D: **y**=**Wx**
- Bayes rule applied to **y**: the predicted class z is the one with the mean μ_z , scaled by its covariance Σ_z , nearest to y in R^D, weighted by its relative population N z

$$
z(\mathbf{x}) = \underset{k=1..C}{argmax} \left(\frac{N_k P_k(\mathbf{y})}{\sum_{l=1}^{C} N_l P_l(\mathbf{y})} \right)
$$

$$
P_k(\mathbf{y}) = \frac{1}{(2\pi)^{D/2} |\Sigma_k|^{1/2}} \exp \left(\frac{-1}{2} (\mathbf{y} - \vec{\mu}_k) \Sigma_k^{-1} (\mathbf{y} - \vec{\mu}_k) \right), \mathbf{y} = \mathbf{W} \mathbf{x}
$$

• Probabilistic nearest mean classifier in \mathbb{R}^D

Linear Discriminant Analysis **Eva Cernadas** Eva Cernadas and the setting of the setting of the setting of the set

UF2DC: ultra fast 2D classifier

- It is a the two-dimensional visual map classifier and regressor.
- Map high dimensional problems to 2D using LDA.
- The class contours in 2D is defined using the training patterns in the projected space.
- A test pattern **x** is assigned to the class associated in the projected space.

UF2DC: ultra fast 2D classifier

• Published in:

Neural Processing Letters (2023) 55:5377-5400 https://doi.org/10.1007/s11063-022-11090-3

Ultra Fast Classification and Regression of High-Dimensional Problems Projected on 2D

Heba Alateyat¹ · Manuel Fernández-Delgado¹ D · Eva Cernadas¹ · Senén Barro¹

 \bullet The code is available in:

[https://persoal.citius.usc.es/manuel.fernandez.delgado/papers/uf2d](https://persoal.citius.usc.es/manuel.fernandez.delgado/papers/uf2dcr/) [cr/](https://persoal.citius.usc.es/manuel.fernandez.delgado/papers/uf2dcr/)

Linear Discriminant Analysis **Eva Cernadas** Eva Cernadas 22

UF2DC: ultra fast 2D classifier

2D map UF2DC data set synthetic $\overline{2}$ 1.5 \Box \Box $\Box\Box$ $\mathbf{1}$.п \Box \Box 0.5 2nd dimension 1 blue $\overline{}$ 2 red $\mathcal{L}_{\mathcal{A}}$ Ō n^{\square} 3 yellow $\overline{}$ 'n 0 \vec{P} 4 green \mathbf{r} \Box $\begin{array}{c} \n\mathbf{u} \cdot \mathbf{u} \n\end{array}$ п 5 magenta \Box \Box $\mathcal{L}_{\mathcal{A}}$ \Box \Box 6 cyan \blacksquare \Box 모 -0.5 \blacksquare -1 -1.5 $\frac{1}{-2}$ $\frac{1}{-1.5}$ $\frac{-1}{-1}$ $\frac{-0.5}{-0.5}$ 0 0.5 1 1.5 2
13 -1.5 -1 -0.5 Ω 0.5 1.5 $\mathbf{1}$ $\overline{2}$

UF2DR: ultra fast 2D regressor

LDA in Python (I)

• Implemented in sklearn.discriminant analysis

sklearn.discriminant_analysis.Li nearDiscriminantAnalysis

class sklearn.discriminant analysis. LinearDiscriminantAnalysis(*, solver='svd', shrinkage=None, priors=None, n components=None, store covariance=False, tol=0.0001) [source]

Linear Discriminant Analysis

A classifier with a linear decision boundary, generated by fitting class conditional densities to the data and using Bayes' rule.

LDA in Python (II)

- **sklearn.discriminant_analysis.LinearDiscriminant Analysis** object.
- **Fit**() / **predict**() methods for training/testing.

```
from numpy import *
from sklearn.discriminant_analysis import *
from sklearn.metrics import *
tx =loadtxt('training_data.dat');ty=tx[:,0];tx=delete(tx,0,1)
sx =loadtxt('test data.dat');sy=sx[:,0];sx=delete(sx,0,1)
model=LinearDiscriminantAnalysis().fit(tx,ty)
z = model.predict(sx)acc=accuracy_score(y,z)
kappa=cohen kappa score(sy,z)
```
LDA classifier in Matlab

- Function **fitcdiscr**() for training.
- **predict**() for testing.

```
clear all
tx=load('training data.dat');
ty=tx(:,1);tx=tx(:,2:\textbf{end})sx=load('test data.dat');
sys(x; x); s = x(1, 2:end)model = fitediser(tx, ty);z = predict(mod 1, sx)kappa=calcula kappa(sy,z)
```
LDA in R

● Implemented in package **MASS**, function **lda**

Examples

```
Iris \leq data.frame(rbind(iris3[..1], iris3[..2], iris3[..3]),
              Sp = rep(c("s", "c", "v"), rep(50, 3)))train \leq sample(1:150, 75)table(Iris$Sp[train])
## your answer may differ
## c s v
## 22 23 30
z \le 1da(Sp \sim ., Iris, prior = c(1,1,1)/3, subset = train)
predict(z, Iris[-train, ])$class
## [61] v v v v v v v v v v v v v v v
(z1 \le - update(z, \ldots - Petal.W.)
```
Linear Discriminant Analysis **Eva Cernadas** Eva Cernadas 28