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Ensembles
● Algorithms that use several instances of the same base 

classifier. Example: combination of various classification trees.

● The algorithm name (meta-classifier) is provided by the method 
use to combine the classifiers. 

● Example: group of classifiers of the same type trained of a different 
way, with a voting to decide the output. 

● The base classifiers are usually weak: do not work very well, but 
they are simple and their training is fast. 

● The combination of weak classifiers is expected to increase the 
classification quality, developing a strong classifier. 
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Combination of classifiers
● The base classifiers should be diverse: each base classifier should 

learn a different view of the problem, in order to their combination 
will be strong. 

● Diversity among base classifiers is caused by:

– Training initialization: for example, MLPs with different random 
weight initialization. 

– Hyper-parameter tuning: combination of MLPs with different 
number of hidden layers. 

– Training set: different training sets for the base classifiers. 

● The combination algorithms can be applied on different types of 
base classifiers: e.g. bagging of decision trees or KNN. 
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Types of ensembles
● Boosting: the base classifiers are trained on the same 

training set but with different pattern weightings.

– AdaBoost is the most popular boosting 
algorithm

● Bagging: the base classifiers are trained on different 
bootstrap samples of the training set.

– Random Forest (RF) is the most popular 
bagging algorithm that uses random tree base 
classifiers.
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Boosting
● Boosts the quality of base classifiers, which also use 

different pattern weights.  Adaboost (adaptive 
boosting) is the most popular boosting ensemble.

● The training patterns are weighted in a different way for 
each base classifier: 

● Base classifier 1: all patterns have equal weights
● Base classifier 2 to B: each pattern weight is based on 

the errors of previous base classifiers on that pattern. 
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Boosting
● Patterns in which the previous base classifier failed 

increase their weight in order to be well classified by 
the following base classifier. 

● Besides, each base classifier is weighted according to 
its reliability.

● Output of ensemble z(x) is the weighted sum of the 
outputs of the base classifiers in the ensemble.

● Combination of B classifiers: {zb(x,θb)}b=1
B
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Adaboost (I)
● Binary classification y,z(x)∈{1}: zb(x,θb)∈{1}: output 

of the b-th classifier Cb; θb: trainable parameters of Cb

● Cost function to be minimized: J(y,z(x))=e-yz(x): 
when y=z(x), J=e-1 , when y≠z(x), J=e

● The weight wi
b of xi in iteration b is                      for b>1 

and wi
1=1, where ub is:

● Note that ub(xi)=ub-1(xi)+ab zb(xi,θb)

z(x)=sign [∑b=1
B

ab zb(x ,θb)]

wi
b=e− y iub−1(xi)

ub(xi)=∑
k=1

b

ak zk (xi ,θk)
ak is the weight of
base classifier Ck

Output of the first 
b base classifiers



Eva Cernadas 9

Adaboost (II)
● In the b-th iteration (corresponding to base classifier 

Cb), parameters ab and θb are calculated as:

● Replacing ub(xi):

● Keeping a constant, θb is calculated during the training 
of Cb:

(ab ,θb)=
argmin
a ,θ {∑

i=1

N

w i
bexp {− y i [ub−1(xi)+a zb(xi ,θ)]}}

θb=argminθ {∑
i=1

N

w i
bexp [− yia zb(xi ,θ)]}

(ab ,θb)=
argmin
a ,θ {∑

i=1

N

w i
be− yiub(xi)} Select the a and

θ that minimize 
the error.  
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Adaboost (III)
● The previous expression can be reduced to:

where Pb(θ) is the sum of weights of xi patterns with yi 
≠zb(xi,θb), classification errors of ensemble {Cb}k=1

b-1

● Once θb and Pb
m=Pb(θb) are calculated, ab is given by:

θb=argminθ {Pb (θ)} Pb(θ)= ∑
y i≠zb(xi ,θ)

N

wi
b

ab=
argmin
a

{e−a(1−Pbm)+eaPbm }
Evaluates error, increasing with Pb

m
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Adaboost (IV)
● Deriving the expression                                 and equaling to 0:

● As we know θb and ab , the weights wi
b+1 are calculated by:

where Zb is the normalization factor:

● The process goes on to the following base classifier b+1 until b=B.

e−ab(1−Pb
m)+eabPb

m

ab=
1
2
ln
1−Pb

m

Pb
m

w i
b+1=

w i
bexp [− yiab zb(xi ,θb)]

Zb

Zb=∑
i=1

N

w i
b exp [− y iab zb(xi ,θb)]

ab is decreasing with Pb
m

Lower weight for Cb with higher Pb
m
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Adaboost (V)
● The whole adaboost training algorithm with B classifiers is:

wi
1=1, i=1..N

for b=1:B-1
                                    ; θb=argminθ {Pb(θ)} 

                                     ; Pb
m=Pb(θb); Zb=0

for i=1:N
wi

b+1=wi
b exp[-yi ab zb(xi,θb)]; Zb=Zb+wi

b+1

endfor
for i=1:N

wi
b+1=wi

b+1/Zb

endfor
endfor 
Output z of adaboost for test pattern x is: 

z(x)=sign [∑b=1
B

ab zb(x ,θb)]

Pb(θ)= ∑
y i≠zb(xi ,θ)

N

w i
b

Training of the 
b-th base classifier

ab=
1
2
log (1−Pb

m

Pb
m )
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Bagging (I)
● Bootstrap aggregating: several classifiers are trained 

on different training sets of the same size. 
● The patterns of each training set are randomly selected 

using the bootstrap method: selects some training 
patterns several times (repeated) and other patterns 
are not selected. Same size as the original training set.

● The base classifiers are diverse due to different training 
sets. 

● Output: voting among the base classifiers. 
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Bagging (II)
● The base classifiers are normally decision trees. 
● Bootstrap increases the quality of base classifiers by 

reducing variance (less fitting to training data) without 
increasing bias on test patterns.

● The decision trees tend to over fit the training set, but 
the bagging algorithm introduces diversity. 

● So, the ensemble is not so sensible to noisy data and 
compensates the over fitting of the single decision 
trees. 
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Bagging (III)
● Hyper-parameter B (bag size or number of trees). The 

classifier quality is not very sensitive to B when a value 
high enough is provided.  Tuning is often not required.

● E.g.: bagging function in ipred package of R: B=25 by 
default. Normally B~100-200 depending of the data size.

● We can also determine B using a grid-search (using 
validation set) or using the out-of-bag error (OOB): 
mean error over the training patterns excluded from the 
boostrap sample. The OOB stabilizes for enough trees. 
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Bagging (IV)
● Output of the bagging ensemble: if zb(x) is the 

output of the b-th base classifier (C>1 classes):

z (x)= argmax
l=1…C {∑b=1

B

I [ zb(x) ,l ]}
I (x , y)={1 x= y

0 x≠ y} Voting among the
B base classifiers



Eva Cernadas 17

Random forest (I)
● Combination of decision trees to correct over fitting. 
● It uses bagging and random selection of features 

(inputs), leaving some patterns out of the training set. 
● In a decision tree, each node divides the feature that 

most reduces the entropy. 
● In bagging, important features are selected by almost 

all trees, that are not diverse.
● Random Forest adds diversity by using different feature 

sets, randomly selected.
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Random forest (II)
● RF increases diversity using a group of q<n randomly 

selected features, different in each base classifier (tree). 

● Each tree node splits the best feature in its group. 

● Less features are used: faster training. 
● The number of inputs selected is usually q=

● The outputs of the B base classifiers are random variables 
{zb}b=1

B, with variance σ and correlation ρ: it can be proven 
that variance of RF is:

√n

var ( 1B∑b=1
B

zb)=(1−ρ
B

+ρ)σ2
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Random forest (III)
● The random selection of features of RF:

1)Increases the bias, but slightly (-)

2)Increases the variance (σ2) of each tree (-)

3)Reduces the correlation (ρ) among the trees (+) and 
raises diversity

● The reduction in correlation ρ (see previous page) is the 
most important of the three terms: it reduces variance 
and increases the performance of RF compared to 
individual trees. 
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Random forest (IV)
RF=∅; K=maximum number of nodes in the tree
for b=1:B

S=bootstrap sample of {xi,yi}i=1
N; T=∅; r=0

repeat
F={i1..iq}⊂{1..n} with q<n, random selection
Select feature j∈F and threshold t∈Vj,                    so:

r=r+1
Create node nr (xj<t and xj≥t)
T=T∪{nr}

until r>K
RF=RF∪T

endfor
Output:                      

( j , t )= argmax
i=1..n ,k∈V i

{Δ Eik }

Vj={xij}i=1
N

z(x)= argmax
l=1…C {∑

b=1

B

I [ zb(x) , l ]} I (x , y)={1 x= y
0 x≠ y}

Current tree

No. nodes

ΔEik=entropy gain of 
feature i with threshold t

Unique
values
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Random forest (V)
● Random Forest provides a measure of the importance of 

each feature. 
● Low number of hyper-parameters and low sensitivity to 

their values:

1) Number of decision trees B.

2) Number of features q to use in each node. 

3) Minimum number of training patterns to split a node. 
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Random forest (VI)
● Increasing B does not increase over fitting.
● Very parallelizable.
● It requires low data pre-processing.
● The use of q<n features for RF and N’<N patterns for 

bootstrapping is efficient with big data.
● Normally very good results: state-of-the-art classifier 
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Python
● Scikit-learn package in Python: ensembles module    

https://scikit-learn.org/stable/modules/ensemble.html

https://scikit-learn.org/stable/modules/ensemble.html
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Python
● Scikit-Learn package in Python: performance measures

https://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics

https://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
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Matlab
● Statistics and Machine Learning Toolbox, function fitcensemble: 

https://es.mathworks.com/help/stats/fitcensemble.html#d126e394981

https://es.mathworks.com/help/stats/fitcensemble.html#d126e394981
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Matlab
● Statistics and Machine Learning Toolbox, function fitcensemble: 

https://es.mathworks.com/help/stats/fitcensemble.html#d126e394981

https://es.mathworks.com/help/stats/fitcensemble.html#d126e394981
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Matlab: base classifiers
● Statistics and Machine Learning Toolbox, function fitcensemble: 

https://es.mathworks.com/help/stats/fitcensemble.html#d126e394981

https://es.mathworks.com/help/stats/fitcensemble.html#d126e394981
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R statistical computing language
● RandomForest package: 
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R
● adaBag package: 
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R
● adaBag package: 
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Classifiers comparison
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Classifiers comparison: datasets



Eva Cernadas 33

Classifiers comparison: datasets
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Classifiers comparison: Friedman 
rank
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Classifiers comparison: conclusions
● Random Forest (RF) and Support Vector Machine (SVM) 

families (with different implementations and 
approaches) are the strongest classifiers (achieved the 
first positions in the  Friedman rank).

● High performance also for Extreme Learning Machine 
(ELM) (6th position).

● Other neural networks (NNET), boosting (BST) and 
bagging (BAG) classifiers achieved also good 
performance. 
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