A State Lattice Approach for Motion Planning
under Control and Sensor Uncertainty™*

Adrian Gonzalez-Sieira**, Manuel Mucientes* * *, and Alberto Bugarin

Centro de Investigacién en Tecnoloxias da Informacién (CITIUS),
University of Santiago de Compostela, Spain
{adrian.gonzalez,manuel .mucientes,alberto.bugarin.diz}@usc.es

Abstract. Reliable motion planners have to take into account not only
the kinematic constraints of the robot but, also, the uncertainty of both
the motion and sensor models. In this way, it is possible to evaluate a
motion plan based not just on the maximum likelihood path, but also
in deviations from that path that have a non-negligible probability. As
a result, motion plans are more robust and require a lower number cor-
rections during the online implementation of the plan. In this paper we
address the problem of motion planning under uncertainty in both mo-
tion and sensor models using a state lattice. The approach manages a
very efficient representation of the state space, calculates on-demand the
a-priori probability distributions of the most promising states with an
Extended Kalman Filter, and executes an informed forward exploration
of the state space with Anytime Dynamic A*. We provide results with a
differential drive robot under different scenarios, showing the ability of
the planner to calculate optimal solutions that minimize the probability
of collision and the time to reach the goal state.

1 Introduction

Motion planning algorithms have experimented an impressive evolution in the
last years. While the first approaches tried to solve planning and control prob-
lems separately, current proposals pose more realistic planners that take into
account the kinematic restrictions of the vehicle dynamics and, therefore, can
guarantee the generation of feasible solutions. The most successful approaches
in this field are planners based on stochastic sampling sampling methods —
probabilistic roadmaps (PRM), rapidly-exploring randomized trees (RRT) and
their variants— and those based on deterministic sampling —state lattices.

* This work was supported by the Spanish Ministry of Economy and Competitive-
ness under grants TIN2011-22935 and TIN2011-29827-C02-02. This work was also
supported in part by the European Regional Development Fund (ERDF/FEDER)
under the project CN2012/151 of the Galician Ministry of Education.

** A. Gonzélez-Sieira is supported by a FPU grant (ref. AP2012-5712) from the
Spanish Ministry of Education, Culture and Sports.
*** M. Mucientes is supported by the Ramén y Cajal program of the Spanish Ministry
of Economy and Competitiveness.

M.A. Armada et al. (eds.), ROBOT2013: First Iberian Robotics Conference, 247
Advances in Intelligent Systems and Computing 253,
DOI: 10.1007/978-3-319-03653-3 19, (© Springer International Publishing Switzerland 2014

248 A. Gonzélez-Sieira, M. Mucientes, and A. Bugarin

These planners assume a full knowledge of the state and motions, leaving un-
certainty issues to the controller that implements the generated paths, which is
typically a feedback controller.

Motion uncertainty in autonomous robots originates from the inaccuracy of
control actions, unmodeled external influences, and the usage of partial or noisy
information about the state. The evolution of the uncertainty depends on the
executed motions and the current state of the vehicle, i.e., different generated
paths can have very different uncertainties. Planning without taking into account
the uncertainty produces unrealistic paths, as the full knowledge of the states and
actions assumed by traditional planners can only be reproduced in simulation
conditions. Uncertainty causes failures or deviations from the planned path and,
frequently, it is necessary to obtain a new plan when the feedback controller
cannot return the system to a state belonging to the planned path.

Under the assumption that both the motion and the sensor models are known,
it is possible to predict the a-priori —at planning time— probability distributions
of the states given the control commands to follow a path. This prediction can
be done using a Kalman filter when the stochasticity of the models can be
described with Gaussian distributions. With the information provided by these
distributions, a planner can be designed to obtain solutions that optimize one
or several objectives: minimal probability of collision, minimal covariance along
the path, maximum likelihood of reaching the goal state, etc.

In this paper, we present a motion planning algorithm based on a deter-
ministic sampling technique, the state lattice [I], that can obtain optimal and
sub-optimal bounded paths taking into account the motion and sensing uncer-
tainty. This approach extracts from the vehicle motion model a set of discrete
actions connecting states belonging to the lattice. As the state lattice uses a reg-
ular sampling scheme, these actions are position-independent and can be used to
connect every pair of states equally arranged. This provides a very efficient rep-
resentation of the state space which cannot be achieved with stochastic sampling
methods.

We use an Extended Kalman Filter (EKF) to estimate the a-priori distribu-
tions, as we assume that both the motion and sensor models follow Gaussian
distributions. The estimated probability density functions (PDFs) are used to
approximate the probability of collision along a path. Then, the algorithm ob-
tains the safest and optimal path to the goal using a discrete search algorithm,
Anytime Dynamic A* (AD*) [2], over the state lattice. Our proposal executes
an informed forward exploration of the state space, calculating on-demand the
a-priori distributions of the most promising states according to a heuristic func-
tion that takes into account the vehicle dynamics and the map information,
improving the efficiency of the planner.

2 Related Work

The most successful approaches to motion planning are sample based techniques.
Among all the approaches, three of them have been widely used: i) PRM [3], that

Motion Planning under Control and Sensor Uncertainty 249

obtains random samples in free space, building a graph that connects the nearest
ones; ii) RRT [4], that builds a tree in free space by iteratively obtaining random
samples and connecting them with the nearest existing one; iii) state lattices
[1], that exploit the benefits of a regular and deterministic sampling scheme to
represent the problem as a directed graph. The first two approaches have many
interesting properties, but they assume that the trajectories connecting every
pair of states are generated online from the system dynamics —which depending
on its complexity can become a difficult problem— while state lattices can work
with a set of actions generated offline, which favours an efficient search.

Uncertainty in motion planning comes from different sources: control noise,
sensor noise, partial information from the environment, and map uncertainty.
Some planners only consider motion uncertainty, as [5], that tries to avoid rough
terrain because the result of a control may differ from the expected. The proposal
in [6] uses Markov Decision Process (MDP) theory to maximize the probabilities
of collision avoidance and of successfully reaching the goal. A generalization of
MDP, Partially Observable Markov Decision Process (POMDP), can be used to
include sensor uncertainty, but this approach is not scalable to realistic problems
due to its high computational complexity [7].

For systems that can be modelled with Gaussian PDF's, the state can be es-
timated using a Kalman filter, which has proved to be a successful approach for
autonomous vehicles equipped with on-board sensors. This is the approach for
Belief Roadmap (BRM) [8], which generates paths minimizing the state uncer-
tainty at the goal, but regardless their total cost. Another approach is LQG-MP
[9], which obtains the trajectory with the lowest cost and with a probability of
collision under a threshold. However this proposal uses an RRT, which makes not
possible to guarantee that the optimal path will be found [I0]. Other proposals
use variations of RRT modified with pruning strategies, but they also inherit
the lack of guarantee of finding the optimal solution. The planner presented in
[11] uses an extension of RRT which provably converges to the optimal solution
when the number of samples tend to infinite, but as all random sampling tech-
niques assumes that the action connecting every pair of states can be efficiently
computed online.

3 Problem Formulation

The motion planner obtains optimal collision-free paths taking into account both
control and sensor uncertainty. The robot dynamics (f) and sensor models (h)
are explicitly given and they are linear or can be locally approximated by their

linearization:
xy = f(@i—1,u,mye), my ~ (0, My) (1)
2t = h(xt,nt), ng ~ (OaNt)

where z; € X = Xf7ee U x°% is the state of the robot, u; € U is the control
input, m; is the random process noise, z; is the sensor measurement and n; its
associated random noise. X% is formed by all states where the robot collides
with obstacles in the environment.

250 A. Gonzélez-Sieira, M. Mucientes, and A. Bugarin

o O 0] O 0} O o] o o]
o) O @) @]
(@) € O

Fig. 1. Rectangular arrangement of the lattice. The canonical control set (black) is
independent of the beginning position and is replicated in all equivalent states allowing
a very efficient representation of the problem.

Planning relies on a state lattice, which samples the state space X in a regular
form, obtaining a set of states z; € X'** C X, named lattice states. These states
are connected by a finite set of actions extracted from the vehicle dynamics, the
canonical control set &. The generation of U follows an iterative optimization
method based on Newton-Raphson detailed in [I2].

The state lattice is generated using a regular discretization scheme. Because of
this regularity the canonical actions are independent of the beginning position
and the same control commands connect every pair of states in X' equally
arranged, as shown in Fig. [l

Each canonical control u%? € U is a composition of control commands that
drive the robot from z¢ € X' to x> € X'ot:

b — (u‘be’ ug:b, . U?abb)
7o — (x‘ll:b’ x%:b, ceny l'?abb) (2)
l,(llib — xa’xttl(if’b = g0

P = f(zE, ug? 0) € XVt € [1,1%Y)

where the intermediate states —which may not belong to X'*— are generated
with the motion model f with no noise, and t*? is the total time of the canonical
action. Given an initial state of the vehicle (' € X!%!) and a goal state (29 €
X'at) " a valid path is a combination of N canonical actions, (w1, ..., uN ~19),
that drive the robot to the goal state without collisions.

4 Uncertainty Prediction

If both the prior probability and the motion and sensor noises are Gaussian, an
EKF can be used to estimate the a-priori PDFs for each state x,Vt € [1,t%?]

Motion Planning under Control and Sensor Uncertainty 251

given the control inputs along the followed path. The PDFs estimated with the
EKF are also Gaussian, so a state is described as:

Ty ~ N(i’t, Zt) (3)

The a-priori PDFs are calculated when the search algorithm expands a new
lattice state and its neighbourhood is generated. The complete process of uncer-
tainty propagation is detailed in algorithm [II

Algorithm 1. Uncertainty prediction: uncertainty(z?)

for all 2’ € succ(z®) do
EO — ja
X0 =xe
for all t ¢ [1,t*"] do
F = (@, u,0)
Xy = z~4t2t71AtT~+ V;thVtT
K =X HI (HXHF + W,NWF)™!
j?t = it + K(Zt — h(it))
Y= —-KH)%,
end for
=7
=3,
end for
return z3® Vt € [1,t%°),Va® € succ(z?)

Given a state 2 € X! and for each successor z® € X't the uncertainty is
estimated applying an EKF iteratively to obtain the intermediate a-priori PDF's
along the motion primitive. Each execution of the EKF performs two steps: a
prediction step that uses the dynamics model and the current command u$*® of
the canonical action, and an update step that incorporates the information given
by the maximum likelihood measurement z;. As the prediction of the PDFs is
done at planning time without any information of the future execution of the
path, the EKF is applied considering that both controls and measurements are
those with maximum likelihood.

During the execution of the planned path the vehicle could deviate from the
predicted trajectory. The optimal approach to minimize this deviation is to use a
feedback controller based in a Linear Quadratic Regulator (LQR) in conjunction
with a Kalman estimation of the state, a technique named Linear Quadratic
Gaussian (LQG) controller.

5 Search Algorithm

Motion planning is a search problem that can be expressed as a directed graph
where the nodes are the discrete states of the lattice (X'*), and the arcs con-
necting them are the actions of the canonical control set U. As the canonical

252 A. Gonzélez-Sieira, M. Mucientes, and A. Bugarin

control set is generated from the vehicle dynamics, it is clear that the state
lattice observes by construction the differential constraints of the robot.

5.1 Anytime Dynamic A*

The search algorithm we have used in this proposal is Anytime Dynamic A*
(AD*) [2]. This algorithm is very adequate for motion planning problems be-
cause it combines both replanning and anytime search. It is possible to calculate
suboptimal bounded solutions adjusting an heuristic inflation parameter, €, de-
pending on the time available to obtain a solution.

The main operations done by the search algorithm are summarized in algo-
rithm[2l While the solution is not found, the algorithm selects the most promising
lattice state x®. This state is the one that minimizes the cost of the the path
from the beginning state c(z*%"*:%) plus the estimated cost to the goal e(x?),
which is calculated by the heuristic function inflated by the parameter €. Then,
the expansion of the state x® is performed, generating all the paths to its suc-
cessor states 2° € succ(z®) (each point in the path is represented by a Gaussian
distribution) with algorithm [II

Algorithm 2. Main loop of AD* with uncertainty
while solution not found do
select Minga¢ yrat (c(z%7%) + € - e(2%))
uncertainty (z®)
for all z° € succ(z®) do
c(mstart:b) — c(mstart:a) +c($a:b)
end for
end while

In its typical form, AD* executes a backwards search. This makes possible to
change the beginning state and obtain new solutions without replanning from
scratch. Nevertheless, if we have to estimate the PDF of each state in the path at
planning time, the PDF's are propagated along the outgoing trajectories of the
most promising state % in each iteration of the algorithm, using the procedure
introduced in algorithm [Il This function needs the prior PDF of z%. This means
that the distribution of the initial state 259" € X ~ N(zstert 35tart) peeds
to be known in order to propagate it along the paths generated by the search
algorithm. For this reason, a variant of AD* that executes a forward exploration
of the state space was used.

After the PDFs are propagated, the cost of the path from the starting state to
each successor state 2° € succ(x®) must be updated. This operation just requires
the calculation of the cost from ¢ to x° (algorithm [)).

In a planner without uncertainty the cost is the time to drive the robot
throughout the path without collisions. However, if the planner takes into ac-
count the uncertainty, the paths have to be, at the same time, safe and optimal,

Motion Planning under Control and Sensor Uncertainty 253

Algorithm 3. Cost evaluation: c¢(z%?)
cs =0
for all t <€ [1,t*"] do
S = set of samples from z#® ~ N (2, X#?)
> g checkCollision(S;)

Pc
S|
cs =c¢s — In(1l — pe)
end for
Cs
return | t*?
Eb

i.e., the algorithm has to minimize the probability of collision and, at the same
time, get an optimal cost —minimizing the time— to reach the goal state. For
this reason, the cost function of a path between states ¢ € X't and z € xlot
is defined as a vector of three elements that should be minimized: a safety cost,
cs, related to the collision probability along the path, the total time of the path,
t*® and the covariance at the final state, X°.

The probability of collision of a path between the states * and z® is obtained
as a combination of the probabilities of collision for each intermediate state, x3:®
(algorithm [3)). Given a state z¢®, its PDF is sampled, and for each sample in the
set S, a collision check is performed. The collision check is done by applying the
hyperplane separation theorem between the obstacles in the map and the vehicle
shape at the sampled pose. This theorem requires the convexity of the checked
forms to success. This is guaranteed by approximating the vehicle shape with a
polygon and decomposing the obstacle information in squared cells stored in a
grid map.

The motion planner propagates the PDF's and evaluates the cost of an action
between a state and its successors on-demand when the search algorithm expands
a new state . As the expanded states are the most promising ones, this saves a
lot of computation time without the need to applying external pruning strategies
as in those approaches based on RRT, being simply integrated in the search.

Our proposal has to compare the cost of the different lattice states in order
to select the most promising one, and this cost is a vector of three components.
The comparison of the cost of two states, % and a? is solved as:

c(xstart:a) < c(xstart:b) PN (cgtart:a — cgtart:b)\/
(cgtart:a — cgtart:b A tstart:a < tstart:b)\/ (4)
(citart:a — citart:b A tstart:a — tstart:b A Yo = Zb)
thus, there is a hierarchy in the components of the cost vector: the most rele-
vant element is the safety cost, then the total time of the path and, finally, the
covariance of the final state.
The minimization of the cost function calculated in algorithm [l and this

comparison criterion generate safe paths with the lowest possible execution time

254 A. Gonzélez-Sieira, M. Mucientes, and A. Bugarin

and, between paths with equal safety cost and execution time, the one with
lowest uncertainty at the final state.

5.2 Heuristic

AD* executes an informed search over the state space. The estimation of the
cost of the path between a lattice state and the goal state is generated by the
heuristic function e, that influences the order in which the states are expanded.
In [I3] introduced an heuristic function for state lattices that was defined as the
combination of two values: the cost of the path taking into account the kinematic
constraints of the vehicle and considering free space (epsy), and the cost of the
path regardless the motion model but using the obstacles information, egop:

e(z) = max(enzp (1), ersm (%)), (5)

where the heuristic function uses the mean of the PDF (Z), which is a reasonable
assumption attending to the optimistic nature of the heuristic.

emep is calculated executing a Dijkstra search over an 8-connected 2D grid
where the positions match the states in X'*. The exploration begins in the goal
state and it is stopped when the explored cost reaches 1.5 times the cost between
the initial state and the goal state. This process is executed only once, at the
beginning of the planning process. For states not explored by the Dijkstra search
the heuristic takes its maximum value, providing a stop condition for the planner
when a solution up to the maximum Dijkstra explored cost cannot be found.

On the other hand, epsy uses the motion model to estimate the cost to the
goal, which makes it a motion planning problem itself and, therefore it cannot
be computed online. As this heuristic considers always free space, its values can
be precomputed offline and stored in a Heuristic Look-Up Table, following the
construction process detailed in [13].

6 Experimental Results

The proposed motion planner was tested with a differential drive robot in a 2D
environment using Player/Stage. We have selected different scenarios (landmark
positions) and, also, different uncertainty degrees for the sensor model.

The state z; = (xy Ty To Ty 7,)T is a 5-dimensional vector containing the
vehicle pose and the current linear and angular speed, and the control command
ur = (uy uw)T is a 2-dimensional vector that defines the linear and angular
speeds.

The lattice was built with the following discretization resolutions: 0.5 m in
both z, and z,; x¢ contains the orientation values of the neighbours of a 16-
connected grid, x, = {0,0.2,0.5} m/s, and z,, = 0 rad/s. This means that the
lattice states can only take these values as part of the discretization scheme, but
for any other state x; ¢ X%, the state vector can take any value. In fact, the
evolution of the linear and angular speeds in the canonical control set is defined
by trapezoidal function for the linear velocity and cubic spline function for the

Motion Planning under Control and Sensor Uncertainty 255

Uy

M

t >

(b) Cubic-spline angular velocity profile.

Fig. 2. Definition of the variable profiles of u, and w,., for a canonical control action

angular velocity. As it can be seen in Fig. and Fig. z, and x, can
take any intermediate value, while the beginning and final ones must observe

the state lattice restrictions.

The canonical control set U used in the experiments was built connecting
neighbours of distances (in number of states) 0, 1, 4 and 8, allowing motion
primitives up to 4 m long.

The non-linear motion model f(z;—1,u:) used in the tests is defined as:

Ty + v (—sin(zg) + sin(zg + u, At))
Ty + ;‘Z cos(zg) — ., cos(zg + uwAl)
Ty + Uy, At (6)
u’U

Uw

256 A. Gonzélez-Sieira, M. Mucientes, and A. Bugarin

where At is the time of application of the action, and the control noise covariance
is calculated as a percentage of the control command wu;:

Mt = 0.1]ut (7)

The sensor measurements come from the nearest landmark in the environ-
ment, b = (bs, by), according to the following observation model h(z¢,b):

(ZZ) _ <\/(xx — ba)2 + (1 — by)?) 8)

arctan(z, — by, T, — by) — To

The measurement noise covariance is also defined as a percentage of the value
of the measurement:

, 9)

_ Jo.05Ih ifhg <=5
03Ik ifhy>5

which introduces a variable measurement noise depending on the distance be-
tween the landmark and the vehicle.

Collision check is a very frequent operation and could be very time consuming
without a careful implementation (specially for a grid map with cell resolution of
0.125 m). To optimize this operation, offline we have centered the vehicle shape
in a set of poses around the central point of a cell, calculating for each pose
the list of adjacent cells occupied by the shape of the robot. When a collision
check has to be performed online, the difference between the central position
of the shape and the central point of the nearest cell is calculated. Given that
difference, the closest sample is picked and the collision is checked with the list of
adjacent cells that was generated offline. To guarantee that this loss of precision
in the collision check does not affect the safety of the generated paths, the vehicle
shape is enlarged with a safety margin that matches the sampling resolution of
the offline cells list.

For the example in Fig. Bl a motion planner that obtains the optimal path
without taking into account the motion and sensor uncertainty, obtains solu-
tions with a high collision probability. This may cause failures when the vehicle
deviates from the planned path, even in the case of executing it with a feedback
controller.

The configuration of the landmarks in the environment directly affects the
evolution of the covariance and, therefore, the solution obtained by the planner.
In the example of Fig. the localization is good near the upper doors, so
the solution is similar to the optimal path without uncertainty but avoiding the
proximity to the corners. When the landmarks are moved down, as in Fig.
and Fig. the safest solution avoids the first narrow door, navigates through
zones with good measurements and safely passes through the second one. More
detailed results for these executions are given in Table [II which contains the
average values for 5 executions of the planner in the same conditions. Stochas-
ticity comes from the sampling of the PDF to estimate the collision probability,
Pe, which is obtained by combination of the collision probabilities of all states
along the path. Even in the case of similar solutions as shown in Fig. the
proximity of a single state to obstacles significantly increases p..

Motion Planning under Control and Sensor Uncertainty 257

|

1)
I
i

() (d)

Fig. 3. Comparative between the best paths with (in black) and without (in gray)
taking into account the uncertainty. Each figure shows a different positioning of the
landmarks (diamond symbols). The ellipses represent the double of the deviation (of
5 and x,) for the states on the path.

258 A. Gonzélez-Sieira, M. Mucientes, and A. Bugarin

“O-” prefix denotes the optimal solution using a planner that does not take
uncertainty into account, while “U-" indicates the solution obtained when plan-
ning with uncertainty.

For the worst case, in Fig. the measurements are very noisy in the upper
region of the map, so the covariance grows fast and passing trough narrow areas
has a high probability of collision. If the landmarks are set in the lower region
of the environment, the safest solution is to take the longest path, as it obtains
measurements with a lower uncertainty to safely reach the goal.

The number of lattice states expanded by the search algorithm and the plan-
ning time depend on the degree of uncertainty with respect to the optimal path
without uncertainty. The reason is that the heuristic function does not contain
information about the probability of collision or the covariance evolution, so if
the optimal path is blocked due to a high probability of collision, the heuristic
may underestimate the cost to the goal region, causing an increase in the number
of expansions.

Figure [shows a comparative between different sub-optimal bounded solu-
tions. The landmark positions are the same as in Fig. but in this case the
algorithm was run for different values of the heuristic inflation parameter, €. As
shown in Table [I the higher the value of ¢, the lower the execution time and
the number of expansions of the algorithm. These values have an upper bound
given by the loss of information caused by estimating the cost to the goal with-
out uncertainty, i.e., for high values of € the heuristic function does not provide
useful information and, therefore, the positive effect of a lower number of state
expansions disappears.

Table 1. Details of the experiments

Planning Solution
Problem
¢ Time (s) Expansions p. Cost (s)
OBh)] 1.0 1 146 0.51 31.02
UBk) 1.0 1 121 0 3116
OB®)] 1.0 1 146 0.97 31.02
UBMm)] 1.0 48 4,344 0 5740
OBk 1.0 1 146 1 31.02
UBl) 1.0 114 10,699 0 6517
OB 1.0 1 146 1 3102
1.0 299 25,771 0 12348
2.0 204 16,183 0 13282
UBM@)] 3.0 198 15,779 0 128.71
50 198 15,856 0 13929
10.0 196 15,634 0 15299

Motion Planning under Control and Sensor Uncertainty 259

(d) e=10.0

Fig. 4. Comparative of different sub-optimal bounded paths for several values of €

7 Conclusions

We have presented a motion planning algorithm that takes into account the
uncertainty of the motion and sensor models. The proposal is based on a search
algorithm that obtains safe and optimal paths over a state lattice. The planner
uses an EKF to predict the PDFs of the different states throughout the possible
paths, and assigns them a probability of collision. Moreover, the planner can
also get anytime solutions calculating safe sub-optimal bounded paths.

The performance of the motion planner was tested with several examples with
different uncertainty conditions. All the results show a good performance both
in terms of the probability of reaching the goal state without collisions and the
time to travel throughout the path. Further work is still necessary to improve the
PDF's prediction and, also to reduce the planning time. As many components
of the planer are computed offline (like the canonical control set), the same

260 A. Gonzélez-Sieira, M. Mucientes, and A. Bugarin

approach could be applied to the PDFs if they can be expressed as a function
of the initial covariance, thus improving the efficiency.

References

1. Pivtoraiko, M., Knepper, R.A., Kelly, A.: Differentially constrained mobile robot
motion planning in state lattices. Journal of Field Robotics 26(3), 308-333 (2009)

2. Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., Thrun, S.: Anytime dynamic
A*: An anytime, replanning algorithm. In: Proceedings of the International Con-
ference on Automated Planning and Scheduling (ICAPS), pp. 262-271 (2005)

3. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge
(2006)

4. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. The International
Journal of Robotics Research 20(5), 378-400 (2001)

5. Melchior, N.A., Simmons, R.: Particle RRT for path planning with uncertainty. In:
IEEE International Conference on Robotics and Automation (ICRA), pp. 1617—
1624 (2007)

6. Alterovitz, R., Siméon, T., Goldberg, K.: The stochastic motion roadmap: A sam-
pling framework for planning with Markov motion uncertainty. In: Robotics: Sci-
ence and Systems, pp. 246-253 (2007)

7. Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of Markov decision processes.
Mathematics of Operations Research 12(3), 441-450 (1987)

8. Prentice, S., Roy, N.: The belief roadmap: Efficient planning in belief space by
factoring the covariance. The International Journal of Robotics Research 28(11-
12), 1448-1465 (2009)

9. Van Den Berg, J., Abbeel, P., Goldberg, K.: LQG-MP: Optimized path planning for
robots with motion uncertainty and imperfect state information. The International
Journal of Robotics Research 30(7), 895-913 (2011)

10. Karaman, S., Frazzoli, E.: Incremental sampling-based algorithms for optimal mo-
tion planning. In: Robotics: Science and Systems (2010)

11. Bry, A., Roy, N.: Rapidly-exploring random belief trees for motion planning un-
der uncertainty. In: IEEE International Conference on Robotics and Automation
(ICRA), pp. 723-730 (2011)

12. Gonzalez-Sieira, A., Mucientes, M., Bugarin, A.: Anytime Motion Replanning in
State lattices for Wheeled Robots. In: Workshop on Physical Agents (WAF), pp.
217-224 (2012)

13. Likhachev, M., Ferguson, D.: Planning Long Dynamically Feasible Maneuvers for
Autonomous Vehicles. The International Journal of Robotics Research 28(8), 933
945 (2009)

	A State L
attice Approach for Motion Planningunder Control and Sensor Uncertainty
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Uncertainty Prediction
	5 Search Algorithm
	5.1 Anytime Dynamic A*
	5.2 Heuristic

	6 Experimental Results
	7 Conclusions
	References

