International Master in **Computer Vision**

Fundamentals of machine

learning for computer vision

Contents

- Machine learning theory (Dr. Jaime Cardoso)
- Linear regression and optimization (Dr. Jaime Cardoso)
- Clustering (Dr. Jaime Cardoso)
- Model selection and evaluation
- Classical classification models
- Artificial neural networks (ANN)
- Support vector machines (SVM)
- Ensembles: bagging, boosting and random forest

Ensembles

- Algorithms that use several instances of the same base classifier. Example: combination of various classification trees.
- The algorithm name (meta-classifier) is provided by the method use to combine the classifiers.
- Example: group of classifiers of the same type trained of a different way, with a voting to decide the output.
- The base classifiers are usually **weak**: do not work very well, but they are simple and their training is fast.
- The combination of weak classifiers is expected to increase the classification quality, developing a **strong** classifier.

Combination of classifiers

- The base classifiers should be **diverse:** each base classifier should learn a different view of the problem, in order to their combination will be strong.
- Diversity among base classifiers is caused by:
 - Training initialization: for example, MLPs with different random weight initialization.
 - Hyper-parameter tuning: combination of MLPs with different number of hidden layers.
 - Training set: different training sets for the base classifiers.
- The combination algorithms can be applied on different types of base classifiers: e.g. bagging of decision trees or KNN.

Types of ensembles

- **Boosting**: the base classifiers are trained on the same training set but with different pattern weightings.
 - AdaBoost is the most popular boosting algorithm
- **Bagging**: the base classifiers are trained on different bootstrap samples of the training set.
 - Random Forest (RF) is the most popular bagging algorithm that uses random tree base classifiers.

Boosting

- **Boosts** the quality of base classifiers, which also use different pattern weights. Adaboost (*adaptive boosting*) is the most popular boosting ensemble.
- The training patterns are weighted in a different way for each base classifier:
- Base classifier 1: all patterns have equal weights
- Base classifier 2 to B: each pattern weight is based on the errors of previous base classifiers on that pattern.

Boosting

- Patterns in which the previous base classifier failed increase their weight in order to be well classified by the following base classifier.
- Besides, each base classifier is weighted according to its reliability.
- Output of ensemble $z(\mathbf{x})$ is the weighted sum of the outputs of the base classifiers in the ensemble.
- Combination of *B* classifiers: $\{z_b(\mathbf{x}, \mathbf{\theta}_b)\}_{b=1}^{B}$

Adaboost (I)

Binary classification y,z(x)∈{±1}: z_b(x,θ_b)∈{±1}: output of the b-th classifier C_b; θ_b: trainable parameters of C_b

$$\mathbf{z}(\mathbf{x}) = \operatorname{sign}\left[\sum_{b=1}^{B} a_{b} \mathbf{z}_{b}(\mathbf{x}, \boldsymbol{\theta}_{b})\right]$$
 Output of the first *b* base classifiers

- Cost function to be minimized: $J(y,z(\mathbf{x}))=e^{-yz(\mathbf{x})}$: when $y=z(\mathbf{x})$, $J=e^{-1}$, when $y\neq z(\mathbf{x})$, J=e
- The weight w_i^b of \mathbf{x}_i in iteration b is $w_i^b = e^{-y_i u_{b-1}^*(\mathbf{x}_i)}$ for b > 1and $w_i^1 = 1$, where u_b is: $u_b(\mathbf{x}_i) = \sum_{k=1}^{b} a_k z_k(\mathbf{x}_i, \boldsymbol{\theta}_k)$
- Note that $u_b(\mathbf{x}_i) = u_{b-1}(\mathbf{x}_i) + a_b z_b(\mathbf{x}_i, \mathbf{\theta}_b)$

k=1 a_k is the weight of base classifier C_k

Adaboost (II)

- In the *b*-th *iteration* (corresponding to base classifier C_b), parameters a_b and θ_b are calculated as: $(a_b, \theta_b) = \underset{a, \theta}{\operatorname{argmin}} \left\{ \sum_{i=1}^N w_i^b e^{-y_i u_b(x_i)} \right\}$ Select the *a* and θ that minimize the error.
 - Replacing $\mathbf{u}_{b}(\mathbf{x}_{i})$: $(a_{b}, \boldsymbol{\theta}_{b}) = \underset{a, \boldsymbol{\theta}}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} w_{i}^{b} \exp\left\{-y_{i}[u_{b-1}(\mathbf{x}_{i}) + a z_{b}(\mathbf{x}_{i}, \boldsymbol{\theta})]\right\} \right\}$
- Keeping a constant, θ_b is calculated during the training

of
$$C_b$$
: $\theta_b = \underset{\theta}{argmin} \left\{ \sum_{i=1}^N w_i^b \exp\left[-y_i a z_b(x_i, \theta)\right] \right\}$
Eva Cernadas

Adaboost (III)

• The previous expression can be reduced to:

$$\boldsymbol{\theta}_{b} = \stackrel{argmin}{\boldsymbol{\theta}} \left[P_{b}(\boldsymbol{\theta}) \right] \qquad P_{b}(\boldsymbol{\theta}) = \sum_{y_{i} \neq z_{b}(\boldsymbol{x}_{i}, \boldsymbol{\theta})}^{N} w_{i}^{b}$$

where $P_b(\theta)$ is the sum of weights of \mathbf{x}_i patterns with $y_i \neq z_b(\mathbf{x}_i, \mathbf{\theta}_b)$, classification errors of ensemble $\{C_b\}_{k=1}^{b-1}$

• Once θ_b and $P_b^m = P_b(\theta_b)$ are calculated, a_b is given by:

$$a_{b} = \frac{argmin}{a} \left\{ \frac{e^{-a} (1 - P_{b}^{m}) + e^{a} P_{b}^{m}}{4} \right\}$$

Evaluates error, increasing with P_{b}^{m}

Adaboost (IV)

• Deriving the expression $e^{-a_b}(1-P_b^m)+e^{a_b}P_b^m$ and equaling to 0:

$$a_b = \frac{1}{2} \ln \frac{1 - P_b^m}{P_b^m}$$

 a_b is decreasing with $P_b^{\ m}$ Lower weight for C_b with higher $P_b^{\ m}$

• As we know θ_b and a_b , the weights w_i^{b+1} are calculated by:

$$w_i^{b+1} = \frac{w_i^b \exp[-y_i a_b z_b(\boldsymbol{x}_i, \boldsymbol{\theta}_b)]}{Z_b}$$

where Z_{b} is the normalization factor:

$$Z_{b} = \sum_{i=1}^{N} w_{i}^{b} \exp\left[-y_{i} a_{b} z_{b}(\boldsymbol{x}_{i}, \boldsymbol{\theta}_{b})\right]$$

• The process goes on to the following base classifier b+1 until b=B.

Adaboost (V)

The whole adaboost training algorithm with *B* classifiers is: • $W_{i}^{1}=1, i=1..N$ **for** *b*=1:*B*-1 N $P_{b}(\boldsymbol{\theta}) = \sum_{\boldsymbol{v}, \neq \boldsymbol{z}, (\boldsymbol{x}, \boldsymbol{\theta})} W_{i}^{b}; \boldsymbol{\theta}_{b} = \operatorname{argmin}_{\boldsymbol{\theta}} \{P_{b}(\boldsymbol{\theta})\}$ Training of the b-th base classifier $a_{b} = \frac{1}{2} \log \left(\frac{1 - P_{b}^{m}}{P_{b}^{m}} \right) \quad ; P_{b}^{m} = P_{b}(\theta_{b}); Z_{b} = 0$ for i=1:N $w_{i}^{b+1} = w_{i}^{b} \exp[-y_{i} a_{b} Z_{b}(\mathbf{x}_{i}, \mathbf{\theta}_{b})]; Z_{b} = Z_{b} + w_{i}^{b+1}$ endfor for i=1:N $W_{i}^{b+1} = W_{i}^{b+1}/Z_{b}$ $z(\mathbf{x}) = \operatorname{sign} \left| \sum_{b=1}^{B} a_{b} z_{b}(\mathbf{x}, \boldsymbol{\theta}_{b}) \right|$ endfor endfor Output z of adaboost for test pattern x is:

Eva Cernadas

Bagging (I)

- **Bootstrap aggregating**: several classifiers are trained on different training sets of the same size.
- The patterns of each training set are randomly selected using the **bootstrap** method: selects some training patterns several times (repeated) and other patterns are not selected. Same size as the original training set.
- The base classifiers are diverse due to different training sets.
- **Output**: voting among the base classifiers.

Bagging (II)

- The base classifiers are normally decision trees.
- Bootstrap increases the quality of base classifiers by reducing variance (less fitting to training data) without increasing bias on test patterns.
- The decision trees tend to over fit the training set, but the bagging algorithm introduces diversity.
- So, the ensemble is not so sensible to noisy data and compensates the over fitting of the single decision trees.

Bagging (III)

- Hyper-parameter *B* (*bag size or number of trees*). The classifier quality is not very sensitive to *B* when a value high enough is provided. Tuning is often not required.
- **E.g.: bagging** function in **ipred** package of R: B=25 by default. Normally $B \sim 100-200$ depending of the data size.
- We can also determine *B* using a grid-search (using validation set) or using the *out-of-bag error* (OOB): mean error over the training patterns excluded from the boostrap sample. The OOB stabilizes for enough trees.

Bagging (IV)

• Output of the bagging ensemble: if $z_b(\mathbf{x})$ is the output of the *b*-th base classifier (*C*>1 classes):

$$z(\mathbf{x}) = \underset{l=1...C}{\operatorname{arg\,max}} \left\{ \underset{b=1}{\overset{B}{\underset{b=1}{\sum}}} I[z_b(\mathbf{x}), l] \right\}$$

$$I(x, y) = \left\{ \begin{array}{c} 1 & x = y \\ 0 & x \neq y \end{array} \right\}$$
Voting among the B base classifiers

Random forest (I)

- Combination of decision trees to correct over fitting.
- It uses bagging and random selection of features (inputs), leaving some patterns out of the training set.
- In a decision tree, each node divides the feature that most reduces the entropy.
- In bagging, important features are selected by almost all trees, that are not diverse.
- Random Forest adds diversity by using different feature sets, randomly selected.

Random forest (II)

- RF increases diversity using a group of q < n randomly selected features, different in each base classifier (tree).
- Each tree node splits the best feature in its group.
- Less features are used: faster training.
- The number of inputs selected is usually $q = \sqrt{n}$
- The outputs of the *B* base classifiers are random variables $\{z_b\}_{b=1}^{B}$, with variance σ and correlation ρ : it can be proven that variance of RF is:

$$\operatorname{var}\left(\frac{1}{B}\sum_{b=1}^{B}z_{b}\right) = \left(\frac{1-\rho}{B}+\rho\right)\sigma^{2}$$

Eva Cernadas

Random forest (III)

- The random selection of features of RF:
- 1)Increases the bias, but slightly (-)
- 2)Increases the variance (σ^2) of each tree (-)
- 3)Reduces the correlation (ρ) among the trees (+) and raises diversity
- The reduction in correlation ρ (see previous page) is the most important of the three terms: it reduces variance and increases the performance of RF compared to individual trees.

Random forest (IV)

Eva Cernadas

Random forest (V)

- Random Forest provides a measure of the importance of each feature.
- Low number of hyper-parameters and low sensitivity to their values:
- 1) Number of decision trees *B*.
- 2) Number of features q to use in each node.
- 3) Minimum number of training patterns to split a node.

Random forest (VI)

- Increasing *B* does not increase over fitting.
- Very parallelizable.
- It requires low data pre-processing.
- The use of q < n features for RF and N' < N patterns for bootstrapping is efficient with big data.
- Normally very good results: *state-of-the-art* classifier

Python

• Scikit-learn package in Python: ensembles module

https://scikit-learn.org/stable/modules/ensemble.html

leaven Install User	Guide API Examples More - Go							
PrevUpNextscikit-learn 1.0.dev0 Other versionsOther versions	This is documentation for the unstable development version of Scikit-learn. (To use it, install the nightly build.) The latest stable release is version 0.24.							
software.	1.11. Ensemble methods							
1.11.2. Forests of randomized trees	The goal of ensemble methods is to combine the predictions of several base estimators built with a given learning algorithm in or- der to improve generalizability / robustness over a single estimator.							
1.11.3. AdaBoost 1.11.4. Gradient Tree Boosting	Two families of ensemble methods are usually distinguished:							
Boosting 1.11.6. Voting Classifier	 In averaging methods, the driving principle is to build several estimators independently and then to average their predictions. On average, the combined estimator is usually better than any of the single base estimator because its variance is reduced. 							
1.11.7. Voting Regressor 1.11.8. Stacked generalization	Examples: Bagging methods, Forests of randomized trees,							
	 By contrast, in boosting methods, base estimators are built sequentially and one tries to reduce the bias of the combined es- timator. The motivation is to combine several weak models to produce a powerful ensemble. 							
	Examples: AdaBoost, Gradient Tree Boosting,							

Python

• Scikit-Learn package in Python: performance measures

https://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics

3.3.2. Classification metrics

The **sklearn.metrics** module implements several loss, score, and utility functions to measure classification performance. Some metrics might require probability estimates of the positive class, confidence values, or binary decisions values. Most implementations allow each sample to provide a weighted contribution to the overall score, through the <code>sample_weight</code> parameter.

Some of these are restricted to the binary classification case:

<pre>precision_recall_curve(y_true, probas_pred, *)</pre>	Compute precision- recall pairs for different probability thresholds.
<pre>roc_curve(y_true, y_score, *[, pos_label,])</pre>	Compute Receiver operating characteristic (ROC).
<pre>det_curve(y_true, y_score[, pos_label,])</pre>	Compute error rates for different probability thresholds.

Matlab

• Statistics and Machine Learning Toolbox, function fitcensemble:

https://es.mathworks.com/help/stats/fitcensemble.html#d126e394981

fitcensemble Fit ensemble of learners for classification	R2023b collapse all in page
Syntax	
<pre>Mdl = fitcensemble(Tbl,ResponseVarName) Mdl = fitcensemble(Tbl,formula) Mdl = fitcensemble(Tbl,Y)</pre>	
Mdl = fitcensemble(X,Y)	
<pre>Mdl = fitcensemble(, Name, Value)</pre>	
Description	

Mdl = fitcensemble(Tbl, ResponseVarName) returns the trained classification ensemble model object (Mdl) that contains the results of boosting 100 classification trees and the predictor and response data in the table Tbl. ResponseVarName is the name of the response variable in Tbl. By default, fitcensemble uses LogitBoost for binary classification and AdaBoostM2 for multiclass classification.

Matlab

• Statistics and Machine Learning Toolbox, function fitcensemble:

https://es.mathworks.com/help/stats/fitcensemble.html#d126e394981

Value	Method	Classification Problem Support	Related Name-Value Pair Arguments
'Bag'	Bootstrap aggregation (bagging, for example, random forest[2]) — If 'Method' is 'Bag', then fitcensemble uses bagging with random predictor selections at each split (random forest) by default. To use bagging without the random selections, use tree learners whose 'NumVariablesToSample' value is 'all' or use discriminant analysis learners.	Binary and multiclass	N/A
'Subspace'	Random subspace	Binary and multiclass	NPredToSample
'AdaBoostM1'	Adaptive boosting	Binary only	LearnRate
'AdaBoostM2'	Adaptive boosting	Multiclass only	LearnRate
'GentleBoost'	Gentle adaptive boosting	Binary only	LearnRate
'LogitBoost'	Adaptive logistic regression	Binary only	LearnRate
'LPBoost'	Linear programming boosting — Requires Optimization Toolbox™	Binary and multiclass	MarginPrecision
'RobustBoost'	Robust boosting – Requires Optimization Toolbox	Binary only	RobustErrorGoal,RobustMarginSigma, RobustMaxMargin
'RUSBoost'	Random undersampling boosting	Binary and multiclass	LearnRate,RatioToSmallest
'TotalBoost'	Totally corrective boosting – Requires Optimization Toolbox	Binary and multiclass	MarginPrecision

You can specify sampling options (FResample, Replace, Resample) for training data when you use bagging ('Bag') or boosting ('TotalBoost', 'RUSBoost', 'AdaBoostM1', 'AdaBoostM2', 'GentleBoost', 'LogitBoost', 'RobustBoost', or 'LPBoost').

Matlab: base classifiers

• Statistics and Machine Learning Toolbox, function fitcensemble:

https://es.mathworks.com/help/stats/fitcensemble.html#d126e394981

Learners	Eligible Hyperparameters Bold = Used By Default	Default Range		
'discriminant'	Delta	Log-scaled in the range [1e-6, 1e3]		
	DiscrimType	'linear','quadratic','diagLinear','diagQuadratic', 'pseudoLinear',and'pseudoQuadratic'		
	Gamma	Real values in [0,1]		
'knn'	Distance	<pre>'cityblock','chebychev','correlation','cosine', 'euclidean','hamming','jaccard','mahalanobis','minkowski', 'seuclidean',and 'spearman'</pre>		
	DistanceWeight	'equal','inverse',and'squaredinverse'		
	Exponent	Positive values in [0.5,3]		
	NumNeighbors	<pre>Positive integer values log-scaled in the range [1, max(2,round(NumObservations/2))]</pre>		
	Standardize	'true' and 'false'		
'tree'	MaxNumSplits	<pre>Integers log-scaled in the range [1, max(2, NumObservations-1)]</pre>		
	MinLeafSize	<pre>Integers log-scaled in the range [1,max(2,floor(NumObservations/2))]</pre>		
	NumVariablesToSample	<pre>Integers in the range [1, max(2, NumPredictors)]</pre>		
	SplitCriterion	'gdi', 'deviance', and 'twoing'		

R statistical computing language

RandomForest package:

randomForest

Classification and Regression with Random Forest

Description

randomForest implements Breiman's random forest algorithm (based on Breiman and Cutler's original Fortran code) for classification and regression. It can also be used in unsupervised mode for assessing proximities among data points.

Usage

```
## S3 method for class 'formula'
randomForest(formula, data=NULL, ..., subset, na.action=na.fail)
## Default S3 method:
randomForest(x, y=NULL, xtest=NULL, ytest=NULL, ntree=500,
              mtry=if (!is.null(y) && !is.factor(y))
              \max(\operatorname{floor}(\operatorname{ncol}(x)/3), 1) else \operatorname{floor}(\operatorname{sqrt}(\operatorname{ncol}(x))),
              replace=TRUE, classwt=NULL, cutoff, strata,
              sampsize = if (replace) nrow(x) else ceiling(.632*nrow(x)),
              nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1,
              maxnodes = NULL,
              importance=FALSE, localImp=FALSE, nPerm=1,
              proximity, oob.prox=proximity,
              norm.votes=TRUE, do.trace=FALSE,
              keep.forest=!is.null(y) && is.null(xtest), corr.bias=FALSE,
              keep.inbag=FALSE, ...)
## S3 method for class 'randomForest'
print(x, ...)
```

R

adaBag package:

boosting

From adabag v4.2 by Esteban Alfaro Percentile

Applies The AdaBoost.M1 And SAMME Algorithms To A Data Set

Fits the AdaBoost.M1 (Freund and Schapire, 1996) and SAMME (Zhu et al., 2009) algorithms using classification trees as single classifiers.

Keywords classif, tree

Usage

Arguments

- formula a formula, as in the lm function.
- data a data frame in which to interpret the variables named in formula .
- boos if TRUE (by default), a bootstrap sample of the training set is drawn using the weights for each observation on that iteration. If FALSE, every observation is used with its weights.
- mfinal an integer, the number of iterations for which boosting is run or the number of trees to use. Defaults to mfinal=100 iterations.
- coeflearn if 'Breiman'(by default), alpha=1/2ln((1-err)/err) is used. If 'Freund' alpha=ln((1-err)/err) is used. In both cases the AdaBoost.M1 algorithm is used and alpha is the weight updating coefficient. On the other hand, if coeflearn is 'Zhu' the SAMME algorithm is implemented with alpha=ln((1-err)/err)+ ln(nclasses-1).
- control options that control details of the rpart algorithm. See rpart.control for more details.
- ... further arguments passed to or from other methods.

R

adaBag package:

bagging

Applies the Bagging algorithm to a data set

Description

Fits the Bagging algorithm proposed by Breiman in 1996 using classification trees as single classifiers.

Usage

bagging(formula, data, mfinal = 100, control, par=FALSE,...)

Arguments

formula	a formula, as in the 1m function.
data	a data frame in which to interpret the variables named in the formula
mfinal	an integer, the number of iterations for which boosting is run or the number of trees to use. Defaults to mfinal=100 iterations.
control	options that control details of the rpart algorithm. See rpart.control for more details.
par	if TRUE, the cross validation process is runned in parallel. If FALSE (by default), the function runs without parallelization.
	further arguments passed to or from other methods.

Classifiers comparison

Journal of Machine Learning Research 15 (2014) 3133-3181

Submitted 11/13; Revised 4/14; Published 10/14

Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?

 Manuel Fernández-Delgado
 MANUEL.FERNANDEZ.DELGADO@USC.ES

 Eva Cernadas
 EVA.CERNADAS@USC.ES

 Senén Barro
 SENEN.BARRO@USC.ES

 CITIUS: Centro de Investigación en Tecnoloxías da Información da USC
 University of Santiago de Compostela

 Campus Vida, 15872, Santiago de Compostela, Spain
 Spain

Dinani Amorim

DINANIAMORIM@GMAIL.COM

Departamento de Tecnologia e Ciências Sociais- DTCS Universidade do Estado da Bahia Av. Edgard Chastinet S/N - São Geraldo - Juazeiro-BA, CEP: 48.305-680, Brasil

Editor: Russ Greiner

Abstract

We evaluate **179** classifiers arising from **17** families (discriminant analysis, Bayesian, neural networks, support vector machines, decision trees, rule-based classifiers, boosting, bagging, stacking, random forests and other ensembles, generalized linear models, nearest-neighbors, partial least squares and principal component regression, logistic and multinomial regression, multiple adaptive regression splines and other methods), implemented in Weka, R (with and without the caret package), C and Matlab, including all the relevant classifiers available today. We use **121 data sets**, which represent **the whole UCI** data base (excluding the large-scale problems) and other own real problems, in order to achieve

Classifiers comparison: datasets

Data set	#pat.	#inp.	#cl.	%Maj.	Data set	#pat.	#inp.	#cl.	%Maj.
abalone	4177	8	3	34.6	energy-y1	768	8	3	46.9
ac-inflam	120	6	2	50.8	energy-y2	768	8	3	49.9
acute-nephritis	120	6	2	58.3	fertility	100	9	2	88.0
adult	48842	14	2	75.9	flags	194	28	8	30.9
annealing	798	38	6	76.2	glass	214	9	6	35.5
arrhythmia	452	262	13	54.2	haberman-survival	306	3	2	73.5
audiology-std	226	59	18	26.3	hayes-roth	132	3	3	38.6
balance-scale	625	4	3	46.1	heart-cleveland	303	13	5	54.1
balloons	16	4	2	56.2	heart-hungarian	294	12	2	63.9
bank	45211	17	2	88.5	heart-switzerland	123	12	2	39.0
blood	748	4	2	76.2	heart-va	200	12	5	28.0
breast-cancer	286	9	2	70.3	hepatitis	155	19	2	79.3
bc-wisc	699	9	2	65.5	hill-valley	606	100	2	50.7
bc-wisc-diag	569	30	2	62.7	horse-colic	300	25	2	63.7
bc-wisc-prog	198	33	2	76.3	ilpd-indian-liver	583	9	2	71.4
breast-tissue	106	9	6	20.7	image-segmentation	210	19	7	14.3
car	1728	6	4	70.0	ionosphere	351	33	2	64.1
ctg-10classes	2126	21	10	27.2	iris	150	4	3	33.3
ctg-3classes	2126	21	3	77.8	led-display	1000	7	10	11.1
chess-krvk	28056	6	18	16.2	lenses	24	4	3	62.5
chess-krvkp	3196	36	2	52.2	letter	20000	16	26	4.1
congress-voting	435	16	2	61.4	libras	360	90	15	6.7
$\operatorname{conn-bench-sonar}$	208	60	2	53.4	low-res-spect	531	100	9	51.9
conn-bench-vowel	528	11	11	9.1	lung-cancer	32	56	3	40.6
connect-4	67557	42	2	75.4	lymphography	148	18	4	54.7
contrac	1473	9	3	42.7	magic	19020	10	2	64.8
credit-approval	690	15	2	55.5	mammographic	961	5	2	53.7
cylinder-bands	512	35	2	60.9	miniboone	130064	50	2	71.9
dermatology	366	34	6	30.6	molec-biol-promoter	106	57	2	50.0
echocardiogram	131	10	2	67.2	molec-biol-splice	3190	60	3	51.9
ecoli	336	7	8	42.6	monks-1	124	6	2	50.0

32

Classifiers comparison: datasets

Data set	#pat.	#inp.	#cl.	%Maj.	Data set	#pat.	#inp.	#cl.	%Maj.
monks-2	169	6	2	62.1	soybean	307	35	18	13.0
monks-3	3190	6	2	50.8	spambase	4601	57	2	60.6
mushroom	8124	21	2	51.8	spect	80	22	2	67.1
musk-1	476	166	2	56.5	spectf	80	44	2	50.0
musk-2	6598	166	2	84.6	st-australian-credit	690	14	2	67.8
nursery	12960	8	5	33.3	st-german-credit	1000	24	2	70.0
oocMerl2F	1022	25	3	67.0	st-heart	270	13	2	55.6
oocMerl4D	1022	41	2	68.7	st-image	2310	18	7	14.3
oocTris2F	912	25	2	57.8	st-landsat	4435	36	6	24.2
oocTris5B	912	32	3	57.6	st-shuttle	43500	9	7	78.4
optical	3823	62	10	10.2	st-vehicle	846	18	4	25.8
ozone	2536	72	2	97.1	steel-plates	1941	27	7	34.7
page-blocks	5473	10	5	89.8	synthetic-control	600	60	6	16.7
parkinsons	195	22	2	75.4	teaching	151	5	3	34.4
pendigits	7494	16	10	10.4	thyroid	3772	21	3	92.5
$_{\rm pima}$	768	8	2	65.1	tic-tac-toe	958	9	2	65.3
pb-MATERIAL	106	4	3	74.5	titanic	2201	3	2	67.7
pb-REL-L	103	4	3	51.5	trains	10	28	2	50.0
pb-SPAN	92	4	3	52.2	twonorm	7400	20	2	50.0
pb-T-OR-D	102	4	2	86.3	vc-2classes	310	6	2	67.7
pb-TYPE	105	4	6	41.9	vc-3classes	310	6	3	48.4
planning	182	12	2	71.4	wall-following	5456	24	4	40.4
plant-margin	1600	64	100	1.0	waveform	5000	21	3	33.9
plant-shape	1600	64	100	1.0	waveform-noise	5000	40	3	33.8
plant-texture	1600	64	100	1.0	wine	179	13	3	39.9
post-operative	90	8	3	71.1	wine-quality-red	1599	11	6	42.6
primary-tumor	330	17	15	25.4	wine-quality-white	4898	11	7	44.9
ringnorm	7400	20	2	50.5	yeast	1484	8	10	31.2
seeds	210	7	3	33.3	ZOO	101	16	7	40.6
semeion	1593	256	10	10.2					

33

Classifiers comparison: Friedman rank

Rank	Acc.	κ	Classifier
32.9	82.0	63.5	$parRF_t$ (RF)
33.1	82.3	63.6	$rf_t (RF)$
36.8	81.8	62.2	svm_C (SVM)
38.0	81.2	60.1	svmPoly_t (SVM)
39.4	81.9	62.5	$rforest_R (RF)$
39.6	82.0	62.0	elm_kernel_m (NNET)
40.3	81.4	61.1	$svmRadialCost_t$ (SVM)
42.5	81.0	60.0	svmRadial_t (SVM)
42.9	80.6	61.0	$C5.0_t$ (BST)
44.1	79.4	60.5	$avNNet_t$ (NNET)
45.5	79.5	61.0	nnet_t (NNET)
47.0	78.7	59.4	$pcaNNet_t$ (NNET)
47.1	80.8	53.0	BG_LibSVM_w (BAG)
47.3	80.3	62.0	mlp_t (NNET)
47.6	80.6	60.0	RotationForest_w (RF)
50.1	80.9	61.6	RRF_t (RF)
51.6	80.7	61.4	$RRFglobal_t (RF)$
52.5	80.6	58.0	MAB_LibSVM_w (BST)
52.6	79.9	56.9	$LibSVM_w$ (SVM)
57.6	79.1	59.3	$adaboost_R (BST)$

Eva Cernadas

Classifiers comparison: conclusions

- Random Forest (RF) and Support Vector Machine (SVM) families (with different implementations and approaches) are the strongest classifiers (achieved the first positions in the Friedman rank).
- High performance also for Extreme Learning Machine (ELM) (6th position).
- Other neural networks (NNET), boosting (BST) and bagging (BAG) classifiers achieved also good performance.