
Robotics and Autonomous Systems 00 (2018) 1–18

Journal
Logo

Motion Planning under Uncertainty in Graduated Fidelity Lattices

Adrián González-Sieiraa,∗, Manuel Mucientesa, Alberto Bugaŕına

aCentro Singular de Investigación en Tecnolox́ıas da Información (CiTIUS), Universidade de Santiago de Compostela, Spain

Abstract

We present a new approach to motion planning in mobile robotics under sensing and motion uncertainty based on state lattices
with graduated fidelity. Uncertainty is predicted at planning time and used to estimate the safety of the paths. Our approach
takes into account the real shape of the robot, introducing a deterministic sampling based method to estimate the probability of
collision. Anytime Dynamic A*, an informed search algorithm, is used to find safe and optimal paths in the lattice. Moreover,
due to the anytime search capabilities of this algorithm our planner is able to retrieve a solution very fast and refine it iteratively
until the optimal one is found. We present a novel graduated fidelity approach to build a lattice whose complexity adapts to
the obstacles in the environment, along with a multi-resolution heuristic based on the same idea. Thus, the running time of
the planner is drastically reduced while maintaining its performance. Experimental results show the potential of the approach
in several scenarios, with different robot shapes, motion models and under different uncertainty conditions. The impact of the
graduated fidelity approach and the multi-resolution heuristic in the efficiency and performance of the planner is also detailed.

Keywords: state lattices, graduated fidelity, multi-resolution, motion planning under uncertainty

1. Introduction

Representing the state space of the robot in a discrete
manner has proven to be a successful approach to reduce
the computational complexity of motion planning. Both
stochastic and deterministic sampling strategies have been
described in the literature [1]. In the state lattices the sam-
pled states are arranged in a regular way, thus giving way
to a very efficient representation of the state space. More-
over, state lattices encode a graph whose vertices are the
discrete states and the edges connecting them are feasible
motions generated in accordance with the dynamics model.
Consequently, an informed search algorithm, which relies
on heuristics to find the optimal solution faster, can be
used to find the path with the minimum cost in it.

The benefits of sampling the state space come at the
expense of sacrificing optimality of the planned paths and,
more importantly, the feasibility of the planner —its ca-
pacity to compute suitable solutions satisfying the con-
straints. However, asymptotic optimality may be retained
under certain conditions [2, 3]. Focusing on state lattices,

∗Corresponding author.
Email addresses: adrian.gonzalez@usc.es (Adrián

González-Sieira), manuel.mucientes@usc.es (Manuel Mucientes),
alberto.bugarin.diz@usc.es (Alberto Bugaŕın)

the fidelity is the resolution of the sampled states. In-
creasing the fidelity, and thus making the number of sam-
ples tend to infinite, would make the state space and the
corresponding control set approach the continuum, which
makes the state lattices a resolution-complete approach.
However, in order to obtain reasonable planning times
the fidelity has to be the lowest possible. A state lattice
with graduated fidelity varies the resolution of the sampled
states in different areas of the state space, which allows the
planner to be more efficient while maintaining the feasibil-
ity and the optimality of the solutions retrieved. Heuristics
also play a significant role in the planning efficiency, and
their precision and computation time are equally relevant.
To manage the trade-off between them, multi-resolution
techniques can be used.

In order to maintain the feasibility of the planner and
the optimality of the solutions, both the fidelity of the lat-
tice and the resolution of the heuristic should adapt to
the environment. The use of multi-resolution maps, in
which the best resolution is selected for each area depend-
ing on whether it is cluttered with obstacles or not, allows
improving the overall planning efficiency. In this sense,
octree based maps [4, 5] are noteworthy for being able
to represent large environments with very low computa-
tional resources. Moreover, this kind of maps are a valu-
able source of information for developing multi-resolution

1

A. González-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1–18 2

heuristics and graduated fidelity lattices.
In mobile robots, uncertainty may arise from unmod-

eled external influences on the motion of the robot, or
imperfect state information due to noisy or incomplete
sensor measurements. The amount of uncertainty varies
for each path, since it depends on the executed motions
and the quality of the observations about the state the
robot is in. In real world domains the safety and accuracy
of the planned paths are critical, and therefore the best
plan has to be chosen taking into account its associated
uncertainty. Managing the uncertainty at planning time
allows estimating the safety of each path, such that the
best one can be selected accordingly. Moreover, this es-
timation should take into account the real dimensions of
the robot and the inaccuracies of the measurements and
the motion model, including the uncertainty in heading.
Otherwise, the reliability of the planner might be affected
under certain conditions.

In this paper, we present a motion planner based on
state lattices that manages the uncertainty at planning
time, automatically adapts the fidelity of the lattice and
obtains safe and optimal paths. Our proposal combines
and extends existing methods in the state of the art, ad-
dressing some of their drawbacks and resulting in an effi-
cient motion planning approach. These are the contribu-
tions of our proposal:

� A deterministic sampling based method to estimate
the probability of collision of each path from its asso-
ciated uncertainty. This method takes into account
the real shape of the robot, also dealing with the
uncertainty in heading.

� An approach for obtaining a graduated fidelity lat-
tice which, unlike prior works, adapts to the obsta-
cles in the environment and the maneuverability of
the robot.

� A novel multi-resolution heuristic that takes advan-
tage of the resolution of the map to efficiently esti-
mate the cost to the goal.

All the above allows the obtention of safe and optimal
solutions in a reliable and efficient way.

2. Related work

Sampling-based techniques in combination with search
algorithms have been successfully applied in the field of
motion planning. There are approaches based on either
random sampling or deterministic sampling. The Prob-
abilistic Roadmaps, PRM [1], and the Rapidly-exploring
Random Trees, RRT [6], are noteworthy among the for-
mer; while the state lattices described by [7] are the most
representative of the latter, standing out for the regular
arrangement of the sampled states. PRM and RRT are
very efficient exploring the state space, although the regu-
larity of the state lattices makes possible to obtain a finite

set of actions from the vehicle motion model. These ac-
tions can be computed offline, opening the door to apply
techniques to boost the performance of the search, like
multi-resolution planning.

State lattices with graduated fidelity, or multi-resolution
state lattices, were introduced by [8]. Their approach uses
high fidelity only in selected areas, but elsewhere the dy-
namics model is not taken into account. Thus, the un-
certainty cannot be estimated throughout the entire lat-
tice, so it cannot be managed at planning time. In [9]
they present a similar approach that uses a subset of the
motion primitives to connect those states within the low
fidelity areas, addressing this issue. However, [8] and [9]
share an important drawback that would make it difficult
to combine them with uncertainty management: their ap-
proach is based on obtaining a pre-planned path very fast
and improve it in real time as the robot moves along it.
To achieve this, they place the high fidelity areas around
the robot, the start and the goal. However, every time the
lattice changes, the uncertainty of all the affected paths
must be re-computed and their probabilities of collision
updated, which is a non trivial operation.

The motion planner presented in this work relies on
a novel graduated fidelity approach. The fidelity of each
lattice state is defined in accordance with the obstacles in
the the map and the maneuverability of the robot. There-
fore, our approach increases the fidelity only in those areas
which are challenging for planning. By doing so, the trade-
off between the computational complexity and the quality
of the solution is managed, and the computation time is
significantly reduced. Moreover, our method does not re-
quire updating the solution unless the map changes, since
the fidelity does not depend on the position of the robot.
Thus, the drawbacks of prior approaches in the literature
are addressed.

The use of heuristics significantly improves the effi-
ciency of state lattice based motion planners, especially
in high dimensional domains. In this sense, [10] described
an admissible heuristic which copes with the robot kine-
matic constraints assuming free space. This is a good in-
formed heuristic in uncluttered environments, and it can
be computed offline and stored in a look-up table. In [9]
they presented a low dimensional heuristic which copes
with the obstacles in the environment. This heuristic, in
combination with that of [10], obtained very good results.
However, the approach of [9] is based on applying Dijk-
stra’s algorithm over a grid with a fixed resolution which
matches the maximum fidelity of the lattice. Computing
this heuristic can be costly and affect the planning effi-
ciency, specially in large, uncluttered environments.

To address this, in this paper we present a heuristic
based on that of [9] which, instead of a fixed resolution,
uses the information of the map to build a multi-resolution
grid. This allows improving the efficiency and scalability
of the heuristic in large environments.

While classical planners do not take into account mo-
tion uncertainty, which originates in noisy controls and

2

A. González-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1–18 3

measurements, approaches which manage it at planning
time have received increasing attention in the last years.
Some of them only consider uncertainty in control, like
[11], which combines PRM and the theory of Markov De-
cision Processes, MDP, to maximize the probability of suc-
cess of the given paths. This method can be extended and
consider Partially Observable MDPs, POMPDs, to also
manage sensing uncertainty, as in [12]. However, this ap-
proach has scalability issues which can only be addressed
with approximate sample-based solutions, as described by
[13]. In spite of these efforts, discretizing high-dimensional
continuous dynamics to be used with POMPDs did not
get promising results [14]. The work developed by [15]
overcame this drawback, but further research is needed to
extend it to non smooth dynamics and observations.

Current state of the art for motion planning with un-
certainty is the algorithm proposed by [16] and the sim-
ilar approach of [17], as both consider motion and sens-
ing uncertainty and do not assume maximum likelihood
measurements. The former, LQG-MP, relies on RRT to
find the path that minimizes the probability of collision,
but the obtained paths might be non smooth. This is-
sue is addressed applying smoothing techniques over the
planned path, which might affect the predicted uncertainty
and therefore the probability of collision in execution time.
Although results for LQG-MP combined with a search
algorithm are outlined, they were obtained from simple
roadmaps made by hand. Moreover, in [2] they demon-
strate that RRT is not asymptotically optimal. As a con-
sequence, there is no guarantee that the optimal path will
be found even for a high number of samples, either in terms
of cost or probability of collision. The latter presents a
similar approach that makes use of RRT*, an extension of
RRT which addresses this issue with an increased connec-
tivity. This work achieves good results in the uncertainty
prediction. However, a significant number of iterations of
RRT* is required to find a near-optimal solution. While
this method obtains paths significantly more smooth than
RRT, like in [18], this issue is not completely overcome,
especially when the number of samples is low.

In this work, motion uncertainty is managed with the
method of [17]. However, in this proposal it is combined
with a state lattice, addressing those issues related with
the smoothness of the paths which arise from the use of
random sampling-based methods.

Despite the good results obtained by prior works in pre-
dicting motion uncertainty, the probability of collision is
estimated assuming simplified versions of the robot shape,
such as circles [16, 19]. While this allows the probability of
collision to be estimated faster, the influence of the uncer-
tainty in heading is not taken into account. Others rely on
chance-constrained search [17, 18], only checking collisions
between the Probability Density Functions —PDFs— and
the obstacles, therefore considering punctual robots. Since
these approaches disregard the real shape of the robot,
there is no guarantee that the provided paths will be safe
under all circumstances. In fact, their reliability falls when

the uncertainty in heading is clearly significant —i.e. when
the shape is long or asymmetric.

To solve this drawback, this proposal introduces a novel
method to accurately estimate the probability of collision,
based on sampling the PDFs. This method uses the real
shape and deals with the uncertainty in heading. Thus,
reliable collision free paths for all kinds of robot shapes
are obtained.

3. Planning on state lattices

3.1. Motion primitives

The motion planner presented in this work relies on
a state lattice to sample the state space, X , in a deter-
ministic and regular manner. In this work a rectangular
arrangement of the samples was chosen, although other
configurations are possible. The states belonging to the
lattice, Xlat, are connected by a set of actions —U , also
called motion primitives— extracted from the dynamics
model. Due to the regular arrangement of the sampled
states, these actions can be computed offline and efficiently
stored. As they are position-independent, the same motion
primitive connects every pair of states equally arranged.
Fig. 1 illustrates the regularity of the states belonging to
the lattice and the connectivity obtained via replication of
the set of actions U .

It is straightforward that using the motion primitives
to connect the lattice states ensures that, by construction,
this structure is generated in accordance with the robot
dynamics. Since the kinematic restrictions are observed,
all paths contained in it are feasible.

In this work, the control set was obtained applying a
numerical optimization technique based on the Newton-
Raphson method, introduced by [20]. The resulting ac-

Figure 1: Motion planning based on state lattices. Due to the reg-
ular sampling, the motion primitives can be obtained offline and
replicated to connect the sampled states. Then, an informed search
algorithm can be used to find optimal paths in the lattice.

3

A. Gonz�alez-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1{18 4

Figure 2: Parametrization of the control function via cubic spline
interpolation. k0 and kn are given by the initial and �nal states con-
nected by the motion primitive, while k i are the knot points de�ning
the rest of the function.

tions are optimal in terms of cost, given the constraints:
the initial an �nal states |which belong to Xlat | and the
dynamics model.

The motion primitives have been parametrized via cu-
bic spline interpolation [21] to represent the evolution of
the controls over time. The parameters are theknot points
of the splines, a set of equally spaced values |k1; k2; :::; kn |
from which the rest of the function is interpolated, as
shown in Fig. 2. Each control variable is represented by a
di�erent spline, which might be given by a di�erent num-
ber of knots. Hence, the parameter vector for a motion
primitive is de�ned as follows:

p = [(k1
0 ; k1

1 ; :::; k1
n 1

); (k2
0 ; k2

1 ; :::; k2
n 2

); :::; t] (1)

where k j
i is the i -th knot belonging to the spline of the

j -th control variable, and t is the duration of the motion
primitive.

Finally, the parameter vector p is optimized with re-
spect to an error function, e(p), which measures the dif-
ference between the desired �nal state and the one given
by the parameters |obtained from the dynamics model.
The parameter vector is modi�ed following:

� p = �
�

@e(p)
@p

� � 1

� e(p) (2)

This is repeated until the constraints are satis�ed, typi-
cally when e(p) is under a threshold.

The dynamics model is learned from motion data of
the robot, as described in [22]. The approach relies on
parametrizing the equations for all linear and angular ve-
locities in this manner:

vt +1 = � v
1 � vt + � v

2 � uv
t + � v

0 (3)

! t +1 = � !
1 � ! t + � !

2 � u!
t + � !

0 (4)

making use of an iterative least-squares method to obtain
the parameters, � v

i and � !
i , which best �t the input data.

uv
t and u!

t are the linear and angular controls, respectively.
The motion primitives obtained with this model are accu-
rate representatives of the robot maneuvering capabilities,
since they encode its real response to the di�erent controls.

3.2. Optimal path

As the state lattice has the structure of a graph, an
informed search algorithm can be used to �nd the optimal
path in it. This proposal uses Anytime Dynamic A* |
AD* [23]| because of its capability to obtain sub-optimal
bounded solutions varying an heuristic ination parame-
ter, � . The solutions can be iteratively re�ned taking ad-
vantage of the information previously calculated, without
need for replanning from scratch.

Alg. 1 outlines the main operations of AD* |see [23]
for the detailed pseudocode of AD*. The inputs are the
initial state and the goal, x0 and xG , and the output is the
path with minimal cost connecting them. In each iteration
a state xa is extracted from OPEN |Alg. 1:9. This state
is the one which minimizes the sum of the cost from the
start, cx , and the estimated cost to the goal | hx , given
by the heuristic|, scaled by � . Next, the successors ofxa

are retrieved | X b, in Alg. 1:10| and the evaluation of
the outgoing actions is done in Alg. 1:12. Finally, in Alg.
1:13-16, the cost ofxb is updated, its heuristic obtained
and it is inserted into the OPEN queue to be explored
in following iterations |only if xb is visited for the �rst

Algorithm 1 Main operations of the search algorithm

Require: x0, initial state
Require: xG , goal state
Require: � 0, initial value of �

1: function main (x0, xG ; � 0)
2: initializeHeuristic (x0, xG) . Alg. 5
3: � = � 0

4: while � > = 1 do
5: cx 0 = 0
6: hx 0 = heuristic (x0)
7: OPEN = f x0g
8: repeat
9: xa = arg min x 2 OPEN (cx + � � hx)

10: X b = successors (xa) . Alg. 4
11: for all xb 2 X b do
12: ĉx b = cx a + cost (xa ; xb) . Alg. 3
13: if xb not visited or ĉx b < c x b then
14: cx b = ĉx b

15: hx b = heuristic (xb) . Alg. 5
16: OPEN = OPEN [f xbg

17: OPEN = OPEN � f xag
18: until xa = xG

19: publish path(x0; xa)
20: decrease�
21: return

4

A. Gonz�alez-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1{18 5

time or the current path improves an existing one. The
algorithm �nds a valid path when the state extracted from
OPEN, xa , is the goal xG .

The planning algorithm relies on the use of heuristics
to e�ciently explore the state space and obtain an opti-
mal solution in fewer iterations. The heuristic function
provides an estimation of the cost between each statexa

and the goal xG , which inuences the order in which the
states are processed and therefore the number of iterations
needed to �nd the optimal path.

AD* introduces a parameter, � , which inates the val-
ues of the heuristic. This allows obtaining sub-optimal
bounded solutions faster than the optimal one. Thus, the
algorithm is run in an iterative way, obtaining an initial
solution for � = � 0. This solution is re�ned in subsequent
executions, after decreasing the value of� , taking advan-
tage of the information previously calculated |Alg. 1:19-
20. This is less computationally expensive than obtaining
a new solution from scratch every time� changes.

The heuristic function is a combination of two values
|proposed by [9] and [24]| which allows using both the
information of the obstacles in the map and the dynamics
model: one is the cost of the path considering only the
kinematic restrictions, FSH, while the other is the cost of
the path only taking into account the information of the
map, H2D.

As it takes into account the kinematic restrictions, ob-
taining FSH is a costly operation. Therefore, it is com-
puted o�ine and stored in an Heuristic Look-Up-Table,
as described in [10]. The process starts with a �rst step
in which Dijkstra's algorithm is applied to populate the
table in a rapid way, followed by another step in which
the most complex maneuvers are included. This heuris-
tic takes advantage of the regularity of the lattice and the
symmetries in the control set to improve the e�ciency of
its calculation and storage.

On the contrary, H2D has to be initialized every time
the planner is run |Alg. 1:2|, since it depends on the
location of the goal and the obstacles in the environment.
Therefore, the lower the obtention time of this heuristic,
the higher the overall e�ciency of the planner.

3.3. Uncertainty management
Uncertainty management requires to predict the prob-

ability of the robot being in each state of the path. This
uncertainty depends on the one at the initial state, the
executed controls and the location accuracy, and therefore
it varies along the di�erent candidate paths in the lattice.
The prediction of these probability distributions is inte-
grated in planning time.

This proposal focuses on nonlinear, partially observ-
able systems. Dynamics | f | and observations | z|
are described in a discrete time manner:

x t +1 = f (x t ; ut) + mt ; mt � N (0; M t) (5)

zt = z(x t) + nt ; nt � N (0; N t); (6)

Algorithm 2 Uncertainty propagation along a trajectory
betweenxa and xb

Require: xa and xb, beginning and �nal states
1: function uncertainty (xa , xb)
2: ua:b = cmd(xa ; xb)
3: �x t � 1 = xa

4: � t � 1 = � x a

5: Pa:b = ;
6: for all ua:b

t 2 ua:b do
7: �x t = f (�x t � 1; ua:b

t)
8: �� t = A t � t � 1AT

t + M t

9: K t = �� t H T
t (H t �� t H T

t + N t) � 1

10: e� t = (I � K t H t) �� t

11: Ct = A t + B t L t

12: � t = Ct � t � 1CT
t + K t H t �� t

13: � t = e� t + � t

14: Pa:b = Pa:b [f x t � N (�x t ; � t)g
15: �x t � 1 = �x t

16: return Pa:b . PDFs of the path

where x t 2 X are the states of the robot, ut 2 U are
the controls and zt are the measurements.mt and nt are
random motion and observation disturbances, which are
described by Gaussian distributions.M t and N t are their
respective covariances.

Obtaining the cost for a path between two statesxa

and xb is a two step process. First the uncertainty is
propagated along the trajectory, and then the resulting
probability distributions |PDFs| are used to estimate
the probability that the robot collides when executing the
path.

The former is done following the approach of [17], which
has good results for the kind of systems described above.
It is an EKF-based method and it manages the uncer-
tainty which arises from the controls and the observations.
Moreover, it also takes into account the inuence of using
a Linear Quadratic Gaussian controller |LQG, a widely
extended controller to correct deviations from the planned
path in execution time, detailed in [25]. For approximating
the probability of collision along the paths we introduce a
novel method in Sec. 4.1 which takes into account the real
shape of the robot and provides a reliable estimation.

Uncertainty prediction is detailed in Alg. 2. Inputs
are the beginning and �nal states of the trajectory | xa

and xb|, while the output is the list of PDFs along the
path between them | Pa:b, which is obtained iteratively
propagating the uncertainty at xa � N (�xa ; � a). ua:b are
the control commands of the trajectory |Alg. 2:2. L t is
the gain of a LQG controller, which is taken into account
due to its inuence on the PDFs. H t is the Jacobian of
the measurement model andA t and B t are the Jacobians
of the dynamics model.

Motion uncertainty is predicted as follows: �rst, an
EKF is used to calculate the distributions of the state in
the prediction step | N (�x t , �� t), in Alg. 2:7-8| and the

5

A. Gonz�alez-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1{18 6

true one after the update |~x t � N (�x t , e� t), Alg. 2:9-10.
This distribution can be seen asP(x t j~x t), which represents
the probability of being in x t if the EKF predicts so. After,
P(~x t) = N (�x t ; � t) is obtained in Alg. 2:11-12. This mod-
els the uncertainty due to obtaining the state estimation
without having taken the real observations. These two dis-
tributions are used to calculateP(x t ; ~x t) = P(x t j~x t)P(~x t),
the joint one of the real robot state and the true state given
by the EKF. With all of the above we can �nally get the
PDF of the real state, P(x t) = N (�x t ; e� t + � t), in Alg.
2:13, which the motion planner uses as:

x t � N (�x t ; � t) (7)

This distribution is the one the planner uses to estimate
the probability of collision along the paths.

4. Improving the reliability and e�ciency of the
motion planner

In this section the contributions of this work are de-
tailed. First, we present a method to estimate the prob-
ability of collision of each path from its associated un-
certainty which takes into account the real shape of the
robot and the uncertainty in heading. Then, we propose
a novel graduated �delity approach which goes in accor-
dance with the obstacles in the environment and the ma-
neuverability of the robot. Finally we present H2DMR,
an heuristic based on the idea of H2D which makes use of
multi-resolution techniques to improve its scalability and
e�ciency.

4.1. Reliable probability of collision

The goal of the planner is to obtain paths minimiz-
ing the probability of collision and the traversal time. To
achieve this, each candidate path between two states,xa

Algorithm 3 Cost of a trajectory between xa and xb

Require: xa and xb, beginning and �nal states
1: function cost (xa ; xb)
2: Pa:b = uncertainty (xa , xb) . Alg. 2
3: ta:b = time(ua:b)
4: ca:b = 0
5: for all xa:b

t � N (�xa:b
t ; � a:b

t) 2 Pa:b do
6: wc = 0
7: wt = 0
8: X S = sampling(xa:b

t)
9: for all xs 2 X S do

10: w = pdf(xs; xa:b
t)

11: wt = wt + w
12: if collision(xs) then . with real shape
13: wc = wc + w
14: pc = wc=wt

15: ca:b = ca:b � log(1 � pc)

16: return
�
ca:b; ta:b; � b

�
. � b, uncertainty at xb

and xb, is evaluated to obtain a cost comprised by three
elements: a safety measurement |ca:b, proportional to the
probability of collision along it|, the traversal time ta:b,
and the uncertainty at the �nal state � b.

Alg. 3 details how this evaluation is done. As men-
tioned before, this requires �rst obtaining the PDFs in Alg.
3:2, since they are needed to calculateca:b and to know the
�nal uncertainty � b. On the contrary, the traversal time
is directly obtained from the motion primitives | ta:b, in
Alg. 3:3.

The probability of collision is estimated from the PDFs
by obtaining a set of samplesX S and checking collisions
with the obstacles in the environment taking into account
the real shape of the robot, as detailed in Alg. 3:8-13. The
sampling strategy is based on the method of the Unscented
Kalman Filter |UKF [26]| to obtain the sigma points
of a PDF, which represents the distribution reasonably
well with a small number of samples. These sigma points
are distributed in all dimensions, making them suitable
for checking collisions also dealing with the uncertainty in
heading. Moreover, their obtention only depends on the
parameters of the PDF, retaining the deterministic nature
of the motion planner.

A n-dimensional distribution belonging to the path,
x t � (�x t ; � t), is sampled as follows:

xs
[i +] = �x t + � �

� p
� t

�

i
for i = 1 ; :::; n

xs
[i �] = �x t � � �

� p
� t

�

i

(8)

The scaling factor � allows obtaining samples with dif-
ferent distance to the mean |i.e. � = 3 will generate
samples with a distance of 3 standard deviations from the
most probable state. Two samples | xs

[i +] and xs
[i �] | are

obtained for each dimension of the distribution, adding
and subtracting each column of the factorized matrix |� p

� t
�

i | to the mean of the PDF, � x t . This generates
2 � n + 1 samples for each value of� , the sigma points.
While these are good representatives of the distribution,
their coverage for checking collisions with the obstacles in
the environment may be not enough. For example, sam-
ples with di�erent headings would be generated only in the
position of �x t . For this reason, our method also operates
with di�erent columns of the covariance matrix to obtain
samples not only in the main axes of the distribution, but
also in the diagonals, which results in an improved cover-
age of the PDF. Thus, for each sigma point from Eq. 8
| xs

[i �] and xs
[i +] | the following samples are obtained:

xs
[i � ; j �] = xs

[i �] � � �
� p

� t

�

j
for i; j = 1 ; :::; n

xs
[i � ; j +] = xs

[i �] + � �
� p

� t

�

j
j 6= i

xs
[i + ; j �] = xs

[i +] � � �
� p

� t

�

j

xs
[i + ; j +] = xs

[i +] + � �
� p

� t

�

j

(9)

6

A. Gonz�alez-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1{18 7

Figure 3: Estimation of the probability of collision taking into ac-
count the real shape of the robot, via sampling the PDF using the
strategy of an UKF.

Fig. 3 shows the samples obtained applying this method
for � = 1 ; 2 and 3. These samples are used to check col-
lisions with the surrounding obstacles, for which the real
shape of the robot is taken into account. Each sample
xs has a weight, w, in accordance with its probability |
function pdf , in Alg. 3:10. wt is the sum of weights of all
samples, whilewc is the sum of those in which the real
shape collides |Alg. 3:11 and Alg. 3:13, respectively.
The quotient between them is the probability of collision
of the distribution, pc, in Alg. 3:14. Finally, the individual
estimations are combined in a logarithmic scale to obtain
a cost related to the probability of collision of the entire
path, as detailed in Alg. 3:15. By doing so we assume that
the probabilities of collision in di�erent stages of the path
are independent, in the same way that most approaches in
the state of the art. Although this is not the case, it is a
reasonable assumption for practical purposes.

Each element returned by the cost function |Alg. 3:16|
represents an objective to be minimized by the motion
planner, and therefore an order of priority was introduced
when comparing the cost of two paths, which is done as
follows:

cost(xa:b) < cost(xa:c) , (ca:b < c a:c) _
(ca:b = ca:c ^ ta:b < t a:c) _

(ca:b = ca:c ^ ta:b = ta:c ^ � b < � c)
(10)

Thus, the motion planner �rst minimizes the cost re-

Figure 4: Example of graduated �delity lattice. Trajectories in red
are those with highest �delity, required to maneuver near the obstacle
|in black. The rest of trajectories have lower �delities |in blue|,
since the obstacles do not a�ect the maneuverability.

lated to the probability of collision, prioritizing the safety
of the planned paths. Among all the safe paths, it selects
the one minimizing the traversal time and, �nally, the un-
certainty at the goal. Therefore, the planned paths are
safe and optimal. Moreover, since the probability of colli-
sion is estimated taking into account the real dimensions
of the robot, it is reliable for all kinds of shapes.

4.2. Graduated �delity lattice

The e�ciency of the planner strongly depends on the
�delity of the state lattice. While a higher �delity allows
more precision in representing the state space and the ma-
neuvering of the robot, decreasing it signi�cantly dimin-
ishes the runtime of the search. Although the latter may
result in paths with higher costs, the use of a graduated
�delity lattice can balance precision and e�ciency ade-
quately. Moreover, if the �delity adapts to the obstacles
in the environment and the maneuverability of the robot,
the e�ciency can be improved with minimal impact in the
planning results, as shown in Sec. 5.

Figure 4 depicts a state lattice with graduated �delity,
in which only those areas which require complex maneu-
vering to avoid obstacles in the environment are repre-
sented with high �delity. The proposed approach is to se-
lect, whenever possible, the longest maneuver of each type
to move between states. To achieve this, those motion
primitives in U which are similar maneuvers of di�erent
lengths are grouped. Then, the longest primitive of each
group which does not a�ect the probability of collision is
selected, and the rest discarded. This allows to dimin-
ish the number of states belonging to the lattice, and at
the same time the number of candidate paths connecting
them, therefore simplifying the state space. This technique
is applied when generating the successors of the statexa

explored by the search algorithm, in Alg. 1:10.
Alg. 4 details how the outgoing trajectories of a state

xa are selected using the proposed graduated �delity tech-
nique. As mentioned before, this procedure �rst requires
grouping the motion primitives from U in maneuvers of
the same kind but di�erent length. Those trajectories with
the same values for orientations, linear and angular speeds
both at the beginning | � i ; vi ; ! i | and at the end |

7

A. Gonz�alez-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1{18 8

� f ; vf ; ! f | belong to the same group | U(� i ;v i ;! i ;� f ;v f ;! f) .
The union of all groups is the whole set of primitives |
U =

S
U(� i ;v i ;! i ;� f ;v f ;! f) ; 8(�; v; !) 2 X lat |, whereas the

intersection of any two of them is empty.
The successors of a state, �, are generated as follows:

First, those groups of trajectories with the same initial
speeds | vi and ! i | and orientations | � i | as xa are
selected, in Alg. 4:4. Then, the algorithm chooses a prim-
itive of each group to be part of the successors and discards
the rest. The candidates,Uc, are evaluated in descending
order by length until one that ful�lls the restrictions is
found, as Alg. 4:5-8 details. If none of the trajectories
in the group ful�lls the restrictions, the shortest one is
selected.

As regards to the evaluation of candidates, two con-
ditions must be ful�lled to select them: the resolution of
both the source and destination octree cells,sa and sb,
and the probability of collision of the candidate trajectory
Uc. The former is related to the structure of the octree:
in the vicinity of the obstacles the cells contain di�erent
occupancy information and cannot be compacted in higher
level cells, so the higher the cluttering the lower the size
of the cells in the map. Thus, limiting the length of the
maneuvers in accordance with the size of the cells |Alg.
4:12-13| results in a lattice with high �delity only in those
areas challenging for the planner. The second condition is
introduced to maintain the safety of the solutions. Those
maneuvers which a�ect the probability of collision | ca:b,
in Alg. 4:14| are discarded. This is obtained from the
cost of the trajectory, as detailed in Alg. 3.

Fig. 5 illustrates how this approach discards the longest
maneuvers in the vicinity of obstacles due to their prob-
ability of collision, while navigating in uncluttered areas
causes the acceptance of the �rst explored candidates. This
graduated �delity approach results in a lattice with a con-
siderably lower density of states and maneuvers except in

Algorithm 4 Successor generation for a graduated �delity
state lattice
Require: U = fU (� i ;v i ;! i ;� f ;v f ;! f) g; 8(�; v; !) 2 X lat

1: function successors (xa)
2: � i = xa

� ; vi = xa
v ; ! i = xa

!
3: � = ;
4: for U 2 fU (� i ;v i ;! i ;� f ;v f ;! f) g; 8(� f ; vf ; ! f) do
5: repeat
6: Uc = arg max t a :b (U) . Get longest
7: U = U n Uc

8: until check (Uc
x a ; Uc

x b) _ U == ;
9: � = � [Uc

10: return �
11: function check (xa , xb)
12: � a = cell(xa); � b = cell(xb) . Get map cells
13: sa = size(� a); sb = size(� b) . Get size of cells
14: ca:b = cost (xa ; xb)[0] . Alg. 3
15: return (sa + sb >

 xa � xb

) ^ (ca:b == 0)

those areas in which complex maneuvering is required for
obstacle avoidance. Consequently, the e�ciency of the
planner is considerably improved, while its performance
|the cost of solutions| is barely a�ected.

4.3. Multi-resolution heuristic

As mentioned in Sec. 3, our approach combines two
heuristics: one takes into account the kinematic restric-
tions in free space, FSH, while the other only considers
the obstacles in the environment, H2D. In this section
H2DMR, a multi-resolution heuristic based on the latter,
is proposed. Unlike H2D, this novel heuristic takes ad-
vantage of the octree structure of the map to obtain a
multi-resolution grid, resulting in improved e�ciency and
scalability.

Alg. 5 details how H2DMR is calculated. The process
is done applying Dijkstra's algorithm to obtain a multi-
resolution grid. The inputs are the initial state of the
robot and the goal, x0 and xG . Since the heuristic uses
positions instead of states, their counterparts | p0 and
pG | are obtained in Alg. 5:4-5. The grid is generated
backwards, starting in pG . Thus, the resulting grid will
contain the estimated cost between each point and the
goal, which is used as the heuristic value for planning.

Iteratively, the point with the lowest cost from the start
| p, in Alg. 5:9| is selected and its successors obtained. �
is the cell of the map containing the selected point |Alg.
5:10. To generate its successors in accordance with the

Figure 5: Example of the selected candidates with the graduated
�delity approach in di�erent situations |in green. Long trajectories
are discarded when they a�ect the probability of collision with ob-
stacles |in black|, while in free space they are selected to have a
lower �delity.

8

A. Gonz�alez-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1{18 9

resolution of the map, the adjacent cells of� | adjacent(�),
in Alg. 5:12| are explored.

Figure 6 details how the resolution of the octree is
taken into account when obtaining the neighbors of p.
Given the size of a cell | s, in Alg. 5:13| and the highest
�delity of the motion primitives, f + , two situations are
considered: on the one hand, a cell is split into subcells
when f + exceeds the resolution of the map, in order to
keep the accuracy of the heuristic |Alg. 5:16-20. On the
other hand an upper bound in the resolution was intro-
duced to avoid generating neighbors with a distance lower
than f + |Alg. 5:23-27. Therefore, the size of the cells
this heuristic works with is in fact limited according to f +

|Alg. 5:23. In both cases the resulting neighbors are ob-
tained from the center of the selected cells | position(� 00),
in Alg. 5:18 and Alg. 5:25.

Finally, the cost between p and each neighborp0 |the
distance between them| is obtained and p0 is introduced

Algorithm 5 Obtention of H2DMR
Require: f + , highest �delity of the lattice

1: function heuristic (x)
2: return max

�
h2dmr(xb); fsh(xb)

�

3: function initializeHeuristic (x0; xG)
4: p0 = position(x0) . Initial position
5: pG = position(xG) . Goal position
6: c(pG) = 0
7: OPEN = f pG g
8: repeat
9: p = arg min p2 OPEN c(p)

10: � = cell(p) . Get map cell containing p
11: /* Iterate over those cells adjacent to � */
12: for all � 0 2 adjacent(�) do
13: s = size(� 0) . Size of cell� 0

14: if s > f + then
15: /* Split � 0 into subcells */
16: for all � 002 subcells(� 0) do
17: /* Get center of cell � 00*/
18: p0 = position(� 00)
19: c(p0) = c(p)+ costH (p; p0)
20: OPEN = OPEN [f p0g

21: else
22: /* Adjust size of � 0 to f + */
23: � 00= adjust(� 0; f +)
24: /* Get center of cell � 00*/
25: p0 = position(� 00)
26: c(p0) = c(p)+ costH (p; p0)
27: OPEN = OPEN [f p0g

28: until c(p) > 2 � c(p0)

29: function costH (p, p0)
30: if collision 0(p0) then . Optimistic shape
31: return 1
32: else
33: return kp0 � pk

Figure 6: Neighborhood of H2DMR |in blue. Given a point |in
green|, those cells adjacent to the one containing it are explored |
in gray. When a cell is smaller than the highest �delity of the lattice
| f + |, a bigger one containing it is selected. On the contrary, a
cell is split into subcells when its size exceeds f + .

into the OPEN queue to be explored by the algorithm
later. Collisions are checked using the inscribed circle in
the robot shape, also called optimistic shape, in Alg. 5:30.
Thus, the optimistic nature of the heuristic is maintained.

The stopping condition of the algorithm is to expand
a point with a cost which doubles the one betweenp0 and
pG |Alg. 5:28. Those areas of the map left outside the
generated grid are not interesting for planning due to their
distance to the most promising path. H2D uses this same
stopping condition, which was introduced by [9] for e�-
ciency purposes.

This algorithm allows the obtention of a multi-resolution
grid which contains the cost between each point and the
goal, which is used by AD* as heuristic. Unlike H2D,
this grid takes into account both the resolution of the oc-
tree map and the highest �delity of the motion primitives.
Thus, this approach outperforms H2D in the number of
iterations required to explore the map, and consequently
the time spent in initializing the heuristic. This is specially
noticeable in large environments, since H2DMR scales bet-
ter than H2D due to its capability to use lower resolutions
in uncluttered areas.

Since the positions of the multi-resolution grid and the
states in the lattice do not directly match, obtaining the
heuristic value for a state xa is done as follows: �rst, the
octree cell containing it is retrieved, and then all positions
of the grid within this cell and the adjacent ones are ex-
plored. The heuristic of the state is given by the position
| p| which minimizes the sum of its cost | c(p)| and
the distance to xa :

h2dmr(xa) = arg min
p

(kxa � pk + c(p)) (11)

Heuristics play a signi�cant role in the anytime search
capabilities of AD*, since their value is scaled by the pa-
rameter � . By doing so, a sub-optimal solution can be

9

A. Gonz�alez-Sieira et al. / Robotics and Autonomous Systems 00 (2018) 1{18 10

Figure 7: Control set used in the experiments: 336 trajectories con-
necting neighbors of levels 1, 2, 4, 8 and 16 |in red, blue, pink, gray
and yellow, respectively. The highest �delity, f + , is 0:5 m.

retrieved faster and then improved iteratively until the op-
timal one is found or the available computing time is used
up. The planner takes advantage of this possibility by
adjusting the quality of the solution in terms of traversal
time. However, the safety of the solutions is not a�ected
by the use of anytime search. This is because the heuristic
only estimates the traversal time of the path, even though
the cost function has three elements |probability of col-
lision, traversal time and uncertainty at the goal. Since
anytime search works inating the heuristic and these el-
ements are compared hierarchically |see Eq. 10|, the
probability of collision is always minimal regardless the
value of � .

5. Results

In this section results of the proposed motion plan-
ner in di�erent scenarios and uncertainty conditions are
reported. Moreover, tests varying the robot shape were
run, showing the relevance of taking it into account to
predict the probability of collision along the paths. Also,
results for the proposed graduated �delity approach are
detailed, comparing them with those of a standard state
lattice planner. Thus, we show the ability of the proposed
method to improve the e�ciency while maintaining the
performance |the cost of the solutions. Finally, we detail
results for H2DMR, the proposed multi-resolution heuris-
tic, focusing on its validity and the improved e�ciency,
specially in large scenarios. Runtimes reported in this sec-
tion are for a computer with a CPU Intel CoreTM i7-4790
at 3.6 GHz and 16 GB of RAM.

All tests were run on a 2D world and a robot with
Ackermann dynamics, in which M t = 0 :01 � I . Robot di-
mensions are 3:0� 0:75 m, with the rotation center located

at 0:9 m from its back side, centered in the short axis. Lin-
ear speed ranges between 0 and 0:5 m=s, and the angular
speed is between� 30 and 30deg=s. The state vector is
5-dimensional and contains the pose of the rotation center
of the robot, and also the linear and angular speeds:

[x; y; �; v; !] (12)

The control vector contains the linear and angular speeds.
These commands are sent to the robot at 3Hz. The mea-
surements are the position and the heading, with an uncer-
tainty of N t = 0 :01�I in normal conditions. However, there
are location denied areas in the environments in which the
robot does not receive any measurement. Within them,
sensing uncertainty isN t = 1 � I .

With regard to the dynamics model, it was learned
from 183 s of navigation data for a simulated robot in
Gazebo. Then, a set of 336 motion primitives was obtained
|shown in Fig. 7. These primitives connect states of
distances 1, 2, 4, 8 and 16 in a lattice with a highest �delity,
f + , of 0:5 m.

Figure 8 shows a plan obtained with the proposed al-
gorithm. Areas with high uncertainty exist in the region
where maneuvering is required to enter the corridor, which
together with the robot dimensions makes di�cult to �nd
a safe path trough it. In spite of this, the planner provides
a solution which is not only optimal but also smooth. This
contrasts with other approaches based on RRT and RRT*,
which rely on smoothing techniques to achieve similar re-
sults, a�ecting the predicted uncertainty.

Figure 9 details the behavior of the planner under dif-
ferent uncertainty conditions. In this environment, several
alternatives are available to reach the goal, but the ma-
neuvering is limited due to the robot length. Moreover,
motion uncertainty has a great impact in the front side
of the robot, since any small deviation in heading can re-

Figure 8: Planned path for a car-like robot with dimensions 3 :0 �
0:75 m in a cluttered environment. Obstacles are in black, while re-
gions in light gray are those with no location signal. The maximum-
likelihood path is represented with a black line, with the robot trail
in light blue. The green and red diamonds are the start and the goal
points.

10

	Introduction
	Related work
	Planning on state lattices
	Motion primitives
	Optimal path
	Uncertainty management

	Improving the reliability and efficiency of the motion planner
	Reliable probability of collision
	Graduated fidelity lattice
	Multi-resolution heuristic

	Results
	Reliable collision check
	Graduated fidelity lattice
	Anytime search
	Multi-resolution heuristic
	Planning in a real environment

	Conclusions and future work

